Emissary Panda DLL Backdoor

norfolkinfosec.com/emissary-panda-dll-backdoor/

norfolk July 21, 2019

Last month’s post on this blog examined a backdoor previously thought to be associated with
Emissary Panda (APT27). Recent reporting has instead shown that the HTTP listener
examined is likely affiliated with Turla. That post has been updated with the corresponding
corrections.

This post is a granular examination of a payload alluded to in a Palo Alto report that is tied to
Emissary Panda with much higher confidence. While the payload wasn’t available for
analysis in that report, VirusTotal pivoting at the time produced the matching file.

Filename: PYTHON33.hlp

MD5: 19¢46d01685c463f21ef200e81cb1cf1

SHA1: ac4a264a76ba22e21876f7233cbdbe3e89b6fe9d

SHA256: 3e21e7ea119a7d461c3e47f50164451173d5237f24208432f50e025e1760d428

This file is expected to be part of a DLL side-loading chain that involves a component of the
legitimate Sublime text editor (plugin_host.exe, also available on VirusTotal:
fOb05f101da059a6666ad579a035d7b6) and a malicious DLL that this file will sideload:

Filename: PYTHONS33.dll

MD5: bc1305a6ca71d8bdb3961bfd4e2b3565

SHA1: 1189d63bae50fc7c6194395b2389f9c2a453312e

SHA256: 2dde8881cd9b43633d69dfa60f23713d7375913845ac3fe9b4d8a618660c4528

Preparation

If all three of these files are placed in the same folder with the correct filenames,
plugin_host.exe will sideload PYTHON33.dll, which will decrypt and decompress the
PYTHONZ33.hlp file into a DLL. The workflow for this is similar to (but not identical to)
previous reporting from NCC group regarding an earlier version of this malware. This post
will thus not go into detail regarding this process, but makes the following recommendation
for analyzing these components:

1) Patch the PYTHONS33.hlp file (which is a block of shellcode) by prepending an infinite loop
(EB FE) to the file via a hex editor

2) Run plugin_host.exe normally (i.e. not in a debugger). This will sideload the DLL and load
the shellcode, but will hold it in an infinite loop without executing any commands

1/14


https://norfolkinfosec.com/emissary-panda-dll-backdoor/
https://unit42.paloaltonetworks.com/emissary-panda-attacks-middle-east-government-sharepoint-servers/
https://twitter.com/KevinPerlow/status/1133941247536697345

3) Attach a debugger (e.g. x96dbg) to this running process and step through until the
payload is decoded in memory, as you would any other shellcode samples. In this case, a
good breakpoint to set is would be at the entry to “CommandLineToArgvW”

The breakpoint in step 3 wouldn’t be obvious during the initial examination of this file, but this
blog mentions it here as a shortcut to facilitate analysis of this file. The DLL can also be
dumped at this stage for concurrent static analysis in IDA.

Payload

The Palo Alto report mentions similarities between the loading and decrypting process for
this file and the loading and decrypting process for a file previously analyzed (but not
provided) by NCC Group. NCC Group provided a high-level overview of that payload’s
capabilities. This overview serves as a framework for “what we might be looking for;”
specifically, NCC group mentions the following:

— An execution workflow determined by the number of specified parameters
— Process injection into svchost

— A series of keys written to the registry in a unique way

— A basic persistence mechanism (HKCU runkey) + service creation

This offers a big head-start for analysis. First, the malware calls GetCommandLineW
followed by CommandLineToArgvW. Per MSDN documentation, this second call “parses a
Unicode command line string and returns an array of pointers to the command line
arguments.” The “number of pointers in this array is indicated by pNumArgs.” The screenshot
below shows these two API calls at the top, followed by a comparison between pNumArgs
(decreased by 1, for the case statement) and the value “3.”

2/14


https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2018/may/emissary-panda-a-potential-new-malicious-tool/
https://docs.microsoft.com/en-us/windows/win32/api/shellapi/nf-shellapi-commandlinetoargvw

Comparison for number of

command line arguments

If EAX is greater than 3, (i.e. if there are more than three command line arguments), the
malware will jump to the default case rather than cases 0-4, will return to the calling function,
and will terminate without taking any action. If EAX is less than or equal to 3, it will jump into
one of the available cases:

3/14



Mere than 3 command line arguments

Case structure

As always, right click and open the image in a new tab to enlarge. Additional labeling has
been added, including string labeling that would be visible during dynamic analysis in a
debugger. At this stage, we can begin exploring the cases.

Case 0

A good way to explore these cases to take a snapshot just prior to the EAX comparison, and
then set EAX to the value of the case to be examined. In Case 0, the malware:

— Moves a string representing the location of the currently running executable
(plugin_host.exe) to EAX

— Moves a string containing “C:\\ProgramData\\plugin_host\\pluginhost.exe” to ECX
— Pushes these two values to the stack

— Uses wsicmp to compare these two values

— Jumps to an “ExitProcess” call if these two values do not match

If these two values do match, the malware will move to a function call referenced in several
locations, labelled in the above IDA screenshot as the CreateFileCheck_Inject_Calls. As
this label would suggest, there are two primary subcomponents of this call, labelled below as
CreateFileCheck and Process_Injection_Workflow.

a/14



Subroutine to launch the file

i

short loc_10082D4F

check and process injection workflows
The CreateFileCheck subroutine will use the PathFileExistsW and CreateFileW APIs to
check if the malware can open C:\\ProgramData\\plugin_host\PYTHONS33.hlp:

5/14



Checking if PYTHON33.hlp is at the correct location

The next function, not pictured here due to space constraints, will take the following actions:

— Locate and spawn a suspended copy of svchost.exe
— Allocate an executable section of memory

— Write PYTHONS33.hlp to this section of memory

— Create and resume a thread at this location

This is a common workflow for process injection. The parent process will then terminate.
Thus, Case 0 can be summarized in the following way:

— Ensure that plugin_host.exe is running from the correct directory
— Ensure that PYTHONS33.hlp is inside of this directory
— Create a suspended svchost.exe process

6/14



— Re-write a copy of the payload into this process
— Terminate

Case 1

Case 1 can be thought of as Case 0 with added contingencies. Case 1 begins with the same
string comparison, ensuring that the malware is running from the
“C:\\ProgramData\\plugin_host\\” directory. If this comparison is successful, the malware will
run the same check for PYTHON33.hlp and process injection routines described in Case 0,
followed by the “core functionality” routine (described later).

Unlike Case 0, if the file is not running from the correct subdirectory in ProgramData, the
malware does not terminate; instead, it performs what is labelled as the “MoveFile _Routine”
in the IDA case picture. This workflow:

— Moves the necessary components for the malware to run into the
ProgramData\\plugin_host\\ directory
— Executes plugin_host.exe using WMI

Case 1 represents a more flexible workflow for starting the malware for the first time.

7/14



WMI Execution Workflow
Case 2
Case 2 contains three parts, in the following order:

— A new call not yet analyzed
— The same CreateFile check and Processlnjection calls
— The “core functionality” call discussed in Case 3

The new call is actually fairly simple. This function performs a permissions check, and takes
one of two branches depending on the permissions available:

8/14



Branch to registry

workflow (left) or service workflow (right)

With sufficient privileges, the malware will create a new service named
plugin_hostvr874u5Pn pointing at the plugin_host.exe executable with a start type of “2”
(autoload):

9/14



reatesServicews]

6060>]

erviceHandles]

Service Creation

Otherwise, the malware will create a registry entry under the HKCU CurrentVersion\Run key
named plugin_hostvr874u5Pn pointing to plugin_host.exe with a parameter of —1. The
function then returns and the injection and core routines are executed.

10/14



€811 <sub_10002FF0>
call <sub_100031E0>
L e orc

d pt H 24
b_10003100>
ax, dword prr
ord ptr

test ecx,ecx
j& 10004550

Moy L BCX d s & D AT A
€@ dword ptr ds:[<sub_10046074>]

test eax,eax
j& 100049C0

EAT1 dword ptr ds:[<Sub_10046088>]

k4 J

“xor al,al
imp 100049F2

is: [<a1strienws]
“Bebp-1cH

ord ptr :j‘:sR[euSe('v?‘lameExw:-i

Registry Key Creation
Case 3

Case 3 contains a single function, referenced above and by NCC Group’s writeup on an
earlier version of this malware as the “core functionality” routine. This routine contains the
code used for process injection, but more importantly is used to:

— Write encrypted configuration values to the Windows Registry
— Perform a workflow for C2 communication
missary panda unit42



https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2018/may/emissary-panda-a-potential-new-malicious-tool/

The workflow for this is shown below, and tracks closely with the previous NCC group
reporting:

sub_188844808 proc near

var_18= dword ptr -18h
Src= dword ptr -8Ch
Dst= dword ptr -8
var_l1= byte ptr -1

e

loz_18008201

eax, [

push ebp

mow ebp, esp

sub esp, 1l4h

push ebx

push esi

xar ebx, ebx

push edi

mow [ebptvar_18], ebx
call sub_leea3lEe : ]
mov esi, [eax+@Ch] - I - i 1, ebx
call sub_leeas3Fe sub_10062288
push offset al_@

mowv eax, esi

|call Registry Overhead
test eax, eax

jz loc_leea463D

bl e =
sub_leea3lEe
esi, [eaxtl@h]
sub_leeas3Fe
offset a2 . gcx, [ebptlpvalushame
eax, esi : : eex 3 1pvalueName

Registry Overhead 1 Opens_Sets_Registry

eax, eax l oV edi, ds:

loc_1088463D e sk : " Cax. [eb

] :a': ebx

short loc_lo@es34s

sub_leea3lEe

esi, [eax+l4h]
sub_leeas3Fe
offset a3

eax, esi

Registry Overhead
eax, eax
loc_leea463D

Workflow for writing config values to the registry




Writing config value to registry
Following this, the malware enters its C2 routine. The malware uses the PolarSSL library to
do this, and communicates with 138.68.154[.]133:443.

Concluding Thoughts

Having looked at each of the cases within the malware, we can compare this sample to the
previously reported one, even though that file was never provided.

— The previous reporting described self-termination and WMI execution for Case 0. The WMI
functionality appears to have moved to Case 1, and Case 0 now supports process injection.

— Case 1 now supports moving the files to the appropriate locations if they are not present,
executing these files via WMI, or performing process injection. Previously, the file moving
routines were in Case 0.

— Case 2 appears to be largely unchanged.
— Case 3 appears to be largely unchanged.

— There is no “Case 4,” although the malware will treat any number of parameters greater
than 3 as a signal to head to the “default case.”

— The referenced debugging strings do not appear in this sample.

13/14



NCC group previously assessed that the malware might be undergoing active development.

Given these findings from a sample a year later, it appears that was the case. There are
minor upgrades, cases rearranged, and possibly one case removed. Still, based on the
higher-level descriptions in that report and how closely they track with this more granular
analysis, it would appear that this is the same malware family (with modifications).

14/14



