
1/9

Leonardo S.p.A. Data Breach Analysis
reaqta.com/2021/01/fujinama-analysis-leonardo-spa

ReaQta Threat Intelligence Team identified the malware used in an exfiltration operation
against the defence contractor Leonardo S.p.A. The analysis of the malware, which we
dubbed Fujinama, highlights its capabilities for data theft and exfiltration while maintaining a
reasonably low-profile, despite a lack of sophistication, mostly due to the fact that the
malicious vector was manually installed by an insider.

Data Breach

Leonardo S.p.A. (formerly Finmeccanica) is the 8th largest defence contractor. Partially
owned by the Italian government, the company is widely known, among other things, for their
AgustaWestland Helicopters, major contributions to the Eurofighter project, development of
naval artillery, armoured vehicles, underwater systems, implementation of space systems,
electronic defence and more.

On the 5th of December 2020 the CNAIPIC (National Computer Crime Center for Critical
Infrastructure Protection), a unit specialized in computer crime, part of the Polizia di Stato
(the Italian Police), reported the arrest of 2 individuals in relation to a data theft operation,
identified for the first time in January 2017, against Leonardo SpA’s infrastructure. The
anomalous activity was identified by the company’s security unit and quickly reported to the
authorities that started an extensive investigation.

https://reaqta.com/2021/01/fujinama-analysis-leonardo-spa
https://www.commissariatodips.it/notizie/articolo/attacco-hacker-a-leonardo-spa-due-arresti/index.html

2/9

Though the company’s initial report identified the leak to be negligible in volume, the
CNAIPIC’s investigation found the amount to actually be significant, with 100.000 files
exfiltrated for a total of 10Gb of data from 33 devices in a single location and tracking the
final infection to a total of 94 different devices. The attack was considered an APT by the
Italian Police, carried out by a single person whom manually installed a custom malware on
each targeted machine.

Physical attacks are hard to detect, as any local access to the device can help to mitigate
on-device detections, this is especially true when the attacker is, like in Leonardo’s case, part
of the company’s security unit.

A physical attack carried out by a person with high-level access is a worst-case scenario
for any company or agency but, as we will see later, things might have taken a different turn
if the malware involved was actually sophisticated.

Fujinama First Detection

In January 2017, Leonardo’s Cyber Security Unit reported anomalous traffic from a number
of endpoints operating in the Pomigliano D’Arco (Naples) office, the offending application
name cftmon.exe was a twist of a well-known Windows component ctfmon.exe. The
application was not recognized as malicious by the security solutions in use, but the network
traffic was indeed highly anomalous. As we will see in the analysis, while the attacker was
certainly persistent, the sophistication was also lacking, in fact the type of traffic generated
led eventually to the identification of the threat.

Unfortunately the CNAIPIC didn’t release any information on the threat, except for its
filename and the C2 address used: www[.]fujinama[.]altervista.org though this was enough to
threat hunt in our dataset looking for traces of this malware.

Hunting Down Fujinama

The hunt for Fujinama started shortly after CNAIPIC’s bulletin was published. Our Threat
Intelligence team managed to find samples that reached our sensors network from 2018.
From that point, we managed to pivot on a third sample that appears to be related to a
different operation.

https://cta-redirect.hubspot.com/cta/redirect/8017419/7d3a7eec-3ada-4fb6-aa36-0c3df7e21b3c

3/9

Two of the three samples share the same keylogging capabilities but they point at two
different C2. A third sample, pointing to the Fujinama C2, is in all likelihood an evolution of
the previous version that includes screenshots capabilities, exfiltration and remote execution.
This specific sample, labeled Sample 2 in the article, will be the focus of our behavioural
analysis.

ReaQta-Hive Analysis

Behavioural Tree from a running instance on ReaQta-Hive
Fujinama was written in Visual Basic 6 and it tries to mimic an internal Windows tool:
cftmon.exe (as mentioned above, a twist on the legitimate ctfmon.exe).

Main Flow

The sample adopts a very simple sandbox evasion technique, sleeping for 60 seconds
before activating the malicious flow that consists of:

Every 60 seconds: capturing a screenshot of the Desktop and uploading it to the C2
Installing a keylogger on the victim machine that sends all keystroke to the C2

https://cta-redirect.hubspot.com/cta/redirect/8017419/1cf2536d-b83c-45ce-8fa1-07f9422c8e10

4/9

Every 5 minutes: checking on the C2 for the presence of a command used either to
execute an application or to exfiltrate a specific file

Screenshots

The Screenshot routine simulates a keypress on the PrtScn button to capture the image of
the desktop. The screen content is then saved from the clipboard to a jpg file in a temporary
folder. Finally Fujinama uploads the newly created image to its C2, using a http POST
request with content-type multi-part before deleting the file from the victim’s device.

The entire flow of the screenshot routine: from capture to upload and deletion
Keylogger

The keylogging routine simply waits for the user input, once a keystroke has been typed it is
immediately uploaded to the C2. Surprisingly the keystroke is transferred using a simple
GET request, this approach – although ignored by the local antivirus – is both visible and
noisy, most likely this is what gave up the presence of the malware on its first detection.

Keylogger transferring the keystroke via GET
The keylogger routine is quite common, as shown in the API list below.

5/9

Windows APIs used by the keylogger
C2 Commands

An interesting part of Fujinama is the ability to execute custom commands and custom
exfiltrations as instructed by the C2. Every 5 minutes a configuration file stored on the C2 for
each infected endpoint, is polled. The samples we have analyzed support 2 commands:

CMD: contains the commandline to execute on the infected endpoint
SND: exfiltrates a specific file from the endpoint

Below we show how it is possible to run custom commands from the C2.

Process creation after the C2 instructed Fujinama via CMD command
Exfiltration is also confirmed using ReaQta-Hive, showing below Fujinama as it captures the
hosts file from the infected endpoint, before delivering it to the C2.

File read of the hosts file after sending the SND command
The RAT’s beaconing is automatically detected and alerted by ReaQta-Hive’s engines.
Below is a screenshot of Fujinama phoning home at regular intervals (with minor drifting due
to other parts of the RAT contacting the C2).

https://reaqta.com/hive

6/9

Fujinama Beaconing

Variants

ReaQta has so far identified 3 different Fujinama samples, 2 of them certainly used on
Leonardo’s infrastructure while the third appears to be part of a different project.

Sample 1: used on Leonardo (Keylog)
Sample 2: used on Leonardo (Keylog, Screenshots, Remote commands)
Sample 3: under investigation (Keylog)

The analysis shown above has been run on Sample 2, both Sample 1 and Sample 2 share
the same C2 infrastructure. Sample 2 is at all effects an evolution of Sample 1 that acquired
new capabilities (Screenshots and Remote command support) that were not present in the
previous version.

(Sample 1) cftmon v3.3 (Sample 2) cftmon v3.5

Keylogging Keylogging

Screenshots

Remote Commands

Capabilities for Sample 1 and Sample 2
We measured both the code similarity (95%) and behavioral similarity (99%) between
Sample 1 and Sample 3, confirming they’re an almost exact match. Sample 3 shares without
doubts the same codebase used for Sample 1, with a few notable differences:

7/9

Sample 1 and Sample 2 appear to be compiled on the same machine, Sample 3
seems to have been compiled on a different device
Sample 1 and Sample 2 and Sample 3 share the same language id (Italian) though at
least one keylogger string has been translated back to english
Sample 1 and Sample 2 use the same C2, Sample 3 uses a different one
Sample 1 and Sample 2 share the same original filename: cftmon.exe, Sample 3 uses
a different one: igfxtray.exe

(Sample 1) cftmon v3.3 (Sample 3) dllhost.exe

fujinama[.]altervista.org xhdyeggeeefeew[.]000webhostapp.com

“/copy.php?
file=” & var_3C & “&name=”

“/XdffCcxuiusSSxvbZz.php?
ZmlsZQo=” & var_3C & “&bmFtZQo=”

var_24 & “[INVIO]” var_24 & “[RETURN]”

Code differences between Sample1 and Sample3
Lastly Sample 3 appears to have been compiled quite recently compared to the other
samples.

Sample Compilation Time

Sample 1 2015-05-28 08:02:25

Sample 2 2015-07-14 12:33:39

Sample 3 2018-09-22 23:10:46

Compilation time for the various samples
Given the timeline, the third sample could not be used on Leonardo. We haven’t yet found
traces of how, or where, the third sample was used but it’s possible that the malware project
was shared with a third party that managed to alter a few parts.

Detection

https://cta-redirect.hubspot.com/cta/redirect/8017419/29b60aa3-140d-4101-8f7e-1f4cd3165a52

8/9

ReaQta-Hive natively detects Fujinama, so no actions or updates are required from our
customers and partners.

We can’t share the samples yet, although the article provides enough data to allow
researchers to find them. Nevertheless given the presence of the third sample and the slim –
but not negligible – possibility that someone is still maintaining this project, we would like to
share with the community a Yara rule to identify Fujinama variants.

rule Fujinama {
 meta:
 description = "Fujinama RAT used by Leonardo SpA Insider Threat"
 author = "ReaQta Threat Intelligence Team"
 ref1 = "https://reaqta.com/2021/01/fujinama-analysis-leonardo-spa"
 date = "2021-01-07"
 version = "1"
 strings:
 $kaylog_1 = "SELECT" wide ascii nocase
 $kaylog_2 = "RIGHT" wide ascii nocase
 $kaylog_3 = "HELP" wide ascii nocase
 $kaylog_4 = "WINDOWS" wide ascii nocase
 $computername = "computername" wide ascii nocase
 $useragent = "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; SV1; .NET
CLR 2.0.50727)" wide ascii nocase
 $pattern = "'()*+,G-./0123456789:" wide ascii nocase
 $function_1 = "t_save" wide ascii nocase
 $cftmon = "cftmon" wide ascii nocase
 $font = "Tahoma" wide ascii nocase
 condition:
 uint16(0) == 0x5a4d and all of them
}

Conclusions

As we have just shown, the malware is not particularly sophisticated but it certainly reached
its goal. Sending data in clear with a simple GET is a major oversight for an actor that,
supposedly, wants to remain undetected. The frequent beaconing and the absence of all
kinds of hiding/evasion mechanisms (with the exception of a basic sandbox evasion
technique) shows either a lack of care, or a lack of structure. One factor that contributed to
the success of the attack was that the installation was performed manually, thus not requiring
sophisticated evasion techniques. At the same time, the level of security expected from a
major defence contractor should have pushed a sophisticated attacker toward a very
different modus operandi.

In our view the attack has been built opportunistically over time, with incremental
enhancements, lacking the structure of a real APT and certainly the sophistication. Unless
the attacker could leverage on his position within the company, to make sure he couldn’t be
detected, we can’t see any reason why he was expected to otherwise remain hidden. In this
regard, the code changes only show an increase in exfiltration capabilities, while completely
neglecting the detection aspect.

https://reaqta.com/hive

9/9

Interested to try out ReaQta-Hive? Schedule a free trial here

http://bit.ly/2XVVSWh

