DNS Tunneling Series, Part 1: Chirp of the PoisonFrog

02-) ironnet.com/blog/chirp-of-the-poisonfrog/

1/12

https://ironnet.com/blog/chirp-of-the-poisonfrog/

Sep 18, 2019

By Jonathan Lepore

NOTE: This is part 1 of 3 of this DNS Tunneling series. Be sure to check out part 2 ("A
glimpse into glimpse") and part 3 ("The siren song_of RogueRobin").

Intro

DNS tunneling_is an abuse of the DNS protocol that provides adversaries with a covert
communication channel. The prevalence of DNS traffic, coupled with the option of using the
native DNS architecture to avoid direct connections with malicious infrastructure, make DNS
tunneling an attractive protocol for adversaries to abuse.

In order to better understand and detect the threat of DNS tunneling, the IronNet Threat
Research team analyzed several samples of malware that use DNS tunneling and the
evasive tactics used by each specific malware. In this blog post, the IronNet Threat
Research team examines the PoisonFrog malware that is written in PowerShell and has
been associated to QilRig/APT34.

Sample

Sample MD5 Hash

2/12

https://ironnet.com/blog/a-glimpse-into-glimpse
https://ironnet.com/blog/dns-tunneling-series-part-3-the-siren-song-of-roguerobin
https://medium.com/@galolbardes/learn-how-easy-is-to-bypass-firewalls-using-dns-tunneling-and-also-how-to-block-it-3ed652f4a000
https://www.cyberscoop.com/powershell-attacks-cybercrime-ibm-xforce-report/
https://unit42.paloaltonetworks.com/dns-tunneling-in-the-wild-overview-of-oilrigs-dns-tunneling/

PoisonFrog (dUpdater.ps1) 477296cc6b85584f0706d2384f22b96e

)
Overview
Pruablz
1112 mmw (DS B antrsctung WSERHI
oom A P BT e
mrs.;.y = AT Srves LS vy

it

Créwipris DS lelrsatricnae

{Locad])
. Y
D00 | DER SN IBTS ORI mrplefthewrd com FA1ZEIM AT 1
|. n.-.u.d._"n':u... . I [.m:.ﬂ-a-::-a.ih.:hw [|
3
.| B .: \\
2 w
- y < -

An example of DNS funneling using recursion
malware that employs DNS tunneling needs to be able to both generate and receive crafted
DNS queries and responses. These messages allow the malware to register with its
controller, check for tasking, send and receive files, communicate results, and carry out other
tasks. This method of command and control requires the attacker to have control over both
the malicious domain and an authoritative DNS server. The use of DNS communications
within malware can vary. For example, some communications make direct connections to
controllers while others opt to use recursion, allowing for a natural flow across the victim’s
DNS infrastructure. PoisonFrog uses the latter; recursion enables the DNS communications
to traverse the DNS architecture of the victim’s environment and avoids direct connections to
the controller. The diagram to our right is a contrived example of a recursive architecture.

ESNTERFRISE RHETWORE

PoisonFrog DNS Invocation and Resource Records

3/12

PoisonFrog uses the .NET method [System.Net.Dns]::GetHostAddresses to issue command
and control related DNS queries. These queries send data to their controllers through the
use of encoded subdomain labels in a DNS query. For PoisonFrog’s communications an “A”
resource record query is used, however this presents various limitations. For instance,
PoisonFrog’s receive functions are limited to the first three octets of a DNS A record. Since
only three bytes can be received at a time, transferring large amounts of data will result in a
burst of many DNS queries over a short period of time. Transfering a single kilobyte of data
in this mode would generate several hundred DNS queries.

It is interesting to note that the .NET method GetHostAddresses has the ability to return an
array of IP addresses. PoisonFrog could have easily reduced the number of DNS replies
need to transfer data by providing several IP addresses in a single DNS response. Due to
the 512-byte limit on non-EDNS responses, the adversary need only ensure that responses
are kept below this limit to prevent data truncation or the need to switch to TCP
communications. For unknown reasons, the adversary did not take advantage of this more
efficient method of data transfer in the version analyzed, opting to process only the first IP
address received.

Despite DNS being a mechanism for covert command and control, it should be noted that
most sophisticated malware will have a backup plan. Should the malware be unable to
communicate over DNS, PoisonFrog comes packaged with an HTTP-based version of itself
which runs concurrently with the DNS tunneling PowerShell script. The IronNet Threat
Research team will examine PoisonFrog’s HTTP command and control in a future post.

Analysis of PoisonFrog DNS Tunneling

The core functionality of PoisonFrog DNS tunneling is to download or upload files and
execute PowerShell commands sent as tasking by the controller. It is worth noting the
PoisonFrog installer contains a Powershell script (hUpdater.ps1) capable of limited command
and control via HTTP. However, for the purpose of this post we will focus on the DNS
tunneling capabilities.

At its core, PoisonFrog is a PowerShell script designed to be invoked every ten minutes by
setting itself up as a Windows task. Each time the script is invoked, it creates a DNS query to
announce its presence to its controller and checks to see if there are any tasks to be
performed. It then processes tasks and sends the results back to the controller. Additionally,
it sets up several working directories which it uses for file-based operations. Examples of
these working directories are shown in the table below.

4/12

PoisonFrog Working Directories

%PUBLIC%\Public\<agent ID>

%PUBLIC%\Public\<agent ID>\receivebox

%PUBLIC%\Public\<agent ID>\sendbox

%PUBLIC%\Public\<agent ID>\done

Communications with Controller

PoisonFrog relies solely on DNS A records for communications. These communications are
issued via calls to .NET class method [System.Net.Dns]::GetHostAddresses. To receive
tasking, PoisonFrog generates DNS requests and interprets the received IP address
responses. Once tasking is received, it processes the tasks and sends the results back to its
controller. This process is performed via more complex, specially-crafted DNS requests.

To build a DNS query properly, PoisonFrog first generates an agent ID used for building all
future DNS requests. The generation procedure involves using the first ten characters of the
string “atag121234567890,” where UUID is obtained from a WMI query for
Win32_ComputerSystemProduct’s UUID property, after removing dashes.

A DNS request is built by calling a function with several parameters. The most important
parameters are the action, the payload, an associated file name, and whether the malware is
sending tasking results or receiving tasking. When calling the function to create a request for
tasking, the payload and associated file names are empty. These parameters are populated
only when sending results back to the controller, a process which will be discussed later in
this article.

Checking For and Receiving Tasks

For requests to receive or check for tasking, PoisonFrog builds a query in the following
format:

| [control data][management data].[domain]

Here, [control data] is the agent ID into which a one-character action and three-character
request number are randomly inserted. The positions of these randomly-inserted values are
subsequently embedded in management data so the controller knows where to find them.

Next, [management data] is built as follows:

| [1 to 7 random hex characters]A[index of request number][index of action]7

5/12

The characters ‘A’ and ‘7’ are hardcoded separators that indicate the zero-based indices
where the request number and action can be found the control data.

Consider an example DNS query of ata005g1128931B75FEC6A357.myleftheart[.Jcom where
the offset for the request number is 005 with a chosen random offset of 3 and an action of 1
with a chosen offset of 5. PoisonFrog first inserts the action at the chosen offset and then the
request number. The table below illustrates how this process is completed:

Offset 0o 1 2 4 6 7 8 9 10 11 12 13
Agent ID a t a g 1 2 8 9 3 1

Action of 1 | :

insertedacton a t a g 1 2 8 9 3 1

at offset ‘ [I I T T | vl

number of

005 inserted a t a 0 0 5 g 1 2 8 9 3 1
at offset 5]

To understand the entire DNS request generated by PoisonFrog to check for tasking,
consider the following example of ata000g1028931B75FEC6A357.myleftheart[.]Jcom, which
breaks down as follows:

6/12

ata000g1028931B75FEC6A357.myleftheart].Jcom

Section Value from Chunk #0 | Meaning
ata First portion of the agent ID (divided by the insert
of offsets for chunk/request number and action
000 Chunk/request number
ool D g1 Continuation of the agent ID
0 Action of “0" (checking for tasking)
28931 Continuation of the agent ID
B75FEC6 1 to 7 random hex characters of no significance
A Hardcoded separator indicating the start of offsets
3 Zero-based offset within the control data to the
Management A :
Data location of the request/chunk number: 000
5 Zero-based offset within the control data to the
location of the action
7 Hardcoded terminator indication the end of offsets
Domain myleftheart[.Jcom Actual domain used by controller

Action values indicate in which mode the malware is operating and have the following

meanings:

Action Value Meaning

0 Checking for tasking from controller
1 Receiving and saving data from the controller to a file
2 Sending data to controller

After checking for tasking, the controller will send the appropriate IP address in response.
The following table shows the various IP addresses that can be sent and their meanings. In
the table, the step value indicates the order in which these steps will occur to successfully
transfer tasking to PoisonFrog:

712

Step Received IP Format Operation

Initial response indicating tasking is waiting and
instructs the malware to start saving tasking data to be
1 24 .125.<Y> <Z> written to a file. <Y>.<Z> is the file name to which data
will be saved in the receivebox directory as <Y><Z>.
This step must occur first before data will be saved.

If <Z> = the correct offset in the payload received, it will
append bytes <W=><X><Y> {0 a payload byte array in

2 <W> <X>.<Y>.<Z> memory. Controller will continue sending tasking this
way and the malware will accumulate it until the data
transfer is complete and then move to step 3.

Instructs PoisonFrog to write all accumulated bytes
received to the file name specified in the

% s 24.125.<Y> <Z> operation above. PoisonFrog will
move on to processing the received tasking.
N/A 11.24.237.110 Cancels the receive operation

Once the tasking is saved to a file, PoisonFrog will exit its receive loop and begin to process
the tasking. The tasking is processed by examining the last character in the filename
received in step 1 above () and performing the following operations:

Filename Operation
Ending Digit
(<Z>)

Parses the contents of the file and executes it as PowerShell script. Content
0 can contain multiple PowerShell commands separated by the “&” symbol.
Results are saved to a file of the same name in the sendbox directory.

Contents of the file contains a file name/path to copy to the sendbox directory.
If no such file exists, the file contents is set to “File not exist.”

Move the saved tasking file from the receivebox directory to the “done”
2 directory. Set the contents of the destination file to “200<>" + <path to “done”
directory file name>.

Sending Task Results

After processing the tasking, PoisonFrog transmits the results back to the controller by
sending the controller DNS requests encoded with the exfiltrated data. PoisonFrog then
breaks up the data into smaller messages to be sent with payload chunks of up to a
maximum size of 60 bytes. The controller data is sent using the DNS request builder function

8/12

from above, this time in “send” mode. The send mode DNS request now includes more fields
for this payload data and an associated file name, both of which are encoded using a
function called “resolver” which marshals the data to be transmitted by rearranging the
nibbles of each byte. The resolver function is explained in further detail below.

Once the payload has been resolver-encoded, PoisonFrog prepends the string “bWVOYT”
(without quotes) to it to indicate the start of the transmission of tasking results. Next begins a
loop of DNS requests, each containing a chunk of the payload until the contents have been
completely transferred. To signal completion of the file transfer, PoisonFrog will issue a final
DNS request containing a payload solely consisting of the string “bWVOYTZW5k” (without
quotes). When transmitting tasking results to the controller, an action mode of “2” is used.

The table below shows an example of the complete exfiltration of a file containing the output
of the ‘hosthame’ command:

Chunk Issued DNS Request Data Exfiltrated

#

0 2000atag1289314A107.bWVOYT332222332222222 | 1Q****pg***rxxsiiakkink
22222222222210AAAABBAAAAAAAAAAAAAAAAA | Where 10 is the file name, 68
AA.33210A.myleftheart.com is the total data length to be

sent. Asterisks are used for
padding

1 001atag21289317A047 EBB6677666656544235353 | \xefixbb\xbfhostnameWnWIN-
44443400FBF8F34E1D5CE79ED86262CBAD1DDA | 8V2V2LKJM1M\rin
.33210A.myleftheart.com NOTE: Content from files are

saved UTF8-encoded,
explaining the leading
unprintable bytes

2 atag1220028931236A767.3300CEDA.33210A.mylef | <>\r\n
theart.com

3 atag1220038931314CA757 . bWVOYTZW5k.33210A. | bWVOYTZWS5k Indicates end
myleftheart.com of data transfer

Using the example above, a more detailed breakdown of chunk #0 is provided below:

9/12

Section

Value from Chunk #0

Meaning

2 Action (sending data to controller)
Control Data 000 Chunk number
atag128931 Agent ID
4 1 to 7 random hex characters of no
significance
A Hardcoded separator indicating the start of
offsets
Management 1 Zero-based offset to the location of the
Data current chunk/request number (000)
0 Zero-based offset to the location of the
action being performed
7 Hardcoded terminator indicating the end of
offsets
bWVOYT Hardcoded send data marker
PaiBad 332222332222222222222222 | Resolver-encoded payload. Translates to
Ee 22210AAAAGBAAAAAAAAAA | 10***F gg*r xxaxssiammxesx* where 10 is the
AAAAAAAAA file name and 68 is the complete payload
size.
= 33210A Resolver-encoded filename (filename with
an asterisk appended). Translates to 10*.
Domain myleftheart[.Jcom Actual domain used by the controller

For each DNS request issued, the controller can respond with an IP address of
11.24.237.110 (indicating the transmission should be cancelled) or an IP address of the
format 1.2.3.[X], where [X] is used to request sending the next chunk of data.

Resolver Function - Data Marshaling Strings/Byte Arrays

PoisonFrog prepares its payload and filename data for transmission using a function called
resolver. This function takes 30-bytes at a time and extracts the first nibble of each byte and
concatenates them together. Next, it concatenates the second nibble of each byte and
appends that to the first string. This is repeated until the data is consumed. For example,
consider the string "helloworld" in the example below:

10/12

Letter Hex Byte High Nibble Low Nibble

h 68 6 8
e 65 6 5
I 6c 6 c
I 6c 6 c
0 6f 6 f
w 77 7 7
0 6f 6 f
r 72 7 2
I 6c 6 C
d 64 6 4

The original byte stream for this is:

Conclusion

11/12

Malware communications today can use a number of web-based protocols to communicate
with C2 servers. While HTTP, TLS, and other protocol abuse may get more attention in the
news, our analysis of PoisonFrog shows how DNS Tunneling is still an effective means of
covert communications. While PoisonFrog is a fairly standard malware that does not
leverage sophisticated scripting or specific vulnerabilities, it can still be highly effective in
evading detection by firewalls, endpoints, proxies, or other signature-based or outlier-based
network controls since adversaries can easily change or rotate domains, IPs, and hardcoded
values to a range of stable destinations that are not identified or categorized as malicious by
domain reputation or threat intel sources. Consistently detecting adaptive malware such as
PoisonFrog, will require a behavioral analysis solution and that can identify underlying
network communication patterns.

In our next blog, we will examine the DNS Tunneling capability of Glimpse, which also has
been linked to the OilRig/APT34 threat group.

Go to DNS Tunneling: part 2 ("A glimpse into glimpse").

Follow the IronNet Threat Research team @IronNetTR.

About lronnet

Founded in 2014 by GEN (Ret.) Keith Alexander, IronNet, Inc. (NYSE: IRNT) is a global
cybersecurity leader that is transforming how organizations secure their networks by
delivering the first-ever Collective Defense platform operating at scale. Employing a number
of former NSA cybersecurity operators with offensive and defensive cyber experience,
IronNet integrates deep tradecraft knowledge into its industry-leading products to solve the
most challenging cyber problems facing the world today.

Back to IronNet Blog

12/12

https://ironnet.com/irondefense
https://ironnet.com/blog/a-glimpse-into-glimpse/
https://ironnet.com/blog/a-glimpse-into-glimpse
https://twitter.com/IronNetTR
https://www.ironnet.com/blog

