POS Malware Used at Fuel Pumps

norfolkinfosec.com/pos-malware-used-at-fuel-pumps/

norfolk December 23, 2019

In December 2019, VISA Security released a bulletin detailing multiple incidents in which
threat actors targeted point of sale systems used at fuel dispensing companies with malware
designed to parse out credit card numbers from these systems. This blog post examines a
file, 19d38325f715f623bd4b6e819a150cde, associated with the first of three listed incidents
in that bulletin.

There are several notable characteristics regarding this malware, including a unique way for
the threat actors to terminate the tool.

MD5: 19d38325f715f623bd4b6e819a150cde
SHA1: 81c4a8cf8c0da1c590377b37ed5cff8771560a3d
SHA256: 7a207137e7b234e680116aa071f049c8472e4fb5990a38dab264d0a4cde126df

The file appears to be a variant of the Grateful/Framework POS family. While this variant (via
a similar file, OEB7AC6D2D99D702ECC8B86FFO0B0OAAC) are described elsewhere, this
blog is currently unable to replicate or identify the data exfiltration method detailed in external
posts. This method appears statically in strings in similar — but larger — samples, suggesting
that it may have actually been removed for certain variants. If that is the case, it would also
imply that the threat actors exifiltrated the data through other malware or tools, which would
be consistent with some vendor observations. Further discussion around this point and the
discrepancies in reported functionality around these hashes can be found in a later section.

The file contains two exports:
— workerlnstance (main functionality)
— debugPoint (enters a sleep loop)

The workerlnstance export is used to launch the main functionality of the malware. In
addition, the malware also expects to receive a file path as an argument. When this export is
called, the malware creates a mutex named
“Global.Ms.ThreadPooling.MyAppSinglelnstance” and then collects local data about the
infected workstation. This data is written to the filepath specified at runtime.

1/9

https://norfolkinfosec.com/pos-malware-used-at-fuel-pumps/
https://usa.visa.com/dam/VCOM/global/support-legal/documents/cybercrime-groups-targeting-fuel-dispenser-merchants.pdf
https://www.vkremez.com/2017/12/lets-learn-reversing-grateful-point-of.html
https://malware.news/t/x-force-iris-identifies-fin6-activity-on-pos-networks/22509

ptr &
pte ik

sigred ink

. 1en
d pkr e

_1oee2eid

IpStartnddre

duliilliseconds

blaitall

2/9

eax, [ebp+7BheWSabata]

eax ; lpWsSAData

202h 3 wiersionRequested
ds:WiRstartup

eax, eax

short loc_18@88hEAF

T

loc_10804BAF - ; namelemn
push 2 3dh

eax, [ehp+7@h+name]
: name

ds :gethostnane
Eaw, Lenprruntname]
eax ; name
eax, [ebp+7@h+var_54]
s ; int
getslocallP
[ebpe7Bhevar 10], ebx 192.168.180.130; NewUser-PC; x32; NewUser -PC\NewUser; admin_privs;
ecx

ecx

[ebp+7Bh+var L], ebx

[ebp+7Bh+var_ 8], ebx

[ebp+7 Bh+chHame], eax
[ebp+7@h+cbhReferencedbomainHane], eax
hute _nte [ehns7ANtRelueol ength], bl
Shell3?_686_Adnin_Check
el L |

al, al

short loc_18084BFD

[
BN — = NP

push offset afdmin_privs j ™ §s

jmp short loc 10@04C86) |[1oc_10004BFD:

mou byte ptr [ebp+7@h+Returolengthl 4

push offset aLimited privs J “limited privs'

EHNI.

1loc_1080%C06 2

call sub_1000200F

push [ebp+7Bh+ReturnLength] ; ReturnLength
lea eax, [ebp+78h+chReferencedbiomainHame]
push eax ; cbhReferencedlomainbame
lea eax, [ebp+78h+Referencedbomainbane]

push eax ; ReferencedDomainHame
lea eax, [ebp+70h+chHame]

push Bax ; cbhHame

lea eax, [ebp+7Bh+Hame]
push Bax ; Hame
|call TokenCheck

add esp, 14h

nov [ebp+7 Bh+var_ 1G],

nov [ebp+7 Bh+uvar_ 18],

noy [ebp+7dh+var 141,
|call Check 32 64

lea eck, [ebp+7Bh+var

test eax, eax

jz short loc_10884Cu8

¥

offset akbh o
short loc_10004C4D | (loc_10004048:
| push offset ak3z2

The malware runs four threads:

— Thread 1: Enters memory scraping loop
— Thread 2: Enters memory scraping loop
— Thread 3: Checks length of process to be scraped. Process must be > 4 characters.
— Thread 4: Terminates the malware if a “stopper” file is found in the working directory

Of these, Thread 4 is among the most novel and allows the threat actors to terminate the
malware. The malware takes the filename “memscrp.stp” and appends it to a string
containing the working directory of the DLL. The malware will then use the CreateFile API to
try to access a file with the name at this location. It then performs a comparison:

1) If the CreateFile call generated an error (i.e. the file was not present at the time of the
check), EAX is zeroed out and the routine sleeps for sixty seconds before trying again.

2) If this call does not generate an error (i.e. the file exists), the malware uses the MoveFile
API call to add a .stopped extension to this file and then terminates.

This workflow is shown below.

M Ll

if | H 1l culi_10862000 proc near ||

HewFileHane= byte ptr -105h

push abp
oy ebp, esp
; DMORD _ stdcall Path_Remoue aub ssp, it
push esi
Path_Remouve Thread now esi, offset unk_18405520)
now e, es5i

- . . = i H
; duiilliseconds Tea adx, [eck+]

call ds:Sleep
jmp short Path_Remove_Thread

Path_Remove_Thread endp L

loc_1A8E30E:

now al, [ecx]

| ing BLX

Lest al, al

inz short loc_10003015
P—
EAN L.

nou edi, 1Buh

sub vex, eds
E H L"il inz short loc_ 10003044
—

LTS
call sub_1BBEEADI

—dint ___cdecl Createc o File_memstrp{LPCSTR 1pFileMame) Pach eal
Creates_A_File_memstrp push esi
i - call sub_1000LSL
B push 0FFSEt dword_10001118
1pFileHame= dword ptr push edi

push esi
call sub_100KAES

2o eax, eax add E5p, 180
push eax ; hTemplateFile J —
push eax ; duFlagsAndAattributes EXDN
push 3 H dwcreat}unD15p951t10n Loc_ 10663041 + 1pFileHame
push eax ; lpSecurityfAttributes Qm £ad

11 Greates A File nenstr)
push eax ; duShareMode é& e:" AFile nenstrp |

test PaR, Fax I

push 80080008h ; dubDesiredfccess
short loc_ 100830593

ush esp+18h+1lpFileMame] ; 1pFileMame :HI 1z
call ds:Createrilen)

cnp eax, BFFFFFFFFh 0 N Ly

N push esi
12 chort loc 10002B83 lea vax, [ebprHeuFiledane]
— push edi
f push rax
* f .* call Sub_ 10001555
push offsel dword_1B081128
lea eax, [ebp+HearileHane]
BN e e o
push eax H push wax
- - call Sub_102e13ED
call : loc_10002B83: R omn
®0 [ko =0r edx, eax lea eax, [ebp+HeuFileHane]
. push eax i lpHeuFileNane
inc eax retn push esi 7 IpExistingFileHame
retn Creates_A_File _memstrp endp call ds:louvefiled .
- = - push] i WExitCode
oy byte ptr ducrd_1id8@6&ED, 1
call ds:GetCurrentProcess
push rax v hProcess
call ds:TerminateProcess

e
XN

Loc_ 10003093
pop edi

pop esi

now esp, ebp

pop ebp
retn
sul_ 1000200 endp

The advantages to this are unclear; however, one possibility is that this approach allows the
threat actors to terminate the malware without the need for command and control
implementation.

Memory Scraping Threads

As noted in another blog_post, this malware forgoes more targeted scraping (in which
specific BINs are selected) in favor of a broader collection. The threat actors’ scraping logic
is not yet fully understood; however, several characteristics of credit card track data do

appear, including the common “=" and “*” separators:

loc_1088044E5:

lea eax, [ecx+edix=2]
al, [eax+esi-1]
al, '='
short loc_1880845087

Part of Ox100041EF
I

BN L
a1, '™
short loc_180084587

The scraping threads use the ReadProcessMemory API call to run data from all of the
processes on the infected system. Unlike previously documented samples, no apparent
whitelisting was present in the malware during static analysis, and during dynamic runs of
the malware the scraper searched for data without discretion. The comparison logic in the
image above takes place within the “Possible_Parsing” function boxed in blue at the bottom
right of the image below:

5/9

https://www.vkremez.com/2017/12/lets-learn-reversing-grateful-point-of.html

‘______—-—'Erm

Read_Frocess_Tree proc near

EAH L HunberOFByteshead= dword ptr -180
war_ih= duord ptr -ibh

var_10= duord prr -106
loc_10083B7C: var (= duord ptr -6Cch

push esi var_fi= duord pkr -B
lea ecx, [esp+iCh+var_18] var_ii= duord ptr -4
call small_compare T arg_B= duord pkr &
push Bax now pax, [espraryg @]
lea ecx, [ebpeidh] sub esp, 18N
call tight_memcpy push esi
push esi push duord ptr [eax+B80h] ; deProcessld
1ea pcx, [esp+iChevar 24] push a : bInheritilandle
v * _ push w10k ; dubesiredficcess
call assune_exit call ds:0penProcess
push ebp now esi, eax
cmp egi, BFFFFFFFFR
mov eax '*I 'fa’” iz loc_1R00TARY

Read Process Tree
(51

eCx \
esi, ebx %

short loc_18B883B7C
L

BN L

Loc_100a3mhn:

and [esp+Z@h+Hunberifiyteskead], @
lea eax, [esp+?BheumherifBytesiead]
push Bax : 1pHunber0FOyteskead
now eax, [espriChevar 8]

pugh e S nSire

push offset BuFFer ; 1pBuffer

add e, ehx

push eax : lpbaserddress
push esi ; hProcess

call 45 tReadProcessHemory

cnp [esprZan+HunberDFByLeskead], H00n
naw Buffer [edi], B

ib short loc_10003A54

*_I

, [esprZEnrvar_s]
, [esp+28hearg 0]
. 2

, ehx

i
DEEsEL BUEER:
Possible_parsing
T

At this stage, this blog has not identified where this data is stored or how it is transmitted.
While some variants of this file have C2 functionality via DNS requests (a previously known
and documented feature), such features appear absent from the file analyzed here and
reported by VISA. This blog also performed a dynamic comparison between a known DNS
variant and the file analyzed here using test data. The DNS variant immediately began
communicating with external servers (including a public IP checker and the C2 server) and
eventually attempted to transmit scraped test data over the DNS protocol. The file analyzed
in this blog post did not perform these tasks.

A static comparison of both variants, with a focus on the DNS variant’s C2 server, shows that
both files have nearly identical code leading to where this server is referenced in the DNS
version and where one would expect it to be referenced in the non-DNS version:

his code

lea

rcx, gword 18868168

ecx, 1Fh
_amsg_exit

short loc_18000143F

call

mo

_initterm
cs:dword_1801

workflow is nearly identical in both variants
However, examining this location (boxed in orange above) shows that several functions are
not present in the non-DNS version. Most importantly, none of the functions in this location

contain code matching the routine with the C2 reference in the DNS version:

text:oepaaaR 1500818580

offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset

loc_lseeaseze
loc_l3@@8382C
loc_l130883835
loc_l3@a83844
loc_l3@883858
loc_l3@883874
loc_l180083068
loc_l18886385C
sub_186663850
sub 186683844
sub 1888838C4
sub_186683120
sub_18888317C
sub_1888831AC
sub_13@0831B3
sub_18@8831A8
sub_18@8831C4

DNS Variant

text:ooe0000180801008

sub_188861840
sub_186661864
sub_186681884
sub_186881864
sub_1868813C0
sub_1380813A8
sub_1888818CC

Non-DNS

OEB7AC6D2D99D702ECC8B86FFI0BOAAC

(==

sub_1888638C4 proc near

arg_@= qword ptr 8

128F75F8C80D65D416C740A6D4C1591E

mov
push
sub
xor
lea

[rsp+arg_8], rbx

rdi

rsp, 2eh

ebx, ebx

rdi, aNsAkamaildllCo

loc_1888838D7:

inc rbx
byte ptr [rbx+rdi], @
short loc_188883807

v

lea
mov
call
mov
mov
mov
call
lea
mov
mov
add
pop
jmp

(il i 5=

rdx, rbx

sub_180883648

rcx, cs:Dst ; Dst
ré, rbx ; Size
rdx, rdi ; Src
memcpy

rex, sub_ 188889414 ; void (_ cdecl *)()
cs:qword_18888A418, rbx
rbx, [rsp+28h+arg 8]
rsp, 28h

rdi

sub_ls@ea3eC4 endp

The DNS variant (top left) contains additional functionality not present in the non-DNS
variant

If these features have been removed, this blog postulates that either a file saving mechanism
exists but has not yet been identified, or an additional file is used to run the DLL and collect
data.

Additional Variants

As noted above, there are other variants of this scraper. A VirusTotal pivot on the
workerlnstance export identifies eight total samples, with varying compile times. Of these
samples, some feature DNS exfiltration capabilities and others do not:

Non-DNS

32ccf851b0b81252aa2bfdf2e8b416¢ch Compilation Timestamp: 2018-12-10 20:06:42 (27KB)
Oeb7ac6d2d99d702ecc8b86ff90b0aac Compilation Timestamp: 2019-04-11 13:26:51 (27kB)
576039d7cb54b749af5ed3d3558ee296 Compilation Timestamp: 2018-11-07 11:56:06
(25KB)

19d38325f715f623bd4b6e819a150cde Compilation Timestamp: 2018-12-10 20:07:02 (23KB)
(blog version)

DNS

0576380f93f49279491177d96d84ad7e Compilation Timestamp: 2018-11-27 20:06:19 (89KDb)
353b0df3a9efce2d32f6097cab8fffc3 Compilation Timestamp: 2018-11-27 20:06:44 (46KB)
128f75f8c80d65d416c740a6d4c1591e Compilation Timestamp: 2018-11-27 20:06:19(44KB)
4ed6cc403d5eababaed58babf43ad4f3 Compilation Timestamp: 2018-11-27 20:06:44 (42KB)

Interestingly, the DNS variants were all compiled within a minute of each other. While two
files share the same timestamp (and perhaps are the same file, dumped from memory or
disk differently), there are still three unique timestamps from this set. In addition, these files
are noticeably larger than the apparent non-DNS version. With one exception, these files
also have compilation timestamps predating the non-DNS versions, although this data set
might not be complete given the limitations in VirusTotal’'s search range (although none of the
DNS versions with this data query had compilation timestamps beyond 2018).

One possible explanation is that the threat actor shifted away from DNS exfiltration in favor
of a quiet collection or the use of an external tool. Another possibility is that the tool is shared
across multiple threat actors with different operational behaviors. The short window of
compilation timestamps for the DNS samples could represent different builds for multiple
simultaneous targets, threat actor testing, or a more benign explanation.

The DNS versions all use “ns.akamai1811.com” as their C2.

9/9

