APT33 PowerShell Malware

norfolkinfosec.com/apt33-powershell-malware/

norfolk July 22, 2019

In late June, multipleresearchers and security entities (including researchers from ClearSky,
FireEye, and U.S. Cybercom) highlighted APT33 activity in public outlets. Several of these
files have already been identified and analyzed as part of ongoing discussions on Twitter
regarding this activity.

This blog post examines a file identified through public resources with infrastructure links to
these attacks that has not been widely examined.

As part of this activity, researchers identified the C2 domain “backupaccount[.]net” as a C2
used within a malicious HTA file hosted on attacker infrastructure. A PassiveTotal pivot at the
time of this writing highlights 11 hashes associated with this domain. PassiveTotal accounts
are free, but also do not offer the context behind these hash associations.

= { mswa Q backupaccountnet ©

——— .
@ Comgorize

cccccccc

Of these 11 hashes:

— Eight are on VirusTotal.

— Two appear to be malicious documents related to this threat.
— One appears to be an Autolt file documented in open source.
— Three appear to be malicious HTML/HTA files.

— Two appear to be malicious PowerShell scripts.

One of these scripts appears to be fairly unique, and work additional analysis:

1/7

https://norfolkinfosec.com/apt33-powershell-malware/
https://twitter.com/James_inthe_box/status/1139253915608686592
https://twitter.com/KorbenD_Intel/status/1139249692028653570
https://twitter.com/ClearskySec/status/1142749950998171648
https://twitter.com/ItsReallyNick/status/1146198097112051713
https://twitter.com/CNMF_VirusAlert/status/1146130046127681536
https://twitter.com/ochsenmeier/status/1142778636203888647
https://twitter.com/KorbenD_Intel/status/1139249692028653570

MD5: 985797eb1a75f297359bf52aa7¢c27715
SHA1: 2c2ccbc42c6¢cf74d96e5913277537679ec20fba
SHA256: 6bea9a7c9ded41afbebb72a11a1868345026d8e46d08b89577f30b50f4929e85

Immediately, the connection between this hash and the C2 server is clear. The malware
contains a variable on the first line, $SRVURL, containing this domain.

SSRVURL =

id
SBID=Shwid

Initial Analysis

The malware defines the following 14 functions:

— Privilege
— Join

— Http-request

— Decrypt

— Encrypt

— upload

— download
— capture

— Poster

— Receiver
— Timer-post
— Functioner
— Functioner
— Loop

The malware enters a “while loop” (with a switch statement for “active” and “silent” mode,
explained later) first calling the “Poster” function alongside a notification message for the C2.
The “Encrypt” function is used to encrypt this message, and “Poster” will create a new
WebClient object, using this to send a web request to the previously specified server.

gSystem) .Caption)

Configuration for PowerShell file

2/7

while (§true)
{
switch (Sglobal:mode)
{
Sglobal:ish
pllatch ject -TypeName System.Diagnostics.Stopwatch
pWatch |
SS5topWatch.)
SActi i obal :NewictiveTime
Pos
while (5StopWatch.Elapsed.TotalSeconds -1t SActiveTime)
{
Loop
if ($initeomd)
{
Sinitemd=5null
H

}
S$StopWatch.R

if (-not $global:ishctive) While Loop, which first
l Sgleobal :mode
}

; break}

Pos=
while (Strue)
{
Loo)]
if ($initeomd)
1
Sinitemd=Snull

; break}

Soutput = $null

if (Soutput)

{
Svalues
Sontpn
Svalues
Svalues.

Poster Function,

Swo
Swo
SWC.D
H

which sends a message to the C2 server
After the “Poster” function, the malware calls the “Loop” function. This function serves as the
primary C2 workflow for the malware. The malware will use the Receiver function (which in
turn calls the Http-request function) to send a message to the C2 server (masked as a
JSON). The response from this function will be parsed, with a string check to see if the
beginning of the response matches the string of a command.

3/7

function Loop
i
L

¢
Sglobal:rnd=-join ((<2..57) (57..) Get dom —Count % {[charl$§_})

SRandom i

Sglobal) ..57) (€5..290) Get dom -Count §RandomCount | % {[char]$_})
Sglobal

Sglobal o))

Sglobal)

Sglobal .

if ($initomd)

1

Somd=§initemd

rt t) —and Somd.split| b ngth -eqg)

Start of the command loop
Command Structure
The following values are checked against the command string:

— interactive
—sleep
—cmd

— exit

— left
—Join

— upload

— download
— pass

— |dap
—sam

— capture

Each successful parsing will typically send a message to the C2 to confirm that the
command has been received. A handful of commands only require short explanations. The
“interactive” command expects a second numerical value to be part of the C2 response. If
this value is 0, the malware sets itself to silent mode. If the value is greater than 299, it sets
itself to active mode. If neither is true, it informs the operator that a valid value needs to be
specified. These modes appear to modify the interval between requests, with active choosing
a value between five and ten seconds and passive choosing a value between 45 minutes
and 70 minutes.

4/7

f
L

if ($global:mode -eg

{
SRandomRange==- . .
SEEQUES T THTERVA n -1 j wlomBange

© SREQUEST INTERVAL
} . .
elseif (§global:mode -eg leference In requeSt
{
SRandomRange=(<=%50) . 4)
SPEQU'EST_INTEPT" (n —-Inpu g ncdomBanges
sC nte 1= })+ +

interval depending on the mode

The “sleep” command simply sets the mode to silent and breaks the C2 loop. The “cmd”
command will inform the operator that they need to do “cmd /c” (to run the command
silently), and the “exit” command will inform the user that they need to use the “close”
command” to terminate the malware.

The next two commands (“Join” and “left”) can be thought of as a pair. The “join” command
will call the “join” function, and it expects the parsed C2 command to contain two additional
values passed to this function: a “method” and a “command.” Looking at the function, there
are two valid methods: “wmi” and “reg”

The “wmi” method accepts the commands “check” and “remove.” If neither is specified, the
malware will create a WMI event filter as a persistence method. If “check” is specified, the
malware will use the “Privilege” function to determine if it has sufficient privileges to perform
such an action (and will inform the operator if it does not). “Remove” will remove any event
filter created.

5/7

WMI worlow within the “join” function

The “reg” method provides an alternative persistence mechanism. The malware will check to
see if there is an entry for a file named smrsservice.exe within the HKCU
CurrentVersion\Run key. If the “add” command has been passed, it will create this key if it
does not already exist (and inform the operator if the key has already been written). It will
then download a file with this name to the users $env:APPDATA folder. The nature of this file
is unknown, but it may serve as an additional payload or a mechanism for executing this
PowerShell script.

The “reg” method also supports a “check” command (which reports if this registry value
already exists) and a “remove” command (which removes the registry entry).

As previously mentioned, this overall “join” command is paired with the “left” command. If the
C2 server specifies the “left” command, the malware will run the “remove” commands within
the “join” function to perform the removal tasks described above. It will do this for both
methods.

The next two commands are “download” and “upload.” Download will transfer a file from the
victim to the attacker, whereas “upload” will push a file from the attacker to the victim device.
The download command actually recursively traverses a directory specified by the attacker,
uploading each file within this directory:

6/7

DownloadFile=dir SDownloadDir -recurs
foreach ($file in SDownloadFile)
{

$fullFilePath = §file | % {
= §file | selec

The next three commands appear to have external dependencies. “Pass” appears to expect
an external PowerShell module named “invoke-pass” to be transmitted by the C2, although it
is unclear what this would be/ Similarly, “ldap” expects to execute an “ldapCommand” parsed
from the C2 response, and “sam” also appears to attempt to execute an additional script. As
these were unavailable at the time of this analysis, this blog can only speculate from the
command names that these might be intended for additional reconnaissance.

The “capture” command simply takes a screenshot, using a mechanism relatively common
for malicious scripts of this nature:

1Bonnds [W

1=shotObject
" 1 O

$ScreenBound

= + §S(date -format dd-m-v-HH-mm-=) +
S$ScreenshotObject. S§filepath)

se ()

Sfilepath
Sfilepath

Screenshot routine

Finally, if no “official” command is specified, the malware will attempt to run the C2 response
as a PowerShell command via “iex” (invoke-expression). It will send the results of this
command to the C2 server via the same Poster function.

At this point, the command loop will continue.

7/7

