
1/14

January 17, 2020

Unpacking Pyrogenic/Qealler using Java agent -Part 0x2
securityinbits.com/malware-analysis/unpacking/unpacking-pyrogenic-qealler-using-java-agent-part-0x2/

Introduction to Java agent

A Java agent is used to instrument programs running on the JVM and it can modify the Java
bytecode at runtime without source code. In this post we will be using a Java agent to dump
the classes during runtime without any bytecode modification but for more details please
check this Java Agents Tutorial . These are the minimum requirement for Java agent to
work:

1. Java agent class file should have a premain method which acts as the entry-point.This
method is executed before the real java application main method, premain method it’s
like TLS callback.

2. MANIFEST.MF should be defined with the Premain-Class attribute, which will point to
class name with premain method. Another important point is there must be a new line
at the end of the MANIFEST file. Otherwise, the last header is ignored.

3. javaagent parameter should be specified to load java agent jar file with premain
method e.g . java -javaagent:dumper.jar -jar malware.jar

Unpacking using Java agent

dumper.java & MANIFEST.mf are used to build Java agent dumper.jar. dumper.java code
is copied from Reversing an obfuscated java malware pdf and I will highly recommend to
go through the pdf to understand the different methods which can be used to analyse Java
malware.

grade

Note: All java, MANIFEST and jar files are uploaded to GitHub repo .

dumper.java

[1]

[2]

[2]

[3]

https://www.securityinbits.com/malware-analysis/unpacking/unpacking-pyrogenic-qealler-using-java-agent-part-0x2/
https://github.com/Securityinbits/blog-posts/tree/master/java_agent

2/14

import java.io.*;
import java.lang.instrument.*;
import java.security.*;

// This code is copied from "Reversing an obfuscated java malware by Extreme Coders"
public class dumper {
 //A java agent must have a premain method which acts as the entry-point
 public static void premain(String agentArgs, Instrumentation inst) {
 System.out.println("agent loaded");
 // Register out trasnformer
 inst.addTransformer(new transformer());
 }
}

class transformer implements ClassFileTransformer {
 // The transform method is called for each non-system class as they are being
loaded
 public byte[] transform(ClassLoader loader, String className,
 Class < ? > classBeingRedefined, ProtectionDomain protectionDomain,
 byte[] classfileBuffer) throws IllegalClassFormatException {
 if (className != null) {
 // Skip all system classes
 if (!className.startsWith("java") &&
 !className.startsWith("sun") && !className.startsWith("javax") &&
!className.startsWith("com") && !className.startsWith("jdk") &&
!className.startsWith("org")) {
 System.out.println("Dumping: " + className);
 // Replace all separator characters with _
 String newName = className.replaceAll("/", "_") + ".class";
 try {
 FileOutputStream fos = new FileOutputStream(newName);
 fos.write(classfileBuffer);
 fos.close();
 } catch (Exception ex) {
 System.out.println("Exception while writing: " + newName);
 }
 }
 }
 // We are not modifying the bytecode in anyway, so return it as-is
 return classfileBuffer;
 }
}

MANIFEST.mf

Manifest-Version: 1.0
Premain-Class: dumper

grade

Note: If you know the basic of Java or any other object oriented programming language then
it will be much easier to understand this dumped unpacked code.

3/14

1. Uploaded the jar file in GitHub repo which is generated using following command:
javac dumper.java

jar cmf MANIFEST.MF dumper.jar dumper.class transformer.class

[3]

https://github.com/Securityinbits/blog-posts/tree/master/java_agent

4/14

2. Execute this command java -javaagent:dumper.jar -jar
BankPaymAdviceVend_LLCRep.jar to run the malware with java agent and it will
dump all the accessed classes at runtime to the current working directory.

Pyrogenic java agent cmdline

https://www.securityinbits.com/wp-content/uploads/2019/12/Pyrogenic-Java-agent-cmdline.png

5/14

Pyrogenic malware classes with comment

3. Please decompile all the dumped class files which start with q0b4 and j/t/e package
name files using ByteCodeViewer FernFlower Java decompiler. One of the easiest way
is to zip all classes and then use BCV. Then, import decompiled java source files from
BCV into any Java IDE, this will help you in code navigation.

https://www.securityinbits.com/wp-content/uploads/2020/01/Pyrogenic-malware-classes-with-comment-0.png

6/14

4. Start from the bottom and go up in the above pic then you will find the first proper
package name q0b4/bootstrap/templates/Header which can be our starting point for
unpacked code. We are Reverse engineers, we always start in reverse order :).

5. Below pic shows all the unpacked classes dumped using Java agent dumper.jar. It
starts from Header.java which uses a decrypt function to AES decrypt the classes at
runtime and invoke the main method. It invokes j.t.e.Main package main method.

Dumped Classes List with Header.java

grade

Other approach is to dump all the classes present in obfuscatedEntryList using for loop and
continue analysis

Dumped class file analysis

Malware authors divided the source code in multiple sensible packages. They have made
our job easier by giving proper names to functions, variables and classes. We will go through
some of the classes Main, Server, MainEx and one util IPAddress class, as it will take too
much time to go through each one of them.

Main & Server class

https://www.securityinbits.com/wp-content/uploads/2020/01/Dumped-Classes-List-with-Header-1.png

7/14

Main class invokes the loadLibrary method which sends the cmd to CC using
sendCmd method.

Pyrogenic Main class with loadLibrary

https://www.securityinbits.com/wp-content/uploads/2020/01/Pyrogenic-Main-class-with-LoadLibrary-2.png

8/14

Server class contains function loadLibrary which is used above and
pushCredentials which is used to send the stolen credential to CC.

Pyrogenic Server class with functions

https://www.securityinbits.com/wp-content/uploads/2020/01/Pyrogenic-Server-class-with-function-4.png

9/14

Server class contain the following list of available library and cmds:
public static final int PYTHON = 162144;
public static final int SQLITE = 4353152;
public static final int JNA = 224288;
public static final int JNA_PLATFORM = 3048576;
public static final int JNA_4 = 307200;
public static final int JNA_PLATFORM_4 = 308224;
public static final int BCPROV = 310272;
public static final int INI4J = 311296;
public static final int XML = 312320;
public static final int JSON = 313344;
public static final int W3DOM = 314368;
public static final int Q4_PASS_LIB = 315392;
public static final int JPOWERSHELL = 316416;
private static final int LIBRARY_CMD = 16384;
private static final int CREDENTIAL_CMD = 32768;
private static final byte[] SEED =
"uisdfysdgfbsdyufbsiybfsdyb733grfsudbfjh".getBytes();
private static final int MAX_TRY_COUNT = 20;

Pyrogenic Server class with cmd

Malware author didn’t pack all the required Java libraries in the jar but it is requested when
needed at runtime. This significantly decreased the malware size to 153.27 Kb. Let’s discuss
some of the library and commands used:

https://www.securityinbits.com/wp-content/uploads/2020/01/Pyrogenic-Server-class-with-cmd-3.png

10/14

1.
1.

1. Server JNA, JNA_4, JNA_PLATFORM, JNA_PLATFORM_4 – JNA (Java
Native Access) provides simplified access to native library methods without
requiring any additional JNI or native code. For example you can call printf,
GetSystemTime Windows API function directly from Java Code.

2. INI4j – Java API for handling configuration files in Windows .ini format
3. JPOWERSHELL – Simple Java API that allows programs to interact with

PowerShell console. It may be used when malware invokes any PowerShell
commands.

4. Q4_PASS_LIB – May be Qealler v4 Password Library loaded first using
list.add(server.loadLibrary(315392));

5. LIBRARY_CMD – May be used to load the clean dll used sqlitejdbc.dll and
jnidispatch.dll

6. CREDENTIAL_CMD – This cmd is used to pushCredentials to CC

MainEx class

11/14

j.t.e.Main main method invokes the j.t.e.MainEx main method as shown above in
Main class. It sent credential and system info in JSON format to CC. All the
communication are AES encrypted using EncryptedCipherOutputStream and
EncryptedCipherInputStream which extends CipherOutputStream &
CipherInputStream respectively.

Pyrogenic MainEx main method

https://www.securityinbits.com/wp-content/uploads/2020/01/Pyrogenic-MainEx-main-method-5.png

12/14

MainEx class contains two important methods: run() and getSysinfo() as shown
below.

Pyrogenic MainEx credential stealer method

 Malware steal credential from list of software mentioned in the run() method

this.addAll(ChromiumBased.chromiumBasedBrowsers);
this.addAll(MozillaBased.mozillaBasedBrowsers);
this.add(new IExplorer());
this.add(new UCBrowser());
this.add(new Composer());
this.add(new Credman());
this.add(new Outlook());
this.add(new Pidgin());
this.add(new PostgreSQL());
this.add(new Squirrel());
this.add(new Tortoise());

getSysinfo() collect osName, osVersion, osArch, javaHome, userName,
userHome, availableProcessor, freeMemory, totalMemory, localIpAddress &
globalIpAddress in JSON format which is encrypted and sent to CC with other
info.

IPAddress class

https://www.securityinbits.com/wp-content/uploads/2020/01/Pyrogenic-MainEx-credential-stelaer-method-6.png

13/14

IPAddress class is one of the classes present in package j.t.e.core.utils which
gets the IP address of the infected system and sends it to CC with other system
info. It uses http://bot.whatismyipaddress.com for collecting the public IP of
infected systems.

https://www.securityinbits.com/wp-content/uploads/2020/01/Pyrogenic-IPAddress-util-class-7.png

14/14

Pyrogenic IPAddress util class

When will it fail?

Unpacking using Java agent will be unable to dump all the classes at runtime due to
following conditions:

When malware is unable to interact with CC then it will not be able to exhibit complete
behaviour.
Malware is using some anti analysis technique e.g checking for vmware etc.
Malware is unable to run due to some supporting files, command line etc.

Conclusion

Unpacking using a Java agent is quite simple and can speed up your analysis, you can use
the dumper.jar uploaded in Github . This method can be used in any Java based malware.
We have also gone through some of the dumped Pyrogenic/Qealler source code to
understand the stealer functionality. In the last part 0x3 we find similarity between
Qealler/Pyrogenic variants based on static code analysis.

Hope you enjoyed this post, please Follow @Securityinbits me on Twitter to get the latest
update about my malware analysis & DFIR journey. Happy Reversing 😊

[3]

https://www.securityinbits.com/wp-content/uploads/2020/01/Pyrogenic-IPAddress-util-class-7.png
https://www.securityinbits.com/malware-analysis/similarity-between-qealler-pyrogenic-variants-part-0x3/
https://twitter.com/Securityinbits?ref_src=twsrc%5Etfw

