TA505 Get2 Analysis

goggleheadedhacker.com/blog/post/13

Jacob Pimental November 24, 2019

24 November 2019

The TA505 group debuted Get2 and SDBot last month in a new phishing campaign. While
there have been some great analyses on the SDBot RAT that is dropped, there have not
been many on the Get2 downloader. | wanted to take this opportunity to do my own analysis
on it. | will not be going over the macro-enabled word document itself, just the DLL that is
dropped. There are also two versions of the dll, x86 and x64. This analysis will focus on the
x86 version. If you want to follow along you can get the sample from Hybrid Analysis here.

Obfuscation

The Get2 DLL that comes from the malicious word document is pretty heavily obfuscated
and packed using a custom packing mechanism. The code contains multiple loops in
unnecessary places in order to distract reverse engineers from the actual functionality. It also
contains calls to multiple bogus functions that don’t return anything of importance. These
bogus functions tend to contain multiple loops and calls to more bogus functions. It is very
easy to go down a rabbit hole while analyzing this binary.

1/10

https://www.goggleheadedhacker.com/blog/post/13
https://www.hybrid-analysis.com/sample/e14aadd73dca1a5f9bc2fe5fa29d9eca68ade6ff348f3ad0ae7a041273ca9592?environmentId=100

On top of having fake instructions, the DLL also contains self-modifying code. The DLL calls
VirtualAlloc to allocate 3060 bytes of memory. It then dumps data into the newly created
space using memcpy.

AR R R R AR R AR R R R R

Hx18HH4644
, [

call sub.MSVCRT.d1l1_memcpy

It will then decrypt this data by taking every dword, xoring it by 0x6949, rotating the bits left
by 4 and adding Ox77777778. | have created a small python script to emulate this
functionality using r2pipe, radare2’s API. You can find that here. After the decryption occurs,
we can see new code formed in memory that is executed. This code appears to be importing
functions such as VirtualAlloc, GetProcAddress, VirtualProtect, LoadLibraryA, and
VirtualFree. Which leads us to believe that more unpacking is necessary.

2/10

https://github.com/JacobPimental/TA505/blob/master/extract_shellcode.py

Unpacking

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

Hx74]
Hx731]
k721
Hx/71]
Hx781]
Hxb6T)
Hxbe]
Axbd]
Hxbc]
Hxb6b]
Hxbal
Ax691]
Hx68]
HxBc]
Hx8b]

]

.

]

.

]

»

.

]

.

]

.

]

.

»

]

.

.

=

.

-

.

-

.

Hx5Hb
UxbY
Ux/Z
Ux /4
Ux /5
Hxb6 1
UxbC
Hx4]
UxbC
UxbC
HUxb1
HxbJd
H

Ux4/
Uxbh
Ux /4
HxHH
Ux/Z
Uxbi
Uxb3
Hx4]
Hxb4
Uxb4
Ux/Z
Uxb5o
Ux/O
Ux /3

We can see that earlier there was data moved into the memory space at [ebp - 78] ,

[ebp - 74] ,and [ebp - 70] which is referenced in this new set of code based on the
offset of the argument, [ebp + 8] . The data moved into [ebp - 78] contains a list of
bytes that will be decrypted. [ebp - 74] contains 0x3c870 which is the length of the data
to be decrypted, and [ebp - 70] contains 0x4178, the decryption key. This round of
decryption is slightly different from the first. The first thing that the malware does is loop
through each index of the encrypted data and if the index is divisible by two then it will skip
two bytes and move the data at that index into a buffer. For clarity, this follows the pattern [2,
3,6,7,10, 11, 14...] and can be represented as the following python code:

compressed_data = b'"'
X =0
while x < len(data):
if x % 2 == 0:
X += 2
compressed_data += bytes([data[x]])
X += 1

4/10

[Bx188818341]
data

mov dword [1, Bx18885238
; length
moyvy dword [], Bx3c8/78

movy dword [1, Bx3a

mnovy , |

add , 1

mnovy ,

cdq

1d1v

imul .

mov dword [1,
Ux41/0 key

moy , [Bx18885234]
mov dword 1,

mov , [Bx1888B4634]

mov dword

mov dword

Once the data is moved into the new buffer the malware will follow the normal decryption

process we saw earlier by xoring each dword and rotating the bits left by 4, this time using
the key 0x4178.

UxZbb oo
mov ,
mov ,
mov .

mov dword [

moy ,
moyv ,
’

dword [

, 4

mov dword [

mov ,

add = Uiliiilii
mov dword [

moy ,

mov ,

mov ,

mov dword [

The resulting data looks a like a mangled PE header, which leads us to believe that there is
more deobfuscation necessary. The final stage of this process is quite complicated. It
involves multiple ways of moving bytes from our newly decrypted data to an empty buffer, but
no actual decryption occurs. The paths that the deobfuscation algorithm could take are:

» To simply copy one byte from the current index of the decrypted data into the empty
buffer
» To copy previous data that was inserted into the empty buffer into the current index of

the buffer
« To move the byte 00 into the current index of the buffer x number of times

These paths were all dependent on a “check” function that would take into account the
current index of the encrypted data, and two global variables. The check function works as

follows:

e Check if global_1is 0
e If So:
o Move the current byte of the encrypted data into global_2
o Increment the current index of the encrypted data by 1
o Move 7 into global_1
Else:
global_1 = global_1 — 1
Move the product of a bitwise shift right of global_2 by 7, anded by 1 ((gloabl_2 » 7) &
1) into the return register
global_2 = global_2 shifted left by 1
return

I have made a python script that mimics the unpacking functionality and writes out the final
payload to a file. You can find that here.

7/10

https://github.com/JacobPimental/TA505/blob/master/unpack_sample.py

mow

mov ; global_1

novy
mov ; global_1
sub
mowv

mov : global 1

moyv

moy

movzZx

moy .

moy dwor | : gloabl 2

mov -

moy .

add .

moy ’

mov I|||I‘I|" |

moy .

moy dwor Fi = I]|I.l|.lll| 1

mov -

mov . ' ; global_2
mov I|||I‘I|" |

moy .

moy , _ ; global

“>
Z

moy .

mov dword [. ; global_2
moy ,

movy .

pop rbp

Here is a tinygraph view of the final deobfuscation function which shows just how
complicated the algorithm is:

Extracted Payload

The extracted binary is UPX packed. We can simply unpack it using the command upx -d
<packed_binary> . Looking at the exports of the newly unpacked binary we can see the
function getandgodIl_Win32.dll_IKAJSL. This is most likely where execution will continue.

This exported function seems to call one function then exit. It is safe to assume that the
called function will be the main function for this binary. This main function will grab the
UserName of the user the malware is running as, the name of the PC, the version of
Windows the malware is running on, and a list of the currently running processes. It then
concatenates this data into the string:

“&D=<ComputerName>&U=<UserName>&0S=<WindowsVersion>&PR=<Process list>"

It will then send a POST request with these parameters to the C2 using the WinHttp library,
with the useragent:

Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/41.0.2228.0 Safari/537.36

9/10

The response will send back a list of URLs that contain the final payload (normally SDBot).
The Get2 downloader will download these payloads and run them on the victim’s machine.

Conclusions

Overall this was a very interesting and fun sample to analyze. The code was complicated
and seemed sophisticated, which is what you would expect from this threat actor. | am
hoping this article helps others with analyzing this particular downloader. | am always open to
feedback, so feel free to send me messages on my Twitter or LinkedIn letting me know what
| can improve on in these articles.

Thanks for reading and happy reversing!

Radare2, Malware Analysis, Malware Windows, Scripting, Automation, r2pipe,
unpacking

More Content Like This:

10/10

https://twitter.com/jacob_pimental
https://www.linkedin.com/in/jacobpimental/

