MMD-0065-2020 - Linux/Mirai-Fbot's new encryption
explained

blog.malwaremustdie.org/2020/01/mmd-0065-2020-linuxmirai-fbot.html

Prologue

[For the most recent information of this threat please follow this ==> link]

| setup a local brand new ARM base router | bought online around this new year 2020 to
replace my old pots, and yesterday, it was soon pwned by malware and | had to reset it to
the factory mode to make it work again (never happened before). When the "incident"
occurred, the affected router wasn't dead but it was close to a freeze state, allowing me to
operate enough to collect artifacts, and when rebooted that poor little box just won't start
again. So for some reason the infection somehow ruined the router system.

As the summary for this case, in the router | found an infection trace of Mirai Linux malware
variant called "FBOT", an ARM v5 binary variant, and it is just another modified version of
original Mirai malware (after a long list of other variants beforehand). The infection came
from a malware spreader/scanner attack from "another" infected internet of things explained
later on.

There is an interesting new encryption logic on its configuration section in the binary,
alongside with the usage of "legendary" Mirai table's encryption, so hopefully this write-ups
will be useful for others to dissect the threat. This may not be an easy reading one you and is
a rather technical post, but if you are in forensics or reverse engineering on embedded
platforms i.e. loT or ICS security, you may like it, or, please bear with it. To make the post
small and neat | won't go to further detail on router matter itself, and just go straight to the
malicious binary that caused the problem, Mirai, is also a malware with a well-known
functionality by now. It would be helpful if you know how it works beforehand. So I'll focus to
the new decryption part of the artifact.

| changed my analysis platform since SECCON 2019, | use "Tsurugi Linux SECCON edition",
a special built version by Giovanni, with hardened/tested by me, supported by the "Trufae"
for radare2's r2ghidra & r2dec pre-installing process during the SECCON 2019 time. It's a
Linux distribution for binary & forensics analysis, Tsurugi is enriched with pre-compiled r2
with many architecture decompilers (i.e.: r2ghidra, r2dec and pdc), along with ton of useful
open source binary analysis, DFIR tools with the OSINT/investigator's mode switch. This OS
should suffice the analysis purpose. A new feature of r2ghidra (also r2dec) are used a lot.
(The thank's list is in the Epilogue part).

The tool's version info:

1/14

https://blog.malwaremustdie.org/2020/01/mmd-0065-2020-linuxmirai-fbot.html
https://blog.malwaremustdie.org/2020/02/mmd-0065-2021-linuxmirai-fbot-re.html

> 1r2 -v

radare2 4.1.0-git 24455 @ linux-x86-64 git.4.0.0-235-9g982be50

commit: 982be504999364c966d339c4c29f20da80128e14 build: 2019-12-17_ 10:29:05

:> luname -a

Linux tsurugiseccon 5.4.2-050402-tsurugi #1 SMP Tue Dec 10 21:18:57 CET 2019 x86_64
x86_64 x86_64 GNU/Linux

1>

(click he image t check details..)
Okay, let's write this, here we go..

The infection

After successfully getting logs and cleaning them up, below is the timeline (in JST) that
contains the infection detail:

* login with stk o]
* rempte 1P: 83 157 162 2471
shel |1

1
]
3
4
1]
[
1
8
9

retrieve; 2 4l
sretrieve; 2 tl

-:'hi |'l_."|_1u5-r. ox 8 | | |
[0 8 Jretrievs 38/ retr leve BE busybox

retriove BE /
ratriava
ratriava

1 ratrieva

2/14

https://blog.0day.jp/p/20191218.html
https://lh3.googleusercontent.com/1D8rOSdaVgI5nXtshxk_vEHQUfPXq95UXGmvaUmqd_sB9Ka6CtVZR3fUnejJ_DDV6uU4gRhQtH5XqrMfruMnDyBbFFUkDAW4e7FWM8KwR__kV7hHXanpV19LlbQ-RXZh_uQr9XXefR0=w1221-h702-no

We can see one IP address 93(.)157(.)152(.)247 was gaining a user's login access, after
checking of infection condition and following by confirming previous infection binary instance,
it downloaded and executed the ".t" payload that was fetched from other IP
5(.)206(.)227(.)65 afterwards. Other interesting highlights from this infection are: It flushes all
the rules in the "filter" table of iptables; Scanning (previous) infections; The usage of
SATORI keyword during checking (which is actually not the original one since the original
author has been arrested) and the downloading tool used is either the tftp or wget.

fbot-arm: ELF 32-bit LSB executable, ARM, version 1, statically linked, stripped
3ea740687eee84832echdb202e8ed743 fbot-arm

The compromised IoT that was infecting my device is this kind --> [link] a made-in-
China(PRC) "GPON OLT" device. It is important to know that they are vulnerable to this Mirai
variant's infection.

During firstly detected, FBOT was running as per Mirai suppose to work, and from the
COMM serial connection (telnet & SSH wasn't accessible due to high load average) we can
see it runs like below list of file result:

(snapshot - 1}

cwd DIR
rid DIR
ot REG

3u P

cwd DIR

rid DIR

ot REG &8 3 ted)

Ou IPvd G280 00 ; B 206.227.65:61002 (SYM_SENTY

3u

The IP 5(.)206(.)227(.)65 is also functioned as this FBOT C2 server that looks "out of
service" during the above snapshot was taken.

So the binary that was executed was somehow deleted the itself. | can not recover it. An
interesting randomized process name is running on a memory area that is showing a
successful infection. So, being careful not to shutting down the load average 10 something
small system | dumped the binary from memory as per | explained in the R2ZCON2018 [link]
and 2019.HACK.LU [link] presentations | did, then, | saved and renamed the binary into
"fbot-arm" for the further analysis purpose.

The memory maps is a good guidance for this matter, the rest of memory and user space are
clean, note: you have to be very careful to not freezing the kernel or stopping the malware
during the process. | was lucky to install tools needed for hot forensics before the infection

3/14

https://epononu.en.ecplaza.net/products/ftth-8-pon-ports-gepon-olt_4027566
https://lh3.googleusercontent.com/9R8UEFJda1ote6VWmaC17bc3pKPNwstdzup0io5uZVseAgW_gy7o9PLcRnQfZlmYize4LJliOj9BDLxcx_lEvU6kSOYtSl3Lwljha2AjnvgYrJgg7rE5h3JmWyFMG6iRP2-8w0lvC2E=w1244-h437-no
https://blog.malwaremustdie.org/p/new-video-of-this-talk-has-just-been.html
https://blog.malwaremustdie.org/2019/10/more-about-my-2019hacklu-keynote-talk.html

occurred.

00
Tfel2fff) wp O :00 0
fifffiff i B01000 r-x

The binary analysis

The dumped ARM binary can be seen in radare?2 like this detail, which it looks a plain

[T
format
iorw

false
HOKE

falsa

sibavs | Pk
va trus

4.1.0-git 2445 X A
it: 987heb04200364cI66d339cAc2H 20dall 120 i 9=12=17_10:29:05

The binary headers, entry points and sections don't show any strange things going on too, |
think we can deal with the binary contents right away..

Header:
Maglc: 7f 45 4c 46 01 01 01 &1 00 00 00 00 0O 00 00 0O
C : ELF32
2's complement, |ittle endian
| {current)

ARM
Version:

Type: wecutable file)
Machines
Yersion:
Entry point address: ;
Start of program headers: (bytes into file)
Start of section headers: (bytes into file)

Flags: M) EABL, <unknown
Size of header: 2 (

s1Ze of program headers:

MNumber of program headers

Size of section headers:

MNumber of section headers:

Section header string table index:

Program Headers:
Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
0x000000 0n00003000 Ox00008000 007, 007458 R E 0xB000
0x008000 000010000 Ox00010000 0x0020 000564 RW OxB000
0x000000 0xD0000000 Ox00000000 0x00000 Ou0O0000 RWE Oxd

a/14

https://lh3.googleusercontent.com/2jHtBHIwY3TVFj8Nh9j09huP_Z9h2hUcUesSPrJo0eDPsENKuYdR8WQD4CGCSt4MwPokUaBwDAtLetX2PvGyKHiwQEHuTM8OLDrgBfUuDZJaWGYz-p3xO204pa3d4b3UK7fVoV8w-u0=w918-h207-no
https://lh3.googleusercontent.com/xEEAvbd5LVmqE7uP0FaM9WGGdBlTXygn5HqA3Rug8vQDCKHostbi7vHjJgT2YX5ZhCFZdakfXxpZaidd67p6JAIZXQbQoMdNQnsAOs3Z8VSIc7PKbVD2AGyUCL6NCU7oV-QBR2ffv9w=w1383-h644-no
https://lh3.googleusercontent.com/Y0__rQez9PPpigit43Rgeypi6sMG9wx86Bue-d2vjbxW42jzIJtSCw_agNTiqslnyTKP6SSvMjhh9hBpSg-fHDPckrKtZJVcJJApseTWhfVETo55CdlVklkxmGCKpEcYciRto1A1N-0=w990-h739-no

The new encryption and the decryption

When seeing Fbot binary's strings, | found it very interesting to see that there's a "Satori
botnet's signature", that was used for scanning vulnerable telnet by Satori botnets, that string
is also written hard-coded in this FBOT binary:

fil fbot-arm
arch arm
[0x000081900> px @ OxfEed-0x40

Enan

system, .

The same string is also detected during the infection log too. this coincidence(?) is really a
"Deja Vu" to logs seen in the Mirai Satori infection era within 2017-2018. But let's focus to the
encryption strings instead.

There are two groups of encrypted configuration data (Mirai usually uses encrypted
configuration data before being self-decrypted during the related execution process), but one
of group of data looks like encrypted in a new different logic.

The first group of the data (the orange colored one) is in a form of encryption pattern that is
not commonly found in Mirai binaries before, which is the point of this post actually. And the
blue-colored one is the data configuration that have been encrypted in pattern that is being
used in table.c:table_init() of bot client, to then unlocking them for the further usage in
malicious process like telnet scanning (scanner_init), or the other functions in Mirai

5/14

https://lh3.googleusercontent.com/_t_xjtYZ8gFO4VeH0au8oIF0bhfP5ffW_trIunj2ea5oTAHi0weAMBkwpADcnkS-RXj4VRYwjLJ1TBkFF7ojsoJiPXecwescE-A61eY_BZAox3Wq54AG9ibktCFnkBJQc5Msezl0Zl0=w883-h553-no

operation. The blue color part's encryption method is a known one, we can later see its
decrypted values too.

] I.-.'a’rr'hdu:'
sspnvgcia jSpi Te2Bp¥r¥n

¥h¥L¥h¥Lin¥L- X
]T “"I ‘e - CL L wf A ratunwnnal 1 23456789

witt
hmi
thuif jb
J gucgt
7 6 ddhris
5 bisbu
8 7 fiiphuc
rt eh
09 rksnedflk
4 nJh'r-.h

n hunaruﬂ snhi
igfkne
frikbe
idhuubds
binbe
uuhu

6 atrimo

6 rmaei

2 11 zwnamsmafhd
Q8 mndniwd
7 6 KZILDWF
315 14 KOUTBqod$qeh@
B 14 13 BvrwgSdmi@iqy

e O 0o On O

= T O

r,ufm 17 1r:1lap'p|p1 not found

The first configuration (encrypted) data will be firstly loaded by table.c:add_entry() variant
function of Mlrai, but during the further process it is processed using a new different
decryption. Summarizing this method in a simpler words: that different decryption is a shuffle
of alphabetical character set, based on a XOR'ed key that permutes its position.

Let's access the .rodata section in address 0xf454 where the first group data-set is located.
When you get there, after checking the caller reference, it will lead you to a function at
0x9848 that's using those crypted values, see below:

L WC_KEra_msm
1
3+ 40B) ;

String Tvewoomne_nsmT 5 len=14 i [04] -r— section size 2308 naned .rodata

string "vrwg” § len=6

dr rl, [=str,vrwg_amna_msal
m:r-.r 1y Oxe

v rE, |
hl fen, 00004780
dr v, [atr.vrwgl
mov rl, B
mov r2, 2
bl fen, 00004TE0
dr el [etr.utvi]
mov rl, &
moy rZ, 3
bl fen, 00008750

6/14

https://lh3.googleusercontent.com/haQ2z7YNnCnVnq4TM9xJMFpiWCRF48D4S5BXHoEr6DVRI4DFt0Md3vmIyzE7A7OGehobYLauzvijc04oM5XApJvJuneUq4ItqFeJRB-3xL1tP-fu_O4_r0oXLYu0uKZjqaFFqD19vT8=w1321-h915-no
https://lh3.googleusercontent.com/3uTe6mEL9EXX6cI0sfmZHs6OLBaTVIjSpXzTBELNMNGSTRBONeeSUL5SJdg9TF8mt6YGa3NaM3zZwwTxeak1kJpB_Em4MHlCPIyT_6ONuRyTrPIbWsv3mi64lYR_1vgRQKyAITa3768=w1463-h784-no

If you go to the top of the function and see (address 0x984c and 0x9858) how two string-sets
are loaded from addresses 0x10020 and 0x10062 to be passed into a function in 0x975C
with their Iength of 0x42 as secondary argument.

0de02des str Iry [sp, -411
B4019fed dr r, [(odd00093d8]
4210a0s3 _mery r 1, Ooed2] R
cOffffah bl fen, 00009751
Te19fes Tdr i, [Rd00098de] y [0x80daz4
4210a0e3 moy_r 1, (Oned —
hdffffeb bl fon. 0000475 (= Hi
74019Feh —I_rﬂ_r{_J Strovrwamamsn]
0e10a0e3 mov rl, Owe
M20e0e3 mov r‘Z. 1
c2ffffeh bl fon. 000049730
GE019feS dr rl), [str,wrwal
06 10a0e3 mov Fl, 6
0220a0a3 mov r2, 2
heffffah bl fen, DDOOSTE0
Gel19feb dr rl), [str.utvx]

= | E

01 23 45 €7 83 AB CD EF 0123456783ABCDEF

1415 Qald 1108 0e00 D117 1203 0b09 1812 ...veevivnnvnnns

%000 1e10 0cOd 181b OF11 1c13 2d3f 2836 3438 -7(648
0x00010040 3c3a 3135 2037 2¢3d 2e2f 332b 2130 332 «:
0x00010050 232a 3b29 Geb] GOEH bbbc GdGE Giba 6419 #t
& J

15 7,=./3+10>2
:} na 1k|mhnjd

Ox00010060 OF7d 181b 1ald 1elf 1211 1013 1215 1417 was

w00010070 1609 080b Oadd OcOf 001 0003 383b 3al3d

I 3c3f 3=31 3033 3735 3437 3629 282b Zald 32‘:4?5)(“"
y 80 2¢2f 2e21 2023 6968 Bbba 6d6c 6fbe 6160 ,/.1 #ihkjmlona™

0x00010080 7776 7974 ffff f 0100 t"t‘m 04£7 0000 eeimeseanen

0x000100b0

Qx000100c0

0x00010040

i

7/14

https://lh3.googleusercontent.com/eHvM3ZUdmHKmMRk79PBhnheadwSnlwAEz8HPdnf4YMZifPTobHZMiXKXxAiXJ9JNNxEURFBGiAx3gUzjCwtn8uGaMhJz1in_6bF355FQAus_gx1YhEJpvCLSjJ_zxEbdJWJQlaEsAlA=w1412-h550-no
https://lh3.googleusercontent.com/aaVjqfpQBpEdGcvh27lr-YsjYwGE12Z39XSXFiBWx86QIW6z-OOfs2KOFU8Gu8ldn-0gqEC-UG8-GTu5P2KNU5_CjhOpTNqcYWEY92GFleT0ooMtap0sQpNpr9mlXJRjxL4aC2vZrAM=w879-h408-no

There is a XOR key with value 0x59 applied to obfuscate the strings that was previously

mentioned..
[0x0000875c]> pd 9
i CALL XREFS

gl, int32_t arg);

[T
b &7

[] _ 2,
EIIED@»:.&E_ _ add r2, ri, 1

QIULE*EI cap r2, rl
bit Oxdted
now pc, Ir

|

[0xD000575<]

[0x0000975c] >

[Ox0000575¢]> pdg

vold fen, 0000975(int32_t arg2, int32_t argl)
int32_% ivarl;

||=1r| A'H

rl + argl) = s{uint8_t =)} iVari + ar;gl',' = w59

dI00E

Back to the function in 0x9848, the rest of the encrypted configuration data (the rest of
"orange" ones) is parsed into function in 0x9780.

1B848(void

int32_t iVarl;
undefinedd uVar?;
undefined *puVar3;
char #pcVard;

char #*pcVarb;
int32_t iVar6;

""uUC'DU""’ [0000975c(0x42, *(int32_t *)0x33d8);
fen, 375c(0x42, *{Intﬂi t *}ﬂxgﬂ‘dc'ﬁ:

E},

ﬂﬂxﬂﬂeﬁ 5);

.t*flnt32 t £)0x9%ec, 4);

L (*tlntEE t £)0x99f0, 5);

| *)0x9974, 4);

%)0x99f8, 8);

#)0x99fc, 4);

*{lntBE t £)0x9a00, 5);

FADC*(int32_t #=)0x9a04, 5);
H*(int3Z2_t #)0x8a08, Oxf);

0x00009920 . (*(int32_t *)0xSalc, 5);
NiANNNNGG AN frm N QT8N % Ve d T 4 ®#WBal B

Function 0x9780 seems to be a modification of a table.c:add_entry() function in the original
Mirai code (or similar variants), the modified (or additional) part is a decoder logic of the
parsed data. The parsed data will be translated against the character map formed after
XOR'ed that is stored in the memory, to have its desired result.

8/14

https://lh3.googleusercontent.com/_NfefghsWERCx5klMDqQHfjJJRkk1t-mPsB5cXfp10uXh2QI8QYhwBm4jxHppGobnrm2c3u5Ox1HbOaL0-7usDIiIho9Ia3CuHIIJjmhMUcbZD2a0dL_Uj6DYDmQUoJf8xxuYABLpwc=w1038-h870-no
https://lh3.googleusercontent.com/SBO93ooXwnbjy0O-23CWfVCUOMTnhCqziBI0jxNx1BuTq3AXK1v0sBXp3ypzsrmJzr8vfxxTxiTE55fovV60ThAQiZqBw4vxqUNVhfZc-wc1iJCJB-rZ6ZAZLYENAkCE0RRIzOYp5iU=w843-h653-no

| hope the below loop graph is good enough to explain how the decoder works statically (I
have adjusted everything to fit into one image file).

5 leading first BB siFings
= loading second BLOE: sArings

& Comparing wep of secord BUE sirings {r3) %o rl

1, [ana]

| think it would be better for you to see this first modified encryption config data process in
the way it is called from the Mirai's table_init() function reversed as per below:
—new_ENCRYPT_table_indt()

of___CHARSET @1, &6
o __ CHARSET_ 82,

add_ent

add_ent

add:ent

sqymd “tdo”lontumnwd “itxib mdwgec”, 42, 22);

s

This should be close enough to what adversary has coded.

Dynamically, the character mapping process used to translate the encrypted strings can also
be simulated in radare2 during on-memory analysis (it will be in the heap memory area
somewhere if you want to confirm it) as per below result:

9/14

https://lh3.googleusercontent.com/HOdQo_45EBkMrYhYyaLSofy2TFyndpTFQGFGg7LO47jQAfZJ0kN7xTm7NRTWLUxvnnM7u3atgnIb72bKpOIX-UcNaIRMfVmehblIjUW7i_J9ClEtOrJFrZwv2dgb_P-br9n8UrGpD9o=w1261-h702-no
https://lh3.googleusercontent.com/Vwb8N-nP6bPqt5M-ynwffnIEG3P9kg40cPNctuWkPQ1JiYNW94BnOxNL5TQqERubiSMQT7A8kNfgS_z_2oVHP9V6-BMU9MbTyiaiGng__3LJjYgPHw-4R_2_NA2139oWGVPyDY-iSoI=w849-h686-no

So, additionally, static or dynamic reversing can produce same result. | always prefer the
static one since | don't have to run any malware code just to crack its configuration.

The encoder table, in text! (enjoy!)

// The decoder is at [0x00009780] , translated crypt into charmap below:
MLSDFQWYXNCZRPOKGIUTABVHEJtfqomaechlynudwvjrxigkzsbp7890254163=@"$
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789./ -

| announced it yesterday in twitter [link], below is the decryption result:
yffaci ﬂ'EEitDJEQﬂECUEFGIEﬁdﬂﬁfﬁﬂﬁﬁﬁjt;ﬂl23155!39ﬁ3ﬁ)hk3I234bﬁ!E§AEEGtFU 234L0 TEIABC0EROT2E

dyrwgdemnadmem. . Evewgl. . Gutvx. . Emsm, Pgwuu. . @gzo. . Ektrdiov. . Bktr. . vhppt.

gwdex, . cmnvmrlaYmnvhde xnthkm, . atrimo. nwnael, zwnamsmgthd . i mndmiwd KAUDKE. . KO
 TrdgodSoehl. | Bvrwaidmi €igv. . WFT @ YTTKEE=T. . gaSciivo 8=7=T. Mrm icm achaymd tdo” icn

0x0000454F “umnwd 1t mdwges. | fao

wed T O B D D

decoder is at [0x00009780] (see attached pics) trans

8 [MLSDEOWY XNCZRPOKG IUTABVHE M F qomazch | yrudwy jraigkzsbp 7800254 163=073
g ABGDEFGH] JELMNOPORSTUNKEY Zabcdefehi jk Imnopgrstuvweyz01 2345678 -
1

(A result

12| @vrwgixmnaimsm = Sproc/selflexe

13 Evrwgt = Jproc,

14| #utvx = /maps !

15| Egwuw = Jcomm

16| Egzo = Jomd

T 8ktridiuy = Fvar/tmp

18| &ktr = Jfvar

19 dan = /fdl

20

21| << whppt owdex cmrvmr {Oal Ymnvhde xntkm atrime nwndei Zwnamsm afhd imndmiwd KZUDXF
2240 KOUT #godSgeh® @vrwgddmi Bigy WET B YTTEEE=7 godciivo B=7=T7 |
344 Nrm™ iom” gehgymd ™ tdo ™ tom umnwd ™1 txi b mdwees

25 2 pizea dongs helper [3F) Helping slave farted lolfgt wolTexe cbin telneton PLEDIE
26| x> POST Sedn-cgi/ JSproc/net/tep GET /2 HTTPA1, 0 we-httpd 1.0, 0 |
2 xx Are the chicken and the melon tasty enough

290 [0e0000t5ed [Xadvc]3 0% 3024 /fbot-arm]> prx € str rthu

30 - offset - O1234567E9ABCDEFO1 234567 B9ABCDEFD1 234567 30ABCDEFDT 23456 T8 SABC0EFD 1 23456 TB9ABCOEFOT123
31 0x000015ed ribu witt h'n thuif jb. quegt, | ddhris, bisbu, . ftiphue, ri7eh | rksnedfkk

32 000007638 obkw. #0085 .0 oy & ¥ . G . EJD bunandfsnhi. igfkne. . fnkbe. | idhusbds | bink

33020000968 .. owuhu. . o hhoe b efe

1 this one is encrypted, you can decrypt "as ususl™

35 <4 rtbu.witt. b ni.tbhuif [..] efc

365> | user pass, .. ogin, .. sername, wrdes | coount. . enter pssmord

35 usybox. . ulti=call help . BMG. . eritication . . nvalid. . ailed . ncorrect. .. enied. . rror
8| ¥ oodbye. . bad

a9

40 Cracked by funixfreaxip Smalwaremustdie!

Since Mirai is coded in a way to make reverse engineering difficult, what you reverse in its
binary's code-flow is not what has actually had been coded in C, please noted this, in
example, In Mirai, the usage of global variables and the global structs, the #define or
#ifdef directives used, the method to unlock encryption process-used-variable values
and then lock them all back afterwards, and many other tricks used and designed for the
sake of obstruction the reverse engineering. There is no shame in not reversing the overall

10/14

https://lh3.googleusercontent.com/g8U5Nu62AnFgyBDiLx3fBG-w7na4tEGjXFOsM1DFlgRQwlTgIDApkeFxt_z3VlIiQP-2q3k1x_590Dia0-jnWwXGazLtu4lEGHwsJPK6KmnVsUNERrJ29En-scO9hxPLo1UJB1TYVK0=w909-h346-no
https://twitter.com/malwaremustd1e/status/1217108607264669696
https://lh3.googleusercontent.com/icLlDFRxITLbNKvSJSBXgsBgGs8tw97raT2qB1pn9BPKX-dWFoi1P_Xs8GjhWwS4d__VbqbxE7Hh3IfqZYXLfaNdbD_higz5XzO30o7E2Yluk41FDKxX2iPy5dUN4IujW8lS8Vy9xS4=w1283-h930-no

codes into original ones, especially what you get is embeded-platform system's binary like
ARM or MIPS or SH with way simpler assembly code. Reversers know this. Don't let this
discourage you for not be proactive in reversing, but keep learning from it and learning it
more.

Back to our binary, the timing on when the first and second encrypted configuration were

decrypted during malware execution process is different too. This is is the rough C flow of

what this ARM binary process looks like during being executed, it's enough to explain my

point, which is, the timing when the first configuration was executed is when the process of

infection is happening, and the second configuration is used for the spreading/scanning

purpose, which will be used afterward.
SigEsptySet(@sigs);

2);

= ___ socket XOR_connect_close(Bsigs):

] . . — this config are variables
_config_or_new_EMCRYPT_table_init(); ussd for the infection

sys_writel):
yo_wrd e() process matter

E & 18

(var_33, var_6);

l‘.r'iE'-l["‘:rg_EH;

i 30} This config is used for the
scanning process (infecting
process

(Warning! The function's namings above are self-made naming for my reversing purpose and
not the actual ones, | don't have ESP power to read the mind of the coder by reading his
stripped binary, so please bear with differences etc..)

The static code above can be easily filled with its argument values with two ways, following
the registers or after you see how the malicious binary can be simulated its system calls,
below is the snip code of what | did (the latter method) to show how this binary was executed
as per flow above to reveal its values:

11/14

https://lh3.googleusercontent.com/_GN-EDv9fR_YJ52J48jKqDKOKEFjTyoOzpqepIBQS2LZSpikJHYTyCPcP5fdXU1GFxhCh3K5cdcAtqeZikx2G6eYiC77NqpvRjar3LgkvhHpOYdAzyoc9E0m1ItA3m88vaq0zmcap9c=w999-h882-no

execve(FILE_MAME, [FILE_NAME], ..);
mask({SIG_BLOCK, [INT], WULL, 8);
MAME) 3

(SIGCHLD, {SIG_IGN, [CHLD], ..):

(SIGHUP, {SIG_IGN, [HUP], ..}. ..):
IMET, SOCE_STREAM, IPPROTO_IF) = SOCK_NUM;
MM, F_GETFL) = @x2 (flags O_RDWR);:

_MUM, F_SETFL, O_RDWR|O_NONBLOCK) ;
(SOCK_MUM, SOL_SOCKET, SO_REUSEADDR, [1]. 4) ;
d MM, {za_famdly=AF_INET, zin_port=htonz{PORT_MUM), sin_addr=inet_saddr(IP_ADDR)}, 16);
listen(SOCK_MUM, 1);

FILE_MAME = "./fbot-arm"; SOCK_NUM = 3; PORT_WUM = 3132; IP_ADDR = "127.9.0.1%;

Now we know for sure why | didn't get the file because it was self-deleted after running at the
first time.

No. We are not done yet..

As you can see in the decrypted strings, it has mentioned "pizza dongs helper". And the C2
for this Mirai variant has been obviously shown during infection stage (the data is saved in
the configuration part that can be achieved by table.c at "init" process), it is on IP
5(.)206(.)227(.)65, if you do OSINT and seeking passive DNS data of the IP address, you will
see some similar hostnames and domains to the wording used in the decryption data.

Below is the example of hostnames & domains linked to the C2 IP from a passive database:

ohyayaraiseyourdongers.pw 2019-11-04 153837 2019-11-26 05:06:16

nibgga.farm 2019-11-22 02:5217 2019-11-22 02:52:117
raigayourdongers.pw 2019-07-06 14:2%:24 2019-171-2010:21:27
nsa.gov 207190707 10:19:39 2019-12-04 14:04:28

It's same domain that also has been registered in multiple IP around the globe:

216 | sarver] busvas_com

| DOTSI, | PT | PT
nEa B0V

|
| | PT | PT

| CHNIC-ALIEMBA-US-MET | CN | AP Alibaba (US),
| IF ¥olume inc | ML | Quasi Metworks LTD.

0 69.0/24
We keep on monitoring the spreader movement of this malware, these are several pickups of

loT devices log that is actively seeking for other vulnerable ARM devices. | sorted out in
timeline base. | hope the carriers that's having vulnerable devices on the list can pay

12/14

https://lh3.googleusercontent.com/Fe3k8p3FrU1iq5iEt0oFXI2gaa1ohras6iI1bRVP1gAQqRDQnRrMxKn7qXC8ZYqua8vtrHrzUG8Ffq6YGPBvU6JK8d0Pao--cWiINe71Qmp8RPEjihLY9z0rkpQTC9nnewH3cceQz1g=w1281-h391-no
https://lh3.googleusercontent.com/wRnS1C7oVkbHtdItee9zmHqSf7hvEW5cg5YzLuU9_nO-VOVCO8CsLeOEYxNUS2KgHOHHRL4gw2Zrd8QWwcnG0IdBHketKxFgD3myOk44pyPWF8lnleIe5WQ6q-WgeQIJh9uZy9DMkqc=w882-h252-no
https://lh3.googleusercontent.com/2ThM1eiiZKnbEbRhsApB8_gUtZMz1umOmHlhX8RDi0O9b7dEN_JHMYgN6ps0F7zD9O9BUX4eaPvJlY_bB9qNhjXw4gxPBGOpXqvkTZHc6MbwsNtVGtFsqkqG_kY6Qw12hglfoCeLU90=w1367-h167-no

attention to address this issue.

Tirre Downlaad baal Payload service Saved ai Spreader loTIP Spreader ASM Spreder Prefix 15P Service Courrtry

MNCMET

TELEKABEL

DSl

TELEKABEL

The 10C and STIX2 of this threat is in the posting process to usual portals.

Lastly, as additional, the alleged botnet coder/owner has just sent his compliment, which is
rare, so | attached in this blog too:

{. owiwhwuueuey

This bot should receive its brutetorce comhbinations via
the cnc

1. 1am 15 907
direct messara twithear

owiwiwuueuey

It's nice watching you reverse my fbot variant. At first [
{. thought it was a fake mirai version but you did good

Epilogue

This post is dedicated to wonderful people who fight tirelessly against loT threat that keep on
aiming our devices until now, and also to people who try very hard to push new policy to
have us defend better for the threat. | hope this post helps you.

Thank you very much to r2ghidra, r2dec, r2 folks, tsurugi linux folks, MMD mates and friends,
and all | can not mention in here, for supporting our effort in analyzing Linux malicious code
all the time.

[Edit] Thu Jan 23 2020, thank you Security Affairs for the historical background and insights
of Mirai and Fbot.

13/14

https://lh3.googleusercontent.com/xBWDmEfUV7pgjPbHxgqdYwDP_Z-DJzwPqor-TAPM55kqbgRcS-dZExVdah_9NG_UYHzSTTvj3kRb1GcflbNHwhsHzKJ2grBs7RXv0rbfdWRfe06HSWxvCauUGa6F_iLvDYdeHtRfQEQ=w1297-h470-no
https://lh3.googleusercontent.com/r3KaPuBCyv8fdl195VmLCqQ9abLyoIxkEnPhZlIL7dbu2mmCepI_BxnfHLuXKvSzffVhDbvszEVK1XGarsrCEmwcMcLgHokh6hMSVDTejpr9Ix36UCN5Gfu7_1f7ebcA5yr7ofzAo88=w835-h700-no
https://securityaffairs.co/wordpress/96683/cyber-crime/linux-fbot-malware-analysis.html

This technical analysis and its contents is an original work and firstly published in the current
MalwareMustDie Blog post (this site), the analysis and writing is made by @unixfreaxjp.

The research contents is bound to our legal disclaimer guide line in sharing of
MalwareMustDie NPO research material.

alwarem ustd.ie.urg

Malware Must Die!

14/14

https://blog.malwaremustdie.org/p/the-rule-to-share-malicious-codes-we.html

