
1/32

MMD-0064-2019 - Linux/AirDropBot
blog.malwaremustdie.org/2019/09/mmd-0064-2019-linuxairdropbot.html

Prologue

There are a lot of botnet aiming multiple architecture of Linux basis internet of thing, and this
story is just one of them, but I haven't seen the one was coded like this before.

Like the most of other posts of our analysis reports in MalwareMustDie blog, this post has
been started from a friend's request to take a look at a certain Linux executable malicious
binary that was having a low (or no) detection, and at that time the binary hasn't been
categorized into a correct threat ID.

This time I decided to write the report along with my style on how to reverse engineering this
sample, which is compiled in the MIPS processor architecture.

So I was sent with this MIPS 32bit binary ..

cloudbot-mips: ELF 32-bit MSB executable, MIPS, MIPS-I
version 1 (SYSV), statically linked, stripped

..and according to its detection report in the Virus Total hash it is supposed to be a "Mirai-
like" or Mirai variant malware, (thank's to good people for uploading the sample to
VirusTotal). But the fact after my analysis is saying differently, these are not Mirai,
Remaiten, GafGyt (Qbot/Torlus base), Hajime, Luabots, nor China series DDoS
binaries or Kaiten (or STD like). It is a newly coded Linux malware picking up several idea
and codes from other known malware, including Mirai.

This sample is just one of a series of badness, my honeypots, OSINT and a given
information was leading me into 26 types of samples that are meant to pwned series of
internet of thing (IoT) devices running on Linux OS, and this MIPS-32 ELF binary one I
received is just one of the flocks.

https://blog.malwaremustdie.org/2019/09/mmd-0064-2019-linuxairdropbot.html
https://lh3.googleusercontent.com/dxOB7ZuVg-fBrRmstt3EmVsaleV_-P9L6HxsIHK5w3puttv_w8pBzUM3sao1qFynjKVehsyIqcuW3dtU-sfUmA3l6TXGot255o7mfQ_tKl2KDS3XZ6s9_8vTKbVwK81VjsnENa4y32U=w1271-h810-no

2/32

If you see the filenames you can guess some of those binaries are meant to aim specific
IoT/router platforms and not only for several randomly cross-compiled architecture supported
result. This type of binaries seem to be started appearing in the early August, 2019, in the
internet.

Below is the additional list of the compiled binaries meant to run on several non-Intel CPU
running Linux operating systems, they can affect network devices like routers, bridges,
switches, and other the small internet of things that we may already use on daily basis:

m68k-68xxx.cloudbot: 32-bit MSB Motorola m68k, 68020, version 1 (SYSV), statically
linked
hnios2.cloudbot: 32-bit LSB Altera Nios II, version 1 (SYSV), dynamically
linked
hriscv64.cloudbot: 64-bit LSB UCB RISC-V, version 1 (SYSV), dynamically linked
microblazebe.cloudbot: 32-bit MSB Xilinx MicroBlaze 32-bit RISC, version 1 (SYSV),
statically linked
microblazeel.cloudbot: 32-bit LSB version 1 (SYSV), statically linked,
sh-sh4.cloudbot: 32-bit LSB Renesas SH, version 1 (SYSV), statically linked.
xtensa.cloudbot: 32-bit LSB Tensilica Xtensa, version 1 (SYSV), dynamically
linked.
arcle-750d.cloudbot: 32-bit LSB ARC Cores Tangent-A5, version 1 (SYSV), statically
linked.
arc.cloudbot: 32-bit LSB ARC Cores Tangent-A5, version 1 (SYSV), dynamically
linked.

(The hashes are all recorded in the "Hashes" section of this post)

Binary Analysis

Since I was asked to look into the MIPS sample so I started with it. The binary analysis is
showing a symbol striping result, but we can still get some executable section's information,
compiler setting/trace that's showing how it should be run, and some information regarding of

https://lh3.googleusercontent.com/PfOoszwvHvBL5XA_RTTU5Oz05uXCLrSquVuOdYCymdu9hBRhBKhd9SdN5odUu4MuHsBYGduBkkIwEi0QJGSdS3oYNIdzXt50jH3M_0CsuPpgFUiFJEjHV__xTxgODZYx1KOtD0BmAxU=w1457-h627-no

3/32

the size for the section/program headers, but it's all just too few isn't it? Still this analysis is
good for getting information we need for supporting dynamic analysis (if needed) afterward. I
personally love to solve malware stuff as statically as possible.

I don't think I will get much information on the early stage (binary analysis) with this ELF
binary, except what had already known, such as cross-compiling result, not packed, and
headers and entry0 are in place, so I'm good for conducting the next analysis step.

For file attributes I extracted them using forensics tools included in Tsurugi Linux commands,
which are also not showing special result too, except of what has been recorded from the
infected box. So I was taking several checks further I run some several ELF pattern
signatures I know, with running it against my collection of Yara rules and ClamAV signature
to match it to previous threat database that I have, and this is only to make me understand
why several false-positive results came up in other Anti Virus product's detection. The
malware yet is having several interesting strings but they are still too generic to be processed
to identify the threat without reading its assembly further.

So my "practical binary analysis" result for this MIPS binary is going to be it, nothing much.

Some methods on MIPS-32 static analysis to dissect this sample
with radare2:)

https://lh3.googleusercontent.com/DM692yeh8Njgi7ejrD0q5oOtzMY7Fx54ouR4CDkdss7oB5ckPzvVVTxFTVorE6t0S8GER968haIF4sYFkpH2DmpWmM0NIIzyPxd8qjr9lvcXTGl9TVnjrfJ2Vpq2aswmKUiJFhGPxss=w994-h825-no

4/32

So this is the fun part, the binary analysis with radare2 ;). no cutter GUI, no fancy huds, just
an old-schooler way with command line, visual mode and graph in a r2shell.

I think there is really no such precise step by step "cookbook" on how to to use radare2
during analyzing something, and basically radare2 is enriched in design coded by several
coders for any kind of users to use it freely with many flavor and options or purpose in binary
analysis, once you get into it you'll just get use to use it since radare2 will eventually adapting
to your methods, and before you know it you are using it forever.

My line of work from day one is UNIX operating systems, I use radare2 since the name is
"radare" compiled from FreeBSD ports in between years of 2006 to 2007, and I mostly use
command line basis on every radare shell on my VT100x/VT200x terminal emulation variants
I use afterwards, this is kind of building my reversing forms with radare2 until now. The
command line base.

But first, let's make sure you are setting"mips" and "32" in radare2 environment of assembly
architecture (arc) and bits for this binary, then try to recognize the "main function", which is in
"0x4016a0" at the pattern/location that's different than Intel basis assembly like shown in the
picture below:

Next, I may just run following commands to be sure that it can be reversed well. It is a simple
command for only showing how many Linux syscall is used, and this will work after the
radare2 parse and analyze the binary to the analysis database.

https://lh3.googleusercontent.com/pNkh0t72o31A1-wkYGTO4vQWfNCX9FZNKKTt0SgxLThVC901XhJv88t28eV6KLitU4KNNzm92QHcRxZV_U30Xt1quUTBsVTzhvi6yXo5RHs-rS28vs6Bj-Gd0gQ38BR7ORIYJ4sgUdk=w1488-h840-no

5/32

PS: If you know what you're doing, an simpler/easier way for the MIPS 32bit to seek where
the syscall codes placed is by grepping the assembly code with the hex value of
"0x0000000c" like below, the same result should come up:

https://lh3.googleusercontent.com/JLgDDeKWFxaFFyi63YtgQYUIOKsGTYVF_aMNul5WLcB0vWRREng4GOl5yW4wCzFcRf9s4DTTMzspa2O7RQ355fCm4VtB1UIPElAzefU5OZRExuyZczQTYUk8_RGTCj0c1NT7K5Vi59w=w1056-h766-no
https://lh3.googleusercontent.com/7ZKEtke_Gul9Em8e5H890KtLqGx7ADBjX8GallIeorrKETL1S_Am6z9vnicoQ4xPkx1AuUqWphnZOk8DsV10naB7LNklaHs00fgBvlbEM7L8YN4SuXPAJsU3l_-2-2z7cCJUbkfCM8c=w599-h864-no

6/32

In my case on dealing with Linux or UNIX binaries, I have to know first what syscalls are
used (that kernel uses for making basic operations), "syscall" is used to request a service
from kernel. Any good or bad program are using those (if they need to run on that OS), so
syscalls have to be there. For me, the syscalls is important and its amount will tell you how
big the work load will be, ..then the rest is up to you and radare2 to extract them, the more of
those syscalls, the merrier our RE life will be, without knowing these syscalls there's no way
we can solve such stripped binary :)

In a Linux MIPS architecture, where assembly and register (reduced registers due to small
space) is different than PC's Intel ones (MISP is RISC, Intel is CISC, RISC is for a CPU that
is designed based on simple orders to act fast, many networking devices are on RISC for
this reason). Linux OS in some MIPS platform can be configured to run either in big or in little
endian mode too, you have to be careful about the endianness in reversing MIPS, like this
MIPS binary is using big endian, also binaries for SGI machines, but some machines like
Loongson 3 are just like Intel or PPC works in little endian, several Linux OS is differing their
package for supporting each endianness with "mips" (big) or "mipsel" (little) in their MIPS
port. Information on the target machines for each sample can help to recognize the
endianness used.

In MIPS the way "syscall" used is also have its own uniqueness. Basically, a designated
service code for a syscall must be passed in $v0 register, and arguments are passed in other
registers. A simple way in assembly code to recognize a syscall is as per below snipped
code:

li $v0, 0x1
add $a0, $t0, $zero
syscall

Explanation: The "0x1" is stored in the "$v0" register (it doesn't have to be assembly
command "li" but any command in MIPS assembly in example "addliu", etc, can be used for
the same effect), which means the service code used to print integer. The next line is to
perform a copy value from the register "$t0" to "$a0" (register where argument is usually
saved).
Finally (the third line) the syscall code is there, with these components altogether one
"syscall" can be executed.
We can apply the above concept in the previously grep syscall result. The objective is to
recognize the address of its syscall wrapper function for this stripped binary analysis
purpose. For example, at the second result at "0x004019d0" there's a syscall number, and
by radare2 you go to that location with seek (s) command and using visual mode we can
figure the function name in no time. I will show you how.

7/32

Let's fix the screen for it as per below so we can be at the same page:

I marked the line where it is assigning "0xfa2" value to "$v0", and "0xfa2" is the number
registered for "fork" syscall in Linux MIPS 32bit OS, that's also saying 0xfa2 is syscall
number of sys_fork (system call for fork comnmand), if you scroll up a bit you can see the
function name "fcn.004019a0", which is the "wrapper function" for this "syscall fork" or
"sys_fork". The syscall command will accept the passed syscall number stored in "$v0" to
be translated in the syscall table to pass it through the OS specific registered syscall name
alongside with the arguments needed to perform the further desired syscall operation.

Noted that the syscall number can always be confirmed in designated Linux OS in the file
with the below formula, and more information on register assignment on MIPS architecture
that explains syscalls calling conventions can be read in ==>[link].

/usr/include/{YOUR_ARCH}/asm/unistd_{YOUR_BIT}.h

The manual of syscall [link] is a good reference explaining syscall wrapper in libc. Quoted:

https://lh3.googleusercontent.com/UWsISGvXqqJh4PmV_nqNZxl9kBnWLvEO54HsMaMUk2wVb7SvoBYoXYZzimzhJ6yfMkeQaDLJjH-a85E7GHuakXHojkwZvQYUktHJe-YeV_mpQH62v01fHJvoqr-hhFVgQtX-9PXqde0=w1313-h786-no
https://www.linux-mips.org/wiki/Syscall
http://man7.org/linux/man-pages/man2/intro.2.html

8/32

"Usually, system calls are not invoked directly:
instead, most system calls have corresponding C library wrapper
functions which perform the steps required (e.g., trapping to kernel
mode) in order to invoke the system call.

Thus, making a system call looks the same as invoking a
normal library function.

In many cases, the C library wrapper function does nothing more than:

* copying arguments and the unique system call number to the
 registers where the kernel expects them;

* trapping to kernel mode, at which point the kernel does the real
 work of the system call;

* setting errno if the system call returns an error number when the
 kernel returns the CPU to user mode.

However, in a few cases, a wrapper function may do rather more than
this, for example, performing some preprocessing of the arguments
before trapping to kernel mode, or postprocessing of values returned
by the system call. Where this is the case, the manual pages in
Section 2 generally try to note the details of both the (usually GNU)
C library API interface and the raw system call. Most commonly, the
main DESCRIPTION will focus on the C library interface, and
differences for the system call are covered in the NOTES section."

9/32

Using this method, in no time you'll get the full list of the syscall function's used by this
malware as per following table that I made for myself during this analysis:

The rest is up to you on how to make it easy to name the strings for each "syscall" for your
purpose, I go by the above strings naming since it is fit to my RE platform, I suggest you
refer to Linux syscall base on naming them [link].

The next step is, you may need to change all function name in radare2 according to this
"syscall table". Using the visual mode and analyze function name (afn) command is the
faster way to do it manually, or you can script that too, radare2 can be used with varied of
methods, anything will do as long as we can get the job's done. In my case I like to use these
radare2 shell macro based on table I made for myself:

 :
s 0x0402060; af; afn ____connect; pdf |head
s 0x0401CF0; af; afn ____write; pdf |head
s 0x04019B0; af; afn ____fork; pdf |head
 :

The result is as per seen in the below screenshot:

https://lh3.googleusercontent.com/8pzLxcw3mFKNSm7swUDb4uoqlhiHG5SRyPefc_vXnavNmf_KzUPxM6MSMbaG0iKqjNJPM8fH85Xu9BRRNuMcZAgMJ50uECq1cJtwhHYXAzRE_R_mttQLLKv-lzfSDSYbPyAuwimqE9g=w703-h851-no
http://man7.org/linux/man-pages/man2/syscalls.2.html

10/32

https://lh3.googleusercontent.com/vUCsIhRlcbRREA7zIAMONKNvWgVPbpXa25SyeYQMyPZO9gyomb71MNvGLgRtDMSyyIDQHUDPBVimE5V2bGFEi7mWMz5uRCr-Qbr832Di0nyzyfmj5I4Agjmh7T7EcQs7htSKjn3B0Ds=w1025-h729-no

11/32

Up to this way, we'll have all of the syscalls back in place :) Don't worry, you'll do this faster if
you get used to it.

https://lh3.googleusercontent.com/IYmCXB_V2Vlkig32xlOeakyt2qrFQybfEz859-s2SGdeR4AcL-5wxjH9cBpi0AaHJolz9Tdxtsu2lSRrelkGldwYRIq7CTVvZp1ysWwDGjxcvzUrIpxSE33U5MHVRQfOpLUwEQby5tw=w1106-h949-no

12/32

The result looks cool enough for me to read the radare2 graph on examining how this MIPS
binary further goes..

The next step is a generic way on reversing a stripped binary, by defining the functions that
is not part of Libc but likely coded by malware coder. For this task, you have to check the
rest of the function and seek whether the XREF doesn't go to any of syscall wrapper
functions, make sure that function itself is not the main() function, init_proc() nor init_term()
functions, and that goes to the below leftover list, just naming it to anything you think it is fit
with to what it does.

https://lh3.googleusercontent.com/UOcTIUCANA0k0L5XMtebHWVgP9IHsEf9nfjSXDyHWcrsM8bTKDK3bFJevBan-Muib5_dbvvt0NKrh4XWclZ74wkH_ad5LNDNx7kh44f1imOS9k9MVYPfLQcLX7OLuTEPBo01qoq7fuc=w1082-h957-no

13/32

In my case I named them this way:

Then we can put the correct function name into the binary using the same macro I showed
you previously, then we are pretty much completed in making this binary so readable... hold
on, but read it from where? Where to start?

To pick a good place to start to start reversing, this command will help you to pick some juicy
spots, all the extractable strings will be dumped and we can pick one interesting one to start,
and go up to build the big picture.:)

Actually symbols are giving us much better options, but right now we don't have anything
else that is readable enough to start..

You can start to trace this binary from these text address reference and then go up to the call
in the main function that supports it. For example, by using the visual mode you can seek the
XREF of each text to see how it is called from which function and you can trail them further
after that. This isn't going to be difficult to read since you have all functions back in place.

https://lh3.googleusercontent.com/r05PVYUL0HuujtiZStkvwRX7XnMm6y_7fGTgOFftCf9rhA6dhjfRjlkQq83uMMxbbuZYIRjWP1ruNiqamlgVYx4zvHAu7SGWiHLA1jZUT71_PZejKZfoBrFIcPvEPqCfG6TWNWKJfW0=w796-h338-no
https://lh3.googleusercontent.com/NkLmUQYR3h3rWhMvTQxdFdvcLM7icFVoHT27xvS_1IfQROjAUWJz0SrJv8PTsPyBYx_4Mouj6J4FCirSk4dt_dGwbnhMOy1PahpEUzccYyxRKYX2AaPBt04qs9T9u_9Ya-zf5IfFiZk=w1252-h852-no

14/32

The picture below is showing how the "air dropping" is referred to the caller function.

That's it. These methods I shared are useful methodology in analyzing Linux MIPS-32 binary
especially stripped ones like the one I have now. I think you're good enough to go to
complete your own analysis by yourself too. Please just tried those methods if you don't have
any other better ways and don't be afraid if other RE tools can't make you read the MIPS-32
binary well, just fire the radare2 with the tips written above, and everything should be okay :)

We go on with the malware analysis of this binary and its threat then..

What does this MIPS-32 binary do?

Practically. the MIPS binary is bot that is having a mission to infect the host it was dropped
into (note: so it needs a dropping scheme to go to the infected host beforehand), making a
malicious process called "cloudprocess", send message of "airdopping clouds" through
the standard output (that can be piped later on). It is recording its "PID" and fork its process
for the further step. The message of "airdropping clouds" is the reason why I called this
malware as "AirDropBot" eventhough the coder prefer to use "Cloudbot", which there is also
a legitimate good software that uses that name too as their brand.

Upon successful forking it will extract the what the coder so-called "encrypted array", it's ala
Mirai table crypted keywords in its concept, but it is different in implementation., I must guess
that it could be originally coded to avoid XOR operation which is the worst Mirai bug in the
history :) but this "encrypt_array" is just ending up to an encoded obfuscation function :) -
Anyhow the value from this "decrypted" coded is used for further malware process.

Then the malware tries to connect to the C2 which its IP address is hard-coded in the binary,
on a success connection attempt to C2 server, it will parse the commands sent by the C2 to
perform three weaponized functions on the binary to perform TCP, and UDP DDoS attack

https://lh3.googleusercontent.com/XJmMCMDGdF8DIsxqOr9Y5sNd8Ta1X9-kIabOCeDfYvHrpzo0xUtsbzZ_sXF8AnIZ4m5RhhFqglDRvPGtqLLs4YbVsHwqyx8m61YQFwBpXeMPazH5Qr0IQ3EJl5Y5FC_KHkg7G5KjmOE=w1693-h818-no

15/32

with either using the specific hex-coded payload, or the latter on is using a custom pattern
so-called "hex-attack" that sends DoS packet in a hex escape strings format to the targeted
host.

I will break it down to more details in its specific functions in the next sections.

The "encryption" (aka the obfuscation)

The challenge was the "encryption" part, it was I used radare2 with ESIL to see the
"encrypted" variables, as per snipped below as PoC:

The decryption is by [shift-1] as per shown in the cascade loop shown in every encoded
strings.

If we want to translate this decryoter scheme, it may look something like this (below), I break
it up in 3 functions but in assembly it is all in a function and cascaded to each strings to be
decoded:

https://lh3.googleusercontent.com/acWcBjk_zCrSN8cWdv3R16_Q5rTFA6Bk6anwMIIgRm70UZmNocYFg7xjoPxulZH7q7tJD73Ke2Py4C8mrz6vWZuCc18Y3JUuI-bP1KG5PDR0_DKijlWcXXm4b-gRfF6Dx0B8JCZo6sw=w915-h957-no

16/32

int encrypt_array()
{
 array_splitter("xxxx");
 array_splitter("yyyy");
 :
}
int array_splitter(char *src)
{
 strcpy(var_char_buffer, src);
 char_decrypter(var_char_buffer);
 array_counter++
 return;
}
int char_decrypter(char *src2)
{
 int i; strcpy(dstring, src2);
 for (i = 0; strlen(dstring) > i; ++i)
 // {redacted shift -1 logic to dstring} //
 strcpy(j, dstring);
 return j++
}

The result for the "decryption" can be shown as per below, using ESIL with the fake stack
can be used to emulate this with the same result, so you don't need to get into the debug
mode:

The last four strings:

/proc/
/maps
/cmdline
/status
/exe

...are used for taking information (process name) from the infected Linux box, that will be
used for the malware other functions like "killing" processes, etc. The other decrypted strings
are used for infecting purpose (known credentials for telnet operation), and also for other
botnet operation related.
Understanding the "decrypter" logic used is important because the same decrypter is used
again to decode the C2 sent commands to the active bots before parsed and executed.

https://lh3.googleusercontent.com/noBKIHIM7EcFgLjZSxOhKz8LQEpp35Zz9koi_UKtJ5Bea4IKoEFZCUQ6n3xGdlm5mQ_i2VW3imbQw_05TDuGG5nGqQIXwtza0puf18xcG-eJ8eGdYWML3Fe7BciZIkQUfTPhAKAzA5k=w1334-h445-no

17/32

The C2, its commands and bot offensive activity

What happened after decryption (encrypt_array) of these strings is, the binary gets into the
loop to call the "connecting" function per 5 seconds. If I try to write C code based on this
stage it's going to be like below snipcode:

Within each loop, when it calls "connecting" function it will try to connect the C2 which is
defined a struct sockaddr "addr", pointing to port number (htons) 455 (0x1c7) and IP:
"179.43.149[.]189".

When connected to C2, it will listen and receive the data sent by C2, to perform decryption
and then to send its decryption result (as per previous logic) to the "command parsing"
function, that's having "cmd_parse" sub-function inside. The "command parsing" is
delimiting received command with the white space " " for the "cmd_parse" to grep three
possible keywords of "udp", "tcp", and "hex", which in next paragraph those keywords will
be explained further.

https://lh3.googleusercontent.com/7ixBFIfJIpl10-tFjuwNZnxM5uST7ui18PCXWrhJkyWsDwDmC3zqsi2U3Oh7KSaA5HXr_O80UuCTK3OEdcIhFG5aVCL42APA1QnMRRNjadXuZ9yVI2_hDmfQ-K73Il7IWZkFdR49EGc=w1206-h448-no
https://lh3.googleusercontent.com/g-kZIP8BUCU-QDQHpCbOquFlEzAWK4PvlkUj3SKcJtFO1lvfN6FVKsYBrtUhaXAW2jcqlUdO8X9BYAnlqGTBoFVYObdCuNaufaA1DBe1GobXyH81bEYwnG4vkJakv5mAOJ5zEzzQGyc=w1529-h566-no

18/32

Below is the loop when the command from C2 is received (listened) inside the "connecting"
function in radare2:

Now we come into the offensive capability of this bot binary. The "udp" keyword will trigger
the execution of "udpattack" function, "tcp" will execute "tcpattack" and so does the "hex"
for executing the "hexattack" function. Each of the trigger keywords are followed by
arguments that are passed to its related attack function, it emphasizes that a textual basis
DoS attack command line starting with udp, tcp or hex, following by the targets or optional
attack parameters are pushed from the C2 to the AirDropBots. Based on experience, the C2
CLI interface of recent DDoS botnets is having such interface matched to this criteria.

https://lh3.googleusercontent.com/hM9wjDRiIr8nfh6Xzie_z0V70SSVksMC11zF7Lq9naP8cxw9aMzf4RIGP5NKZxovmvx_wFNCwg_AFFHF9kYX2D1XAewZb3br55KJu3T37T6JilkmR7LvGAfEjiujwqdrPd4Pq2YXMHg=w1682-h809-no

19/32

TCP and UDP is having the same payload packet in binary is as per below:

...that is sent from tcpattack() and udpattack() in TCP and UDP different socket connection
from the target sent by C2.

The hexattack is having a different payload that looks like this:

One last command is is "killyourself" (taken from decrypted table that was saved in a var)
that will stop the scanning function fork with the flow more or less like this:

result = strstr(var_parsed_cmd, "killyourself");
 if (result)
 { kill(scanner_fork_PID, 9);
 exit(0);
 }
return result;

..and the kill function above is executing "kill -9" by calling int kill(__pid_t pid, int sig).

https://lh3.googleusercontent.com/Lk2Hc_RJ1gx6DoJD3ZNE9b0RCWJKThGTbByQtk5NlnYLcZTMF_QIkvb7YUO57SGPQvPDJACxY4JTTfg2OEOKW7EZBrxjtfp04ChDomXYUEx-2ZVbrKmFPkinRUUKJxX_3xH18t-3qAE=w1175-h896-no
https://lh3.googleusercontent.com/spFNmVuSFxLv2ZJxkX1d1eaa8ghPhizY1M3TI4MgAZOZfg12nnCvy3qd7zBeIdwMMnEn2mEin_X3B6GDB0cfBM9sHjtBjvSz-eVk9tvGFPtVSuvm3NMUpoMW7XLBaJrc-5KeGFTeQuM=w1329-h326-no

20/32

As additional, in the older version, there is also another C2 command called: "http" that will
execute "httpattack" function that is using HTTP to perform L7 DoS attack using the
combination of User-Agents, but in this sample series I don't see such function.

Is there any difference between MIPS and other binaries?

Oh yes it has. The Intel and ARM version (or to binary that is having a scanner function) is
interestingly having more functions. If I go to details on each functions for Intel binary maybe
I will not stop writing this post, so I will summary them below with a pseudo code snips if
necessary.

1. The "array_kill_list" function

This function is used to kill process that matched to these strings:

It seems this is how the bot herder gets rid of the competitor if they're in the same infected
Linux box.

 This "array_kill_list" is accessed from killer() function that is being executed before going to
"connecting" loop in the main for Intel version.

The killer function is having multiple capability to stop unwanted processes too, it will be too
long to describe it one by one but in simple C code and comments as per picture below will
be enough to get the idea:

https://lh3.googleusercontent.com/HVi8itsXjqMMip7pxra9El0AgDtI7cBiqbFIt80GR3fm94LDrkPqntm4huOi4NKKBntBqZO_Ggxl5HV-V-vk-VkRwI9stSk2I5ZADHqjX52ZalJe6-kbtQ4SmNrBlUiMT_v_WvXy3aQ=w1333-h917-no

21/32

2. The scanner, the spreader via exploit

The bot herder is aiming Lynksys tmUnblock.cgi of a known router's brand, the
vulnerability that has to be patched since published 5 years ago. For this purpose, in intel
and ARM binaries right after killer() function it runs scanner() function, targeting
randomized formed IP addresses, using a hard-coded "payload" data, spoofed its origin
by faking the HTTP request headers (for "tcp" or "http" flood), which is aiming TCP port 8080
with the code translated from assembly to simplified C code looks like below:

https://lh3.googleusercontent.com/V0njSMnfXKTOeSHIHYZ8ugh5mPlO06j5L22DJJPKoW7fXIMEXt1n5zyX1au7-CWQm57lP-2orTQ42EpMfp9OTQN9-57alujKLYU5ZV5Mqr3KXAMyAoQxBs6nXhEiJm5fIEHlRvk-iJI=w1164-h260-no
https://lh3.googleusercontent.com/jTBJGvnSM7n9_bEUHmtphthEU3AlHGVptVEhtqBaBr_Wh72-EeDBLo2KxZnuqIr9R23_b4Pv11xs_5TdcWIapFgkYWLAmRB916509Zgm6dMQtioHWplwULRxViJ5Qg8wPbfGekwabjI=w1272-h733-no

22/32

This scanner is having four pattern of payloads which I quickly paste it below for your
reference if you are either receiving or researching this attack:

Maybe one of the thing that I may suggest for this bot's scanner functionality is what it seems
like a spoof capability. I examined into low level for code generation of about this part and
found what the send syscall performed when AirDrop bot make scanning with exploit is
interesting :) please take a look yourself of what has been recorded as per below snipcodes:

https://lh3.googleusercontent.com/hB2-mqV_8uY9GVoUR_m8t6YCY5-8rOl6MLlnKUm_Pk3NQravN6vA97XoIT11L9qiCU-7CZRHy3Nr1LZAWI0QiLAGZQK-du-3uMJwqZlr3bX61H-koBTwLzM6U3P0GSPy88tClXf-pkI=w1446-h621-no
https://lh3.googleusercontent.com/okD2EfeRc0W-IzchoGWt59r-L6cHUlHaFE9dtvlT90Zc2LlHsBqGwvV5riwmc9uZTDZLNWV4lybBmEhPz2033eaQ4zT_AvAqdruRE8nDSNKY85bgJjVbwPVoytvMKMW9yUiKb0-FhxA=w1521-h781-no
https://lh3.googleusercontent.com/IfTEhUs7ZOe4_fg800SbN3Z3cMSmZxr0UpR2Z_5hZWT4lPmGh7eWvg7uT5bsT5EdhDIP2XQul9a7dxgNVm-vf06uon_SI2jIY-f6Y8US3fIo3AsHfHe6ZCucdEXetFMPVCOrhRoLvi4=w1500-h449-no

23/32

On those "scanner" function supported binary, the spreading scheme is executed with
targeting random generated IP addresses by calling sub-function "get_random_ip" right
after the the C2 has been attempted to call, and is using the same socket for multiple effort
to infect Linksys CGI vulnerability. Below is the record in re-production this activity:

3. The "singleInstance" function

This is a code to make sure that there is no duplication of "cloudprocess" process that runs
after a device getting infected. It's a simple code to kill -KILL the PID of detected double
instance. You can easily reverse and examine it by yourself.

https://lh3.googleusercontent.com/ApPUPuGS1eDAvqpmVrEz4YRcgNxYfE18L1fP81B3a6zOeBLjD-0yXF4dwlyYzqrOSZndxO2GqHvwt0V9t5jYlAMkpQtrPGmc8cLSXDaUFMTuHHY9rEmq7gz0r1kFuqEmMcoLt0JZ9zI=w963-h766-no

24/32

Below is the example ARM-32 assembly code for this function with my comments in it just in
case:

for the right side of code, if I write that in C it's going to be something like this, more or less:

BONUS: AirDropBot and the custom ELF packer case

As per other ELF badness produced by botnet adversaries in the internet, the AirDropBot is
having binary that is packed with custom packer too.

https://lh3.googleusercontent.com/-lMy_XTyRgqwC72_aNnEp_fZ8D4n4CfGiQs7iuCxXc7pfKoi0ftfGwazL8aLdxLFFZuwBAFga2LkH_FtjdAYtCvfe2mg8bQsfdNd1oaMF8vojlPkMMwTQKQe1LPoEG95zLW9aJppu5s=w1692-h686-no
https://lh3.googleusercontent.com/d0MWT2JgMm6eqLIr9CA_X4IfzQgmVb-eVVRIk1Drsds5nXdhjXOMw0alS3pNMlXw3dkXh5A4dzssx9KfvSqCX5S37NKzUQOCWEzKNIQE93LHy4RunnOijvqywmxVfg6sgQZQGFnY8qo=w630-h454-no

25/32

The below file [link] is one good real example of AirDropBot ELF in packed mode, the
VirusTotal detection is like below:

This sample is spotted in the wild a while ago on trying to infect one of my honeytraps. The
"file" result looks like this:

x86.cloudbot: ELF 32-bit LSB executable, Intel 80386, version 1 (GNU/Linux),
statically linked, stripped

The binary is packed and by reading the assembly flow in the packer codes we can tell it is a
UPX-like packer. It looks like this:

If you follow my presentation in R2CON2018 in the last part (the main course) about
unpacking with radare2 for an unknown packer, the same method can be applied for you to
get the OEP by implementing several "bp" on the unpacker processes. There are slides and
video for that, use this link for some more information: [link]
That is exactly the method I applied to unpack this ELF.

https://www.virustotal.com/gui/file/187492dca212f30e70cc7226a28f3704abd7fe37f1d4c33a70884539c670c05f/detection
https://lh3.googleusercontent.com/9v1IjEJq6zWlGRk7FkDt2dTGSijTFlocRoR9clPkR0tLByVfyVn1fQIjM9YOYC2uGSd0MIU1Pm9RMTBDLZNS_mylxX_1We5WXhwht86f3JoXmNRiUoAy9KwDKoKFTZXzU5v-a8E7cGk=w835-h607-no
https://lh3.googleusercontent.com/wqIROGSa9mA44GCix1fLk-GzqUoVGTvhz6BKTKSXDBAQrdainlA5Ht47A3KArXZXX5ygasdS6iMupM-OIaTquayRjuxOdnin-NnyksqoXligzatFasqn2l-bQaQPkgESwtMle-0Sk5U=w1805-h940-no
https://www.reddit.com/r/LinuxMalware/comments/9eqn6m/about_my_presentation_of_unpacking_the/

26/32

Then next, after you bp to part where packed code copied to the base memory defined in the
LOAD0 section, I will share "my way to" easily extract the unpacked ELF afterward:

ELF file headers is having enough information to be rebuilt, let's use it, assuming the header
table is the last part of the ELF the below formula is more or less describing the size of the
unpacked object:

// formula:

e_shoff + (e_shentsize * e_shnum) = +/- file_size

// math way:

0x00013af8 + (0x0028 * 0x0013) = file_size

// radare2 way:

? (0x0028 * 0x0013) + 0x00013af8|grep hex

And.. there you go, this is my unpacked file: [link]

https://lh3.googleusercontent.com/uhrS7W3YM-9tJQUjG2cdJQPCNyxulcap_6pG3v5ielWmW8Q4Tau5HaLH6Id56YmGdumDAqToAdSVaDrbWEVvJIRkx3WXJACEklJGJm-3ABRJgRUXPs5UtKQOLpbggxozv97Ai9pmDR0=w1199-h957-no
https://www.virustotal.com/gui/file/e42964a8d5aa0d82bf2eda129d422baa4201600c92a89af0f3fdbd67cfed40e0/detection

27/32

Next, let's see the detection ratio of this packed binary in Virus Total after successfully
unpacked (..well, at least it is two points higher than the packed one) :

And the binary after unpacked is very much readable now..and BOOM! the C2 of this packed
ELF is in 185.244.25[.]200, 185.244.25[.]201, and 185.244.25[.]202 are revealed! :)) Now
we know why the adversary wanted to pack their binary that bad.

For the addition, nowadays IoT botnet adversaries are not only packing the Intel binaries, but
the embedded platform's (some are RISC cpu too) Linux binary are often seen packed also
with the custom packers. Like in this similar threat report I made [link], with the ELF binary for
MIPS cpu (noted: big endian one), sample that was actually spotted inside of the house of a
victim (in his MIPS IoT daily used device, I won't disclose it further). I analyzed and unpacked
it, to find that is not only "UPX!" bytes tampering that has been replaced.

https://lh3.googleusercontent.com/-_EylHP07T_O-6HFKW7rmzCU_ar3tW0ceJoepMsfYeEhW5lZTyKsk-7GoAVtTn0CTFU5SOSL7UH2XObd-HhXCVXJCR0W-s6VdCvtqED67X-ALhEEl69b-I9Bl87JGIY_ltE-Fhn2GJg=w829-h607-no
https://lh3.googleusercontent.com/7yhl8IWlsrhepienGpDNseP80SEB3ig4j-7m68Ux-yz31tVHMWh10PrK5QRcsvnERtbTsmkIxLMU12D0h2pMOrzOaEU30YM6PulX4sVH2-XUSbptAJTt2kNkL7HyifhNirrWWwT7Fkk=w954-h595-no
https://imgur.com/a/Ak9zICq

28/32

Let me quote it in here too about my suggested unpacking methods for embedded Linux
binaries I wrote in the linked post, as follows:

"There are other radare2 ways also for unpacking and extracting
unpacked sample manually too.

The "dmda" is also useful to dump but it's maybe a bit hard effort to
run it on embedded system, or, you can fix the load0 and load1 that can
also be done after you grab "OEP", or, you can also break it in the exact
rewriting process to the base address, but either ways, should be able
to unpack it.

First ones will consume workspace in the memory for performing it.. I
don't think RISC systems has much luxury in space for that purpose,
but the latter one in some circumstance can be performed in ESIL mode."

The thing is you should master all of those methods, and only by that most of binary packing
possibility in Linux can be solved manually without depending on UPX or any automation
tools.

"So don't worry, just fire your radare2, and everything will be just Okay!" :D (my
favorite motto)

In a short summary as the conclusion

This binaries are a DoS bot clients, a part of a DDoS botnet. It spread as a worm with
currently aiming Lynksys tmUnblock.cgi routers derived by non MIPS built binaries that
infects machines to act as payload spreader too. I must warn you that I did not check the
details in every 26 binaries came up during this investigation, but I think the general aspect is
covered.

These are malware for Linux platform, it has backdoor, bot functions and are having infection
capability with aiming vulnerability in routers CGI or telnet. The malware is coded with many
originality intact, again, it is a newly coded, it is not using codes from Mirai-like, GafGyt
(Qbot/Torlus base), or Kaiten (or STD like), but I can tell that the development is not mature
yet. I was about to name it as "Cloudbot" but it looks like there is a legitimate software
already using it so I switched to the "Airdropbot" instead due to the hardcoded message
printed on a success infection. This is a new strain of various library of IoT botnet, I hope that
other security entities and law enforcer aware of what has just been occurred here, before it
is making bigger damage like Mirai botnet did before.

Detection methods

Binary detection

29/32

For the binary signature method of detection. The unpacked version will hit just fine. But
since the AirDropBot was developed to support many embed platform from various CPU and
"endianness" type, to detect it precisely you may need to code several signatures. However,
if you see the typical functions of their binary carefully, so it is yes, one generic rule can be
generated and applied. For that I PoC'ed it myself to develop a bit complex Yara rules to
detect them all and to recognize which binary that is having the scanner and not.

The snippet code and scan example is as per screenshot below.

Traffic detection

For the traffic detection, there are two methods that you can apply as detection: (1) The
Initial Connection and activities of AirDropBot does right after the success infection, or (2)
the DoS traffic, I am explaining both as follows.

The Initial connection detection is related to the nature of this malware, which is connecting
to C2 and performing scanning for vulnerabilities aiming random IP in 8080. I can suggest a
nice Suricata or Snort rule can be coded for connection that's aiming TCP/455 (C2
connection port), but the C2 port can be changed by the adversaries too on their next
campaign, but that's not going to be easy for them to prepare all of those varied binaries and
C2 port changes immediately (smile). The other way is to focus on the scanner payloads as
per described in some of pictures above, the Surucata rules to detect them will last longer IF
the same vulnerability is still being aimed.

https://lh3.googleusercontent.com/s5lx6Kkvbrk65QV33QipOyahPxKd3OTfDwUfjRDCSYBvFI2Q4-PNe3hscAYt4oJ5nzRWU0g9N4ZEvtvgBxiuZU43F4q2Ew6e4qcZc9kYBuUztZg7F9BF2CftPzf4E7PWfFmgRatc1Ow=w1478-h853-no

30/32

The other detection is by using the AirDropBot's hardcoded flood packets, which I was in
purpose whoring them in the attached pictures above too. This way you may be able to
recognize the DoS traffic activity performed by this threat in the future DDoS incidents.
Sucicata and Snort rules are supported for this purpose.

The bad actors and his gang are still at large and reading this blog post too :) , I am sorry I
can not share the generic scanning code I made in here, but the screenshots I provided are
enough for fellow reversers to recognize and implement these detection methods to filter
these series of AirdropBot activities. The rest is OpSec.

Hashes and IOC information

The hashes are listed as per below and IOC has been posted to MISP and OTX for all blue-
teamer community to be noticed.

https://lh3.googleusercontent.com/roaBiLZkqwv5s8d7vWQ7677_meMN8O018aZOqoJHFwBbRk4KoBu_SO3XAhrQkPCcb-Txcu2HKObZI6vK99wpIkopbN5wwM5QyKI-YIQ5G5jKAT_FUBcI3rSjvVl6MK5w-glQXDIEDbc=w1690-h873-no

31/32

../bins/aarch64be.cloudbot | 417151777eaaccfc62f778d33fd183ff

../bins/arc.cloudbot | d31f047c125deb4c2f879d88b083b9d5

../bins/arcle-750d.cloudbot | ff1eb225f31e5c29dde47c147f40627e

../bins/arcle-hs38.cloudbot | f3aed39202b51afdd1354adc8362d6bf

../bins/arm.cloudbot | 083a5f463cb84f7ae8868cb2eb6a22eb

../bins/arm5.cloudbot | 9ce4decd27c303a44ab2e187625934f3

../bins/arm6.cloudbot | b6c6c1b2e89de81db8633144f4cb4b7d

../bins/arm7.cloudbot | abd5008522f69cca92f8eefeb5f160e2

../bins/fritzbox.cloudbot | a84bbf660ace4f0159f3d13e058235e9

../bins/haarch64.cloudbot | 5fec65455bd8c842d672171d475460b6

../bins/hnios2.cloudbot | 4d3cab2d0c51081e509ad25fbd7ff596

../bins/hopenrisc.cloudbot | 252e2dfdf04290e7e9fc3c4d61bb3529

../bins/hriscv64.cloudbot | 5dcdace449052a596bce05328bd23a3b

../bins/linksys.cloudbot | 9c66fbe776a97a8613bfa983c7dca149

../bins/m68k-68xxx.cloudbot | 59af44a74873ac034bd24ca1c3275af5

../bins/microblazebe.cloudbot | 9642b8aff1fda24baa6abe0aa8c8b173

../bins/microblazeel.cloudbot | e56cec6001f2f6efc0ad7c2fb840aceb

../bins/mips.cloudbot | 54d93673f9539f1914008cfe8fd2bbdd

../bins/mips2.cloudbot | a84bbf660ace4f0159f3d13e058235e9

../bins/mpsl.cloudbot | 9c66fbe776a97a8613bfa983c7dca149

../bins/ppc.cloudbot | 6d202084d4f25a0aa2225589dab536e7

../bins/sh-sh4.cloudbot | cfbf1bd882ae7b87d4b04122d2ab42cb

../bins/sh4.cloudbot | b02af5bd329e19d7e4e2006c9c172713

../bins/x86.cloudbot | 85a8aad8d938c44c3f3f51089a60ec16

../bins/x86_64.cloudbot | 2c0afe7b13cdd642336ccc7b3e952d8d

../bins/xtensa.cloudbot | 94b8337a2d217286775bcc36d9c862d2

Salutation & Epilogue

I would like to thank to @0xrb for his persistence trying to convince me that this binary is
interesting. It is interesting indeed, and as promised, this is the analysis I did after work,
writing this in 8hours more non-stop. Thank's also for other readers who keep on supporting
MMD, and as team, we appreciate your patience in waiting for our new post.

Thank you pancake and Radare2 teams who keep on making radare2 the best RE tools for
UNIX (All of the radare2 reversing was done in FreeBSD OS, thank you for your great
support to FreeBSD!), and also I thank Tsurugi DFIR team for your great forensics tools.
For these open source security frameworks I still keep on helping with tests and bug reports.

Okay, I will rest and will wordsmith some miserable jargon parts of the post later, maybe I will
add detail that I didn't have much time to write it now, or, to correct some minor stuff. In the
mean time, enjoy the writing, please share with mention or using #MalwareMustDie hashtag.
This post is a start for more posts to come.

A tribute to the newborn radare2 community in Japan "r2jp", that we established in 2013
together with "pancake" on AVTokyo workshop in Tokyo, Japan.

32/32

This technical analysis and its contents is an original work and firstly published in the current
MalwareMustDie Blog post (this site), the analysis and writing is made by @unixfreaxjp.

The research contents is bound to our legal disclaimer guide line in sharing of
MalwareMustDie NPO research material.

Malware Must Die!

https://blog.malwaremustdie.org/p/the-rule-to-share-malicious-codes-we.html

