
1/17

Blog.
hatching.io/blog/reversing-qakbot

2019-11-12

triage

malware

sandbox

banker

Written by
 Markel Picado (d00rt)

Summary

https://hatching.io/blog/reversing-qakbot

2/17

Qbot or Qakbot is a sophisticated worm with banking capabilities. This malware family has
been infecting computers since 2009, utilizing a number of techniques (some of them quite
advanced) which make it difficult to detect. It has a packing layer, anti-VM techniques, anti-
debug techniques, and anti-sandbox techniques which make the analysis of this threat
difficult. Qakbot is capable of updating itself and this also makes this threat more complex to
detect since it is constantly changing on disk.

Using Triage we analyzed the most recent variant of this malware, and we added a new
module to support the detection and configuration extraction of Qakbot samples as shown in
the image below. A tool to deobfuscate the Qakbot payload is also included qakbuscator.py.

Qakbot family detection in Hatching Triage

https://hatching.io/static/files/qakbuscator.py

3/17

Qakbot config extraction Hatching Triage

Unpacking process

Qakbot has a custom packer. There are probably other versions of Qakbot in the wild with
different packers, but this section is based on analysis of the packer for the sample:
e736cf964b998e582fd2c191a0c9865814b632a315435f80798dd2a239a5e5f5 .

In summary, the unpacking process is as follows:

4/17

The unpacking process

The packer allocates memory and then drops an encrypted buffer there (Step 1-2).

The dropped buffer is decrypted and the decrypted data contains a PE file (Step 3). This PE
file is not at the beginning of the buffer but starts at offset 0x427 . From the beginning to the
PE file offset is filled with 0x00 bytes.

Offset is filled with `0x00` bytes

This could be a trick to make analysts think that this function is “freeing memory” or that it’s a
memset-like function.

The PE header is modified - this can also confuse analysts or memory dumping tools that look
for PE file signatures since they can’t find the “MZ” magic number. This is shown in the image
below.

5/17

Modified PE header

The decrypted PE file image size is calculated to allocate memory for it. The PE file is copied
(mapped as a windows loader would do) from the decrypted buffer to the newly allocated
memory (Step 3-4).

The PE is copied over

Mapping file to Allocated Memory

6/17

Once the file is mapped to the newly allocated memory, the header is fixed as shown in the
following image. Once the PE file is mapped its entry point is called. (Step 4)

Calling the entry point

This PE is going to read the rest of the previous decrypted buffer since there is still some
encrypted data. Once the data is decrypted a new PE file can be found. (Step 4-5)

The new PE file

This time the header is also modified and is fixed before mapping it. (Step 5-6)

7/17

New PE file with new header

The decrypted PE is Qakbot itself. In this case the PE header doesn’t have the well-known
string “This program cannot be run in DOS mode”, because the DOS-Stub was deleted.

This PE file is the final payload of Qakbot so finally the PE file is mapped to the
ImageBaseAddress of the original file (Step 6).

The original image loaded at address 0x400000 is wiped.

The address 0x400000 is wiped

The newly unpacked PE (Qakbot) is copied to the original image base address 0x400000 .

8/17

Qakbot copied over to 0x400000

So, after mapping the Qakbot binary the execution flow goes to the EntryPoint of this file.
(Step 7).

The unpacked sample hash of the file we ran in Triage:
850ff92b7f3badda4bd4eca0a54fbdea410667db1ea27db8069337bf451078d1

Overview

Obfuscation

9/17

Once the sample is unpacked, Qakbot itself also implements an obfuscation layer in its code.
This obfuscation makes the analysis a bit harder. The flow graph of the main function is the
following:

Qakbot's obfuscation

The obfuscation basically consists of adding unused loops with an empty body. Like the
following:

10/17

Unused loops

As is shown in the image above, it does a “XOR EAX, EAX” operation and then decides to
loop or not depending on the Z flag which is set with the previous instruction (so the loop will
never happen). The goal of these small loops is to make a less comprehensive flow graph and
to make the analysis harder. There are more than 600 loops like this throughout the code.

At Hatching, we implemented a tool qakbuscator.py to deobfuscate the code and make the
analysis much easier. This tool is provided with this analysis to allow all researchers to use it.

Qakbot's deobfuscated

The DLLs that are in the Qakbot resources also have this obfuscation layer - you can use the
script to deobfuscate them.

https://hatching.io/static/files/qakbuscator.py%3E

11/17

Behavioral analysis

The sample used to perform the behavioral analysis is the deobfuscated sample using our
deobfuscator tool explained in the previous section.

SAMPLE: 3bd468d29868bb3f198530ef2426668efe30a8330bf3835a4f3a941d534ef2df

This is how a process tree of a Qakbot infection looks like:

Process tree after Qakbot infection

Regardless of the input vector, the first time Qakbot runs it tries to install itself.

Anti-VM/Anti-analysis tricks

First of all, it checks if it is running in a virtualized environment or not. Qakbot executes itself
with the option "/C" . Qakbot admits parameters, in this case the parameter "/C" is to
make anti-VM and anti-sandbox checks like the following ones:

Reading from the virtual port in order to detect VMWare

VMWare detection

Check the CPUID

12/17

CPUID check

There are also other techniques used by Qakbot to know if it is running in an emulated
environment like checking the sample name - in order to see if it is set to some default name
like “sample.exe” or “malware.exe”; or checking running processes in order to detect any
related to a virtual environments, anti-virus, debuggers etc.

Among the different options that Qakbot accepts we can find the following:

Accepted parameters Description

/C Anti-VM checks

/I [name] Disable Windows SpyNey and delete scheduled task [name]

/P[file] Decrypt [file] and load it

/Q Set exit status to 0x6F

/T Sync related stuff

/V Debug/Testing option

/W Debug/Testing option

/i [name] Install itself and delete scheduled task [name]

/s Create service

/t Send Window Message

/A [1] [2] Unknown

Installation

If a VM is detected it exits. Otherwise, it copies itself into %APPDATA% under a randomly
generated folder with a randomly generated name. Those names are unique for each infected
machine since they are created using some characteristics from infected host.

13/17

Copying to %APPDATA%

It also creates the following registry key in order to be run when the system reboots
“HKCU\Software\Microsoft\Windows\CurrentVersion\Run”.

Run on system boot

Also, it drops a .dat file that has configuration information, like botnet name, timestamp, etc.
This file contains encrypted data which is decrypted in memory during run time. Once this file
is decrypted it looks like is shown in the image below.

Decrypted file

The following table, from a blog post by the security researcher Vitaly Kremez (link) , shows
the meanings of some of these config values:

Qakbot Config

11 = 2 (number of hardcoded C2)

1 = date of qbot install in HH:MM:ss-dd/mm/yyyy

2 = victim qbot install

45 = C2 IP

https://www.vkremez.com/2018/07/lets-learn-in-depth-reversing-of-qakbot.html

14/17

Qakbot Config

46 = C2 Port

39 = victim external IP

38 = last victim call to C2 (time in Unix)

43 = time of record ((time in Unix)

5 = victim network shares

Finally, the copied file is executed and the original file is overwritten with calc.exe . Some
malware deletes the file directly, but Qakbot has decided to overwrite it with a legitimate
binary. This way it doesn’t leave traces.

Overwriting with legitimate binary

When Qakbot is installed, its behavior is different. In this case, it is going to create an instance
of the explorer.exe process in order to inject itself into it.

Once injected into explorer, the main .dll is loaded. At this point, different things could happen
since the communication with the control panel begins. As shown in the process tree above,
the explorer process executes an update of Qakbot directly downloaded from the C&C. Also, it
can exfiltrate data, or infect browsers in order to get banking information from the victim
system.

Qakbot update sample: https://tria.ge/reports/191104-athqk1tjxn/task2

Triage

In Triage we’ve just added support for this family, meaning you can detect Qakbot as well as
get its configuration directly after the analysis.

https://tria.ge/reports/191104-athqk1tjxn/task2

15/17

Qakbot in Triage

Samples

The Triage report for the sample that was used for this blog can be found (here).

Sample state SHA256

Packed
Qakbot

e736cf964b998e582fd2c191a0c9865814b632a315435f80798dd2a239a5e5f5

Qakbot 850ff92b7f3badda4bd4eca0a54fbdea410667db1ea27db8069337bf451078d1

Deobfuscated
Qakbot

3bd468d29868bb3f198530ef2426668efe30a8330bf3835a4f3a941d534ef2df

Qakbot
resource 1
(main.dll)

83273809a35ba26c2fb30cba58ba437004483ae754babad63c5d168113efa430

Deobfuscated
Qakbot
resource 1
(main.dll)

74f8907acfd070d2590895523433a8c85b5ef87f4e1a5ef7ccd356f5562b7a6b

Qakbot
resource 2
(injects dll
x86)

b7d9a462bd105193e998b6324f3343b84f11ceb21ab24e60e2580a26d95e4494

https://tria.ge/reports/191111-jzlt6rkwlj

16/17

Sample state SHA256

Qakbot
resource 3
(injects dll
x64)

8c7a43002ee6105fc37fcdfc00a192239639f7c08bf28e06ca1432551fe21b3f

Here is a list of related samples and their corresponding Triage reports.

SHA256 Triage Report

f614a06748251107a34fa7e44c7652fd88
e61fd958df724455e14ec88040abf9

1.bin
https://tria.ge/reports/191111-
ypg95xvrwj_

7d4d207fb5258f504d3f9ef60d431332d1
e7320d5849c0b0acf624612b01c8f0

2.bin
https://tria.ge/reports/191111-
mgrgp545yx_

357b4979324e2065adc8e6bd11cd7161f8
30250cae30f50fb13edd70fd2b506b

3.bin
https://tria.ge/reports/191111-
sbsq7xbqea_

29754f0caa9576eba6b9c351d20549e7e1
9216c6e72c2963da33450719a51277

4.bin
https://tria.ge/reports/191111-
57yf3bdh4j_

304a01a339d86ccbba7b1f671839624d44
6e6ea86474912bf976837df779bad2

5.bin
https://tria.ge/reports/191111-
38qmrk62q2_

d2f8a61e8cfc9a6c983fc40d2b7ac33e2a
686872d0136dce2f66466c044f246c

6.bin
https://tria.ge/reports/191111-
p6cqne7cwn_

2b9ef4a9f47402d171eec28acadf3753cb
b33c9bc6ec26d99aa060127a470e95

7.bin
https://tria.ge/reports/191111-
zl9l5y6lp2_

eb17935cf972d90be92c9b39fff8b3d760
ecda78a6f602cb2b8bbaf3d87e6b61

8.bin
https://tria.ge/reports/191111-
7tn19rbh9x_

6b88260f4c4da4651a82bb62761cd23ee9
ad6662a2a0abbec017e7193668397b

9.bin
https://tria.ge/reports/191111-
hb6qpeaars_

256967605423fea1e00368078eea1cdb52
d391aa0091e0798db797ab337d1567

10.bin
https://tria.ge/reports/191111-
m8tm8zqbrs_

https://tria.ge/reports/191111-ypg95xvrwj
https://tria.ge/reports/191111-mgrgp545yx
https://tria.ge/reports/191111-sbsq7xbqea
https://tria.ge/reports/191111-57yf3bdh4j
https://tria.ge/reports/191111-38qmrk62q2
https://tria.ge/reports/191111-p6cqne7cwn
https://tria.ge/reports/191111-zl9l5y6lp2
https://tria.ge/reports/191111-7tn19rbh9x
https://tria.ge/reports/191111-hb6qpeaars
https://tria.ge/reports/191111-m8tm8zqbrs

17/17

SHA256 Triage Report

13c2f4b6fb80500884a4ea9d2fe8077412
4f46ebfd80de3e1dfcfb9e167aee08

11.bin
https://tria.ge/reports/191111-
7cpggrpxts_

References

https://tria.ge/reports/191111-7cpggrpxts

