
1/6

SophosLabs Threat Research December 24, 2019

Gozi V3: tracked by their own stealth
news.sophos.com/en-us/2019/12/24/gozi-v3-tracked-by-their-own-stealth/

Gozi, also known as Ursnif or ISFB, is a banking trojan which has been around for a long
time and currently multiple variations of the trojan are circulating after its source code got
leaked. Every variant that is distributed has interesting aspects, with Gozi version 3 the most
eye-catching in the field of detection evasion.

In this blog we will discuss some of the techniques which Gozi V3 uses in an attempt to
bypass endpoint defense. Additionally we will also discuss how researchers can use these
evasion techniques to their advantage, since they produce a unique and distinctive
behavioral pattern.

Gozi’s infection chain

Gozi V3 is distributed via spam mails which link to a malicious file, such as an obfuscated
Visual Basic script, which acts as a dropper component. The dropper component downloads
and executes an executable with a valid digital signature. We will refer to this executable as
the Gozi loader.

The function of this loader is to reach out to the command-and-control (C2) server to retrieve
the main Gozi executable. The threat actors behind Gozi try to prevent researchers from
interacting with the C2 and obtaining payloads.

https://news.sophos.com/en-us/2019/12/24/gozi-v3-tracked-by-their-own-stealth/


2/6

One way the Gozi attackers do this is by restricting payload delivery at the server side: The
Gozi dropper only works if the IP address of the machine requesting the file geolocates to a
region targeted by the malspam (geo restriction), and if the request comes in within a
relatively short time frame relative to the start of the spam campaign. This strategy may
result in a smaller infection rate, but it avoids the chance that researchers obtain the payload
and write detections against it.

If the victim’s machine gets a valid C2 response, the Gozi payload is stored in the registry in
the form of a PowerShell script. This fileless technique allows the Gozi threat actors to avoid
traditional static (file on disk) detection. Upon system startup the PowerShell script injects the
Gozi worker into the explorer process, at which point the infection chain is complete and
Gozi again reaches out to the C2 server.

The C2 server this time responds with components which aid Gozi in its money-stealing
activities, such as webinjects.

The Gozi payload stored in the Windows registry
These two stages are described in more detail below.

Hiding in memory

When we take a look at a Gozi V3 loader sample, we can see that it’s protected by a packer
in an effort to evade static detection. With the help of IDA’s graph view, we can unpack the
Gozi loader by following calls or jumps to registers, which usually are positioned at the
bottom of each graph view. The below video illustrates how the loader can quickly be
unpacked in IDA’s debugging mode in under a minute.

When we analyze the code at the beginning of the unpacked Gozi loader, we can notice a
second stage PE executable being loaded into memory. Parts of the second stage
executable have been removed, other parts have been overwritten with null bytes. The

https://news.sophos.com/wp-content/uploads/2019/12/image_1_gozi_registry.png
https://www.virustotal.com/gui/file/6a5583f8b9b7a1dfc66ef6d439ec22a1850c5616ae80d300c33f37b2eff38d6f/details
https://www.virustotal.com/gui/file/827391fc1de934563e356396257abc79d9dbc6cb60a9b32053bc8ce101095bf1/detection


3/6

image below shows a dump of the memory area after the second stage has been mapped to
memory.

As we can see from the image, the ‘DOS header’ has been removed and the PE magic value
and section names have been nullified. Other parts of the PE header, such as the
compilation timestamp are still present in memory. By performing these actions, Gozi makes
it harder to dump the unpacked executable from memory, as most dumping tools search for
the DOS header to determine where the executable has been mapped in memory. At the
same time, this evasion technique produces a fairly unique memory pattern which endpoint
defense solutions could target during a memory scan.

Executing the fileless component

The goal of the second stage loader is to reach out to the C2 server and to store a
PowerShell script in the registry. The PowerShell script is executed using forfiles.exe, a
Windows component that can be abused to execute a shell instruction in the (process)
context of another executable. The forfiles executable is executed with the following
argument:

forfiles /p C:\Windows\system32 /s /c "cmd /c @file -ec BASE_64_ENCODED_COMMAND" /m 
p*ll.*e

where the base64 encoded command decodes to:

iex (gp 'HKCU:\Identities\{4EBA1D2A-127F-6AB1-EE6C-E4061B0483AD}').S

https://news.sophos.com/wp-content/uploads/2019/12/image_2_gozi_memory.png
https://www.virustotal.com/gui/file/606a5c5f9af86d4a1685a3a4f6d34ca5e6c99dc2e35669befd0091bd2e9747c4/details


4/6

By using the forfiles executable, Gozi may evade certain detection mechanisms which partly
rely on the creation of persistency entry (e.g. a scheduled task) which points to a known
script engine such as PowerShell or MSHTA. At the same time, the launching of a forfiles
executable with an argument to launch PowerShell with the goal of evaluating the contents of
a registry key as code makes for a unique pattern which is strong enough to block as a
threat.

The fileless PowerShell script which gets executed loads shellcode into memory and
executes said shellcode via the QueueUserAPC injection mechanism. The script is slightly
obfuscated via Base64 encoding, as can be seen on the following image:

What is interesting to notice is that Base64 decoded contents aren’t passed to the ‘invoke-
expression (iex)’ commandlet for evaluation in one go. Instead, the contents are passed in
two iterations, which might be done intentionally as it influences the amount of script
contents which are passed to the Anti Malware Scan Interface (AMSI) for inspection.

The executed shellcode injects the Gozi worker binary into the explorer process, which
results in several new process threads being created inside Explorer. One of the newly
created threads looks similar to the “PipeServerThread” which can be found in the leaked
Gozi sourcecode.

https://news.sophos.com/wp-content/uploads/2019/12/image_3_gozi_powershell_script.png
https://www.virustotal.com/gui/file/88086210f6e912e0b68f4ad04c499a9afc9c4e4a00c499e66d4c5a576b4c7040/details


5/6

Gozi source code 

Gozi thread code

Summary

https://news.sophos.com/wp-content/uploads/2019/12/image_4_gozi_source_code.png
https://news.sophos.com/wp-content/uploads/2019/12/image_5_gozi_thread_code.png


6/6

In this blog post we have looked at some of the tricks the latest version of Gozi uses to try
and bypass defenses:

protecting C2 assets
fileless persistence
patching of mapped executable in memory
inventive LOLbin usage
AMSI content chunking

The threat actors behind Gozi are clearly interested in keeping the latest version under the
radar. By using the above techniques in addition to only targeting specific GEOs (GB, IT, AU)
SophosLabs data shows V3 as less prevalent than V2. Importantly for the defender side the
above techniques can often be something of an Achilles heel, providing detection
opportunities because of the distinctive characteristics they provide.

Detections

Components of the Gozi malware are reported as one or more of the following definitions in
Sophos endpoint detection products:

HPmal/Gozi-*
Mal/Ursnif-A and -C
Mal/EncPk-AOY

Acknowledgments

SophosLabs would like to thank independent malware hunter JamesWT for his contributions
towards mapping local Gozi Version 3 campaigns.

https://twitter.com/JAMESWT_MHT

