"Nice decorating. Let me guess, Satan?" - Dot /| MZP
Ransomware

dissectingmalwa.re/nice-decorating-let-me-guess-satan-dot-mzp-ransomware.html

Thu 02 January 2020 in Ransomware

Happy new year y'all. And with it there's new Ransomware to analyze, so come along for the
ride :D

Dot "MZP" Ransomware @ AnyRun | VirusTotal | HybridAnalysis --> sha256
bebf5c12e35029e21c9ccalda53eb43e89319521435a246ea991bcced2fabe67

This sample was first discovered by AmigoA and AkhmendTaia on the 31st of December
2019. AV Detections and Ransomnote contents didn't seem to match any previously present
strain. The Note is delivered via a .txt File with a strange numeric victim ID and only one
contact email address. The extension appended to encrypted Files seems to be a random 8
character lowercase string.

1/10


https://dissectingmalwa.re/nice-decorating-let-me-guess-satan-dot-mzp-ransomware.html
https://dissectingmalwa.re/category/ransomware.html
https://app.any.run/tasks/56248422-b327-4226-8a79-3155e24b999d/
https://www.virustotal.com/gui/file/bebf5c12e35029e21c9cca1da53eb43e893f9521435a246ea991bcced2fabe67/detection
https://www.hybrid-analysis.com/sample/bebf5c12e35029e21c9cca1da53eb43e893f9521435a246ea991bcced2fabe67?environmentId=100

New #MZP #Ransomwarehttps://t.co/YCY8NXzJZw

It seems nothing special, but early AV-detections is uninformative.
Thanks to @AkhmedTaia pic.twitter.com/qS1YapH8jW

— Amigo-A (@Amigo_A ) December 31, 2019

Because of the "MZP" (4D 5A 50) Magic at the beginning of the executable file they dubbed
the Malware "MZP" Ransomware. As | explained before with the MZRevenge/MaMo
Ransomware the "P" after the MZ Magic String indicates that the binary was built with
Borland Delphi and P stands for Pascal (the programming language).

[eEee :
[oea :
pooe :
aeEee :
aeEea :
aeEee :
BeEea :
[eEee :
[eEee :
[oea :
pooe :
aeEee :
aeEea :
aeEee :
BeEea :
[eEee :
[eEee :

ARAA
ap1e
0e20
aE30
ae40
aes50
BEEO
Be7e
AREE
aEo9e
QoAQ
BEBO
BeCco
Be0Doe
BOER
BOFO
a1aea

4D 5A 50
B8

BA B4 CD Z1B8 4C CD 21 g LI
54686973 2070726F 67726160 206D 7573 This program mus
74206265 2072756E 20756E64 65722057 t be run under W
69 6E 33 32 24 37 in32. .47

In my Opinion the Name "MZP Ransomware" is too generic to be useful for future reference,
so I'd like to propose the name "Dot Ransomware" because of the File Icon found with the
Malware Samples. It shows the character "Dot" from the Warner Bros Cartoon Series
"Animaniacs" popular in the mid-1990s.

Two things to note about the Output of "Detect it easy" for this sample:

1. It confirms that the Ransomware was built with Borland Delphi (Version 4).

2/10


https://twitter.com/hashtag/MZP?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/Ransomware?src=hash&ref_src=twsrc%5Etfw
https://t.co/YCY8NXzJZw
https://twitter.com/AkhmedTaia?ref_src=twsrc%5Etfw
https://t.co/qS1YapH8jW
https://twitter.com/Amigo_A_/status/1212136864393637888?ref_src=twsrc%5Etfw

2. This sample seems to be packed with UPX 3.91. Running upx -d 01.exe Yyields us
the unpacked Version. The Hashsums can be found in the IOC Section down below

Type: | FE ize: Entropy  FLC
Import Resource

EntryPoint: 0001elf0 : ImageBase: 00400000

NumberQfsections | 0003 = SizeOflmage: 00020000

packer UPX(3.91)[NRV,best] 5 1
com... Borland Delphi(-)[-] 57
linker Turbo Linker{2.25% Delphi)[EXE32] 5 7

Detect It Easy » Signatures Info

71 ms

Let's try something new :D Up until now | pretty much neglected memory dump analysis as a
whole, but since | attended the Workshop on Volatility at 36¢c3 | noticed what I'm missing out
on. With volatility -f IE9WIN7-20200102-171509.dmp --profile=Win7SP1x86_24000
pstree we can dump the process tree at the time of the capture. We can see that 01.exe is
running as a subprocess of explorer.exe.

Lo~ L R 09

[

2
a
7
6
g

With the privs plugin Volatility can show which process privileges are present, enabled,
and/or enabled by default. Below you can see a screencapture of the output for the
Ransomware. The Plugins cmdscan and consoles sadly did not return any output for 01.exe.

3/10



SeCreateTokenPrivilege a token object
SeAssignPrimaryTokenPrivilege e a process-level token
4 SeLockMemoryPrivilege k pages in memory
\ se quotas
workstations to the domain
Act as part of the operating system
M ge auditing and security log
9 SeTakeOwnershipPrivilege e ownership of files/objects
SeloadDriverPrivilege Load and unload device drivers
i Profile system performance
Change the system time
Profile a single process
Increase scheduling priority
Create a pagefile
Create permanent shared objects
Backup files and directories
Restore files and directories
Present Shut down the system
Debug programs
SeAuditPrivilege Generate security audits
SeSystemEnvironmentPrivilege Edit firmwa ronment values
SeChangeNotifyPrivilege Present,Enabled,Default Receive notifications of changes to files or directories
4 seRemoteShutdownPrivilege Force shutdown from a remote system
SeUndockPriv Present Remove computer from docking station
6 SeSyncAg L Synch directory service data
7 SeEn Enable user ounts to be trusted for delegation
M ge the les on a volume
9 SeImpersonatePrivileg Impersonate a client after authentication
SeCreateGlobalPrivilege lobal objects
SeTrustedCredManAccessPrivilege cC redential ager as a trusted caller
SeRelabelPrivilege Modi the mandatery integrity level of
SeIncreaseWorkingSetPrivilege Present llocate more memory for user applications
4 SeTimeZonePrivilege Present i the time zone of the computer's intermal clock
SeCreateSymbolicLinkPrivilege Required to create a symbolic link

Let's check out what IDR (Interactive Delphi Reconstructor) can tell us about the binary. First
off: Strings.

a84a9298 <AnsiStrinag> 'D:\126\Delph \HinsmS\!umniler\Hnl.nas'
80409328 <AnsiStrinag> 'D:%\126\Delph ompiler\Kol.pas'
004089358 <AnsisString> bitmap format’

ge4a9884 <PAnsiChar’ ['comctl3?.dll’
B0489894 <PAnsiChar>
004089B48 <PAnsiChar>
004089B50 <PAnsiChar> 'SetLayeredWindowAttributes’

004BABT7YL <AnsiString> 'Tahoma'

8840B9A0 <AnsiStrinag> ‘Form’

BB4BBFFC <AnsiString> ' .iniv’

apuBc264 <Ansistring> 'Software\’

0048C4308 <AnsiString? ' .iniy’

peuacHsd <AnsiStrinar 'Left’

ae4BCY50 <AnsiString> 'Top'

@e4BCY5C <AnsiString> 'Width'

ae4aca6C <AnsiStrinag> "Height'

aeuBCcHD8 <PAnsiChar> "inner message'

@04BCASE <AnsiString> #0

a04BCAGE <AnsiStrinag> "%%'

AeLACA7YL <AnsiString> '%’

ge4acABA <AnsiStrinag> M1

@e4BCCCY <AnsiStrinag> M1

@e4BCD B8 <AnsiString> 'YHWDhms'

AO4BCFAC <AnsiStrino> '\

BO4BCF58 <ANnsiString} ' *'

ae4aDp1Ds <AnsiStringy> ' =’

0040D1ELY <AnsiString> " ..°'

A048D1FA <AnsiStrinao> '\

A04BF85C <AnsiStrinag> W13+#10

BOLOFEDA <AnsiStrina> #O

004OF944 <AnsiString> #0

0041 08A9C <PAnsiChar> W13+#10

A8u1193C <AnsiString> 'HS Sans Serif’

a041194C <PAnsiChar> 'Form’

0411954 <Pnnsichar>r;LﬂﬂHﬂ;____________1

0041195C <PAnsiChar> |'DECRYPT FILES.TRT'

00411978 <PAnsiChar’> .

Beau1197C¢ <PAnsiChar> °"=*

00411980 <PAnsiChar> fﬂ.ﬂ Y beomt

A041198C <PAnsiChar® |'\HOW TO RESTORE EHCRYPTED FILES.TXT1
A04119B4 <PAnsiChar} "% %

A04119BC <PAnsiChar>

00u119C8 <PAnsiChar> "OWAHN UF*

]

80411A10 <PAnsiChar> '="'
8041114 <PAnsiChar> ';'

0o411Aa18 <PAnsiChar> ° >
Ae411A24 <PAnsiChar> ['quertyuiopasdfqhiklzxcubnmy

4/10


https://github.com/crypto2011/IDR

The first String related to the Compiler tells us that the criminals likely used HIASM (an old
russian IDE for Delphi Development) to build the Malware. The DLL mentioned below
comctl32.dll is often targeted for UAC Bypasses. It also seems to track Mouse events to
some extent this could either be used as an evasion mechanism or entropy collection (the
first option is a lot more plausible). "HOW TO RESTORE ENCRYPTED FILES.txt" is the
filename of the dropped ransomnote, although I'm not sure about the use of "DECRYPT
FILES.txt" since this file was not present on any infected system (Speculation: Does is
select one out of multiple Filenames to make tracking more difficult?). Lastly we have a
filepath and a string that looks like the criminal dragged his face across the keyboard once.

Alright, let's move along. Because Delphi is notoriously weird and difficult to
disassemble/decompile it is time to try a new tool again. Today | will be using Ghidra with
Dhrake developed by Jesko Huttenhain. You can find the Git repository below and if you
would like to know more about the inner workings of the two scripts you should definitely
read his article about them here.

A short tl;dr: Dhrake is short for "Delphi hand rake" and tries to fix missing symbols and
borked function signatures by matching to the symbols extracted through IDR beforehand.
This will not only clean up the decompilation results in Ghidra but also automatically create
structs and virtual method tables for you instead of doing it by hand (as if reversing Delphi
wasn't already painfull enough). It's pretty cool, give it a try!

The first step to success (lol who am | kidding) is firing up Ghdira and loading the sample.
Tell it to auto-analyze the file.

L Ed

é 01.exe has not been analyzed. Would you like to analyze it now?

(2] (1o |

Next we need to extract the .IDC Symbol file with the Help of IDR. For this it is sufficient to

clone the Git Repo and paste the Knowledge Base files from the Dropbox linked at the end
of the Readme into it. After that is done just run IDR.exe, import the binary and choose IDC
Generator under Tools.

5/10


https://blag.nullteilerfrei.de/2019/12/23/reverse-engineering-delphi-binaries-in-ghidra-with-dhrake/

File | Tools | Tabs Plugins Program

EEH Interactive Delphi Reconstructor by crypto: C:hUsers\IEUser\ Desktoph01.exe (Delphi-4)

Unit Process Dumper

ﬂﬂll- MAP Generator

ggj: Comments Generator
ao IDC Generator I
aay

- HIEW Generator

aay Lister

aay

- Class Tree Builder

aay KB Typelnfo Viewer
ooy Citadel Password Finder
aay

aay Hex-=Double

AL UABES HUTY " URTETE
B04BACHE #O15 I
88408B76C #O17
0048B7 A4 #O18 IF
ge4BCHDE #O16
gauecs2e #e19
g040BC730 #0220
88408C86C #0821
88408CABC #0822
0040CBCE #6023

AAhArnAR HA2h C

_Unit17

“Unit16

Hni+92n0

CodeViewer [FE) | Classviewer [F7) | Stings (F8) | Mames [F3) | SouceCode (F10] | Map [F11)]
<= || EntryPoint
EntryPoint

push ebp
mov ebp,esp
add esp,8FFFFFFFA
®or eax,eax
mov dword ptr [ebp-18],eax
mov eax,411BDC
call @InitExe
®0Or eax,eax
push ebp
push 4Y1DFC
push dword ptr fs:[eax]
moy dword ptr fs:[eax],esp
lea edx,[ebp-18]
mov eax,1
call 88486878
mov eax,dword ptr [ebp-16]
mov edx,411E18
call ELItrCmp

> jne aa411DAB
push a
push Y11E1Y

After copying the two Dhrake scripts into your ghidra_scripts folder (e.g. ~/ghidra_scripts)
you can refresh the list in the Script Manager once and switch to the Delphi Category. Run
Dhrakelnit and select the IDC file you created earlier.

Help

Iﬁager - 2 scripts (of 242)

¥ Scripts 4|/'In Tool | Status | Name
= _NEw_ Dhrakelnit.java
» [ Analysis ] DhrakeParseClass.java
5 Arm
[ Assembly
] Binary
5 Cleanup
[ codeanalysit
[ conversion
» 5 customersu
[ pata
) Data Types
|8 o
» 33 Examples
[ FunctioniD
[ Functions
[ Functionsta
) HELP
2 1images
[ import
[ nstructions
= ios
) iteration
[ Languages L
D macosx v
< v

o= Jheme/fowl/Malware/Dot_MZP/exe

[~ | Description

etadata L]

My Computer

3

Desktop

Creates structs based

Home

S

Recent

=] ghidra

(& «b

[ 01-upx.exe

7] 01.exe

[ o1.idc

[ executable.2980.exe
|| executable.2980.idc
[ flarestrings.txt

[ flarestrings_unpacked.txt
D strings-exe.txt

[ strings.txt

E| strings_unpacked.txt

File name: ‘

Type: lAH Files (*.#)

Filter: Filter:

[ Load an 1DC file j l Cancel J

Filtering for "VMT" in the Symbol Tree gives you all the Symbols relevant to Dhrake. Just
click the Name in the Listing view once and run DhrakeParseClass (set the checkbox "In
Tool" and press F8 to run). The Script will now automatically create the corresponding class

and vtable struct.



@

v 5@ Labels A

VMT 40100C_TObject
VMT_40A6CC_THIHintMan.
VMT_40AC48 THIWin
VMT_40B7A4 THIMainForr
VMT 40C520 THIFileStreal
VMT_40C730 _THIStreamCi
VMT_40C880 THIFormatSi
VMT_40CADO THIHub
VMT_40CD54_THIFileSearc:

AFRAT A TAa
-l ? L

O SO WO O WO SO SO ST ST

Filter: VMT % | f2)

So | guess we should continue with the analysis now :D As 90% of ransomware strains do
"Dot" will read the Keyboard Layout as well. GetKeyboardLayout(0) returning 7 would be
equivalent to a Japanese Keyboard Layout (wtf?). Passing 1 to GetKeyboardType will return
the Subtype which is OEM specific, but will tell you how many function keys there are. Weird.
Here's the Documentation.

A

{

ndefined4 FUN_0040278c(void)

int iVarl;
uint uvar2;
undefinedd4 uvar3;

uvar3 = 0;
iVarl = GetKeyboardType(0);
if (varl = 7) {
uar2 = GetkKeyboardType(1);
if (((uvar2 & Oxffo0) = Oxdod) || ((uVar2 & Oxffo0) = Oxd00)) {
uvar3d = 1;
}
}

return uVar3;

Dot also queries the current cursor position on the screen and passes it on to another
function. Haven't investigated further yet.

7/10


https://docs.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-getkeyboardtype

if (*#(int *)(param_2 + 4) - 0x2000 = 0xb) {

local_34 = *(char *)({int)param_1 + Ox481):

if (*(short *){{int)param_1 + 0x47b) == 0) {
user32.GetCursorPos((LPPOINT)}&Local_3ch;
FUN_oB40804c({int)param_1, (LONG *)&Local 3c, (LPPOINT)&Local 208);
'. cal 3 K= '. a' _20.x;
local_3c.y = L_20.y:
func Bxﬂﬂ408058{param 1,.local_18);

Varl func_Bxﬂﬂ4051c8{& ocal_3c,local _18);

Here we are again: weird DLLs that may or may not be a UAC Bypass. UACme mentions
two Methods (#21 and #22) employing comctl32.dll. Unsure what to make of this at the
moment.

vold FUN_004050a8(vold)

{
FARPROC pFVarl:

InitCommonControls():
if (DAT_DB413508 = (HMODULE)GxB) {
DAT_0B8413508 = LoadLibraryA("comctl32.d1ll");
}
pFVarl = GetProcAddress(DAT 06413508, "InitCommonControlsEx");
if (pFvarl != (FARPROC)Ox0) {
(*pFvarl)();
}

return:

In one of the Szenarios | ran Regshot to see whether the Ransomware

adds/modifies/deletes Registry Keys, but there weren't any changes that | can attribute to it.

Dot tries to read SOFTWARE\Borland\Delphi\RTL FPUMaskValue.

8/10



vold FUN_B84027bc(void)

{
LSTATUS LVarl;
undefinedd *in FS DFFSET;
undefinedd uvarZ;
DWORD local 10;
uint local c;
HKEY local 8;

local ¢ = (uint)DAT 00412000;
LVarl = RegOpenKeyExA( (HKEY)0xB80000002, "SOFTWARE \Borland\\Delphi\\RTL",8,1, (PHKEY)&local_8);
if '[_'v'ar"_ == B} '[

uar2 = *in_FS _OFFSET;

*¥{undefined **}in_ FS_OFFSET = &stackOxffffffed;

local_10 = 4;
RegQueryValueExA(local 8, "FPUMaskValue", (LPDWORD)@x0, (LPDWORD)0x0, (LPBYTE}&local_c,&local_10);
*in FS _OFFSET = uVar2;
RegCloseKey(local_8);
return;
}
DAT 00412000 = DAT 00412000 & 8xffcd | (ushort)local c & Gx3f;
return;

}

This is another work in progress article as I've come down with the "Congress Flu", so check
back in a few days for an update. Probably the most important thing this "report" is still
missing is a look at the crypto implementation. A look at the Imports reveals that it is not
using the Windows Crypto API but rather a weird Delphi one. We'll see.

MITRE ATT&CK

T1107 --> File Deletion --> Defense Evasion
T1045 --> Software Packing --> Defense Evasion
T1012 --> Query Registry --> Discovery

T1076 --> Remote Desktop Protocol --> Lateral Movement

I0Cs

Dot Samples

9/10



01.exe --> SHA256: bebf5c12e35029e21c9ccalda53eb43e893f9521435a246ea991bcced2fabe6?
SSDEEP:
768:Qa8bmv7hNAMbgYT6hQAPLC7TasOKS/3U7fzd4tA9yenQ779Z021PnoCLNS9QtRbY :Ebmvs71+DKoKS/kjz

01l.exe --> SHA256: aa85b2ec79bc646671d7280ba27f4ce97e8fabe93ab7c97dofd18d05bab6df29
SSDEEP:
98304 :mt+HWV4nwA+8PgzCRTjM1FBizZzhfcrQSav//dH768Qy04YXoftvFUmgaJml9iUybR:NddPgzC+1FkZhER

unpacked:
01.exe --> SHA256: 814e061d2e58720a43bch3fe0478a8088053T0a407e25ff841b98850d128F81c
SSDEEP: 1536:CCQ2EikJZdz529nEaqQOyergddb6apjAwzHx4D:7IZYXEHIr IdFjAwzHx4

Registry Changes

Inconclusive as Regshot didn't show anything suspicious, only Delphi related Keys at most

E-Mail Addresses

recover_24_7@protonmail[.]com

Ransomnote

If you want to return your .[REDACTED: random 8-letter lowercase extension] files,
contact us and we will send you a decryptor and a unique decryption key.
recover_24_7@protonmail[.]com

All your files have been encrypted!
Your personal identifier:

10/10



