
1/7

January 6, 2020

Qealler Infostealer static analysis – Part 0x1
securityinbits.com/malware-analysis/pyrogenic-infostealer-static-analysis-part-0x1/

Qealler is heavily obfuscated Java based Infostealer which is quite active based on
ANY.RUN submission. This will be a three part blog series, this post will focus on
Qealler/Pyrogenic static analysis, next part 0x2 we learn unpacking using Java agent and in
the last part 0x3 we find similarity between Qealler/Pyrogenic variants based on static code
analysis . You may download the BankPaymAdviceVend_LLCRep.jar from ANY.RUN (MD5:
F0E21C7789CD57EEBF8ECDB9FADAB26B) and follow along or download the latest
Qealler sample from ANY.RUN submission.

CONTENTS

Overview

It’s currently targeting different regions e.g. Australian companies , Africa and the Middle
East based on the references. I will be using Bytecode Viewer to decompile Jar using
FernFlower Java Decompiler. Let’s start with quick dynamic analysis. Our main goal for the
blog series is to unpack this jar so we can analyse the capability and compare it with Qealler.

Quick Dynamic Analysis

Connect to CC 157.245.160[.]150 at port 80 and create the below process.
cmd.exe /c chcp 1252 > NUL & powershell.exe -ExecutionPolicy Bypass -

NoExit -NoProfile -Command -

Drop these two clean files sqlitejdbc.dll (MD5: a4e510d903f05892d77741c5f4d95b5d)
and jnidispatch.dll (MD5: d2f0da769204b8c45c207d8f3d8fc37e) but it deletes these
two file before exiting.
Connect to bot.whatismyipaddress.com to get the public IP of the infected system.
Steal credential from different applications

Packed Pyrogenic static analysis

[1]

[2]

https://www.securityinbits.com/malware-analysis/pyrogenic-infostealer-static-analysis-part-0x1/
https://www.securityinbits.com/malware-analysis/unpacking/unpacking-pyrogenic-qealler-using-java-agent-part-0x2/
https://www.securityinbits.com/malware-analysis/similarity-between-qealler-pyrogenic-variants-part-0x3/
https://app.any.run/tasks/b59d58a1-4512-48a4-949e-6c80af823a5d
https://bytecodeviewer.com/

2/7

1. Open the jar file in BCV (Bytecode Viewer), you will see multiple class files in different
packages. Below pic shows the main entry point of the jar file.

Packed Pyrogenic BCV

https://www.securityinbits.com/wp-content/uploads/2019/12/Packed_Pyrogenic_Java.png

3/7

2. For this sample, I found out that FernFlower decompiled the source code correctly.
Select View -> Pane 1 -> FernFlower -> Java in BCV as shown below.

Bytecode Viewer FernFlower selection

3. If you browse the different class files in BCV, you will find many encrypted class files
which don’t translate to Java src code. e.g. one of them is shown below

Pyrogenic encrypted class

https://www.securityinbits.com/wp-content/uploads/2020/01/Pyrogenic-FernFlower-Selection.png
https://www.securityinbits.com/wp-content/uploads/2019/12/Pyrogenic-encrypted-class.png

4/7

4. Based on the above encrypted class file, you can guess that there should be some
decryption algorithm used to decrypt those files.

5. Decryption algorithms can be custom or well known e.g. AES. Study this example java
code which encrypt/decrypt using AES.

AES Java Encrypt Decrypt Example

Some of the keyword mentioned in the above java code e.g. getInstance can help us
to find the encryption algorithm and doFinal can point to final decryption result.

[3]

https://www.securityinbits.com/wp-content/uploads/2020/01/AES-Java-Encrypt-Decrypt-Example.png

5/7

6. Let’s search for AES references after importing the decompiled src code to Eclipse
IDE.

Pyrogenic AES references

https://www.securityinbits.com/wp-content/uploads/2019/12/Pyrogenic-AES-references.png

6/7

Pyrogenic doFinal reference

Pyrogenic PBKDF2WithHmacSHA1 reference

https://www.securityinbits.com/wp-content/uploads/2019/12/Pyrogenic-doFinal-references.png
https://www.securityinbits.com/wp-content/uploads/2019/12/Pyrogenic-PBKDF2-references.png

7/7

7. Based on the above images which shows multiple references, we can confirm that this
sample uses the algo “AES/ECB/PKCS5Padding” and key may be generated using
“PBKDF2WithHmacSHA1” . So it confirmed that it doesn’t use any custom decryption
algorithm.

8. We can add our code to write the data to file after doFinal call and execute the sample
in IDE to get the dumped class file Then we can decompile the class file using BCV
and continue analysis. But it can be multiple layer obfuscation which can make our
analysis harder and slower.

Conclusion

This above static analysis method to find the encryption routine and interesting breakpoint
(doFinal) while debugging is very useful in Java Malware analysis. Using this approach you
will not miss any code path but this requires more time and effort. So in the upcoming part
0x2 , we will unpack this malware using Java agent which will speed up our analysis.

Hope you enjoyed this post, please Follow @Securityinbits me on Twitter to get the latest
update about my malware analysis & DFIR journey. Happy Reversing 😊

https://www.securityinbits.com/malware-analysis/unpacking/unpacking-pyrogenic-qealler-using-java-agent-part-0x2/
https://twitter.com/Securityinbits?ref_src=twsrc%5Etfw

