Analyzing KSLOT (Turla’s Keylogger), Part 2 — Reupload

’-\ Offset.net/reverse-engineering/malware-analysis/analyzing-turlas-keylogger-2

8 July 2019

o overflow
e 8th July 2019
e No Comments

(This post is a reupload from my old site which is no longer available — you may have seen it
before)

If you haven’t read the first post, go check it out here. You can download this keylogger off
of VirusBay. So far we have decrypted a whole lot of text using a simple XOR method,
which revealed information on how different keys could be logged, file names in which the
data could be logged to, and a possible name for the keylogger: KSLOT. If you've got no
clue what I'm talking about, you should most definitely check out the last post. Anyway, let’s
go further down the rabbit hole.

MDs5: 59bs7bdabee2ce1fb566des1dd92eco4

If you're following along with this analysis, make sure you rename the decryption function,
so it confuses things less. After the return of the decryption

function, GetModuleHandleW and GetProcAddress are called, using the recently
decrypted values, which are the last two strings to be decrypted. These values

are kernel32.dll and GetProcAddress.

1/25

https://www.0ffset.net/reverse-engineering/malware-analysis/analyzing-turlas-keylogger-2/
https://www.0ffset.net/author/dan489400/
https://www.0ffset.net/reverse-engineering/malware-analysis/analyzing-turlas-keylogger-1/
https://beta.virusbay.io/

il sl =

call
lea
call
mowv
lea
mov
call
mov
lea
mov
mov
call
mov
mov
mov
mov
lea
XOF
mov
call
lea
lea
mov
call
MoVIX
test

j=z

Decryptieon

rcx, ModuleMame ; lpModuleName

es:GetModuleHandleW

[rsp+48h+hModule], rax

rdx, ProcHame R

rcox, [rsp+48h+hModule]

cs:GetProchddress
[rsp+48h+
r&8, unk_1800105A0

rdx, [rsp+48h+GetProcesshddress]

rox, [rsp+48h+hModule]

sub_1800033C0

rll, [rsp+48h+targ_0]
cs:gqword_ 180010720,
rax, [rsp+48h+targ_0]
cs:gqword_ 1800107320,
r8, dweord 180011188
edx, edx

ecx, 2

cs :gword_180010&Ba
r8, dword 180011188
rdx, word 180011150
ecx, 2

cs:qword_ 180010&6E8
eax, al

eax, eax
loc_180001ADS

rll

rax

; hModule

], rax

The return value of GetProcAddress will be stored in the rax register, which is then moved
into the location [rsp+48h+var_ 28], so to simplify matters, we can

rename var_ 28 to GetProcessAddress, so whenever it is moved into another register (as
long as it hasn’t been changed), we can identify what is happening if that register is called by
the program. Sure enough, it is moved into the rdx register, just before a handle

to kernel32.dll gets moved into the rex register — and then a function

at 0x1800039Co is called.

2/25

il s 5

sub_1800033C0 proc near

var_3E0= byte ptr -3E0Oh
var_3DF= byte ptr -3DFh
var_3DE= byte ptr -3DEh
var_3DD= byte ptr -3DDh
var_3DC= byte ptr -3DCh
var_3DBE= byte ptr -3DEh
var_3DA= byte ptr -3DAh
var_3D5%= byte ptr -3D5h
var_3D8= byte ptr -3D&h
var_3D7= byte ptr -3D7h
var_3D&= byte ptr -3D&h
var_3D3= byte ptr -3D5h
var_3D0= byte ptr -3D0h
var_3CF= byte ptr -3CFh
var_3CE= byte ptr -3CEh
var_3CD= byte ptr -3CDh
var_3CC= byte ptr -3CCh
var_3CB= byte ptr -3CBh
var_3CA= byte ptr -3CAh
var_3C3= byte ptr -3Coh
var_3C8= byte ptr -3C8h
var_3C7= byte ptr -3CT7h
var_3C6= byte ptr -3Céh
var_3C5= byte ptr -3C5h
var_3C4= byte ptr -3C4h
var_3C3= byte ptr -3C3h
var_3C2= byte ptr -3CZh
var_3C0= byte ptr -3C0h
var_3BF= byte ptr -3EFh
var_3BE= byte ptr -3BEh
var_3BD= byte ptr -3EDh
var_3BC= byte ptr -3BCh
var_3BE= byte ptr -3EBh
var_3BA= byte ptr -3EAh
var 3B5= bwte ptr -3BE%h

We can easily identify the arguments passed to this function, as it is using

the mov operation again. We already know rcx contains a handle to kernel32.dll,

and rdx contains the GetProcAddress function, and it seems r8 contains an address to
an empty region of memory: 0x1800105A0, which is filled with zeroes.

3/25

var_24= byte ptr -Z4h

var_23= byte ptr -2Z3h

var_22= byte ptr -ZZh

var_21= byte ptr -2Z1h

var_20= byte ptr -20h

var_l8= gword ptr -18h
kernel3iZ= gword ptr &
getprocaddr= gword ptr 10h
freemem= gword ptr 18h

mow [rsp+freemem], r8

mov [rspigetprocaddr], rdx
mov [rsp+kernel3i], reox

sub rsp, 408h

mov rax, cs:gword_ 18000F380
Xor rax, rsp

mowvr [esp+408h+var_18], rax
mov [rsp+408h+var_328], 0
mow [csp+408h+var_48], O
mov [rsp+408h4var_228], 0
mov [rsp+408h+var_2ZD8], 0
mow [rsp+408h+var_1B8], O
mov [rsp+408h+var_1C0], 0
mov [rsp+408h+locadlibrary], 0
mowvr [esp+408h+var_250], 12h
mov [rsp+408h+var_2Z4F], 30h
mow [csp+408h+var_24E], 21h
mov [rsp+408h+var_24D], 5
mov [rsp+408h+var 24C1. 27h

If you are viewing the function in graph mode, you’ll be able to see that the flow is simply
one long “line”, with no if’s or for statements until the end. You can also see that there are
a lot of variables that are declared before the arguments are filled — as we are analyzing this
binary using static analysis, this function alone will require a lot of work to understand
(because it is a possible anti-static analysis method used by Turla to prevent easy analysis).
Hint: It’s more data decryption, except this time, the encrypted data is loaded during
runtime — hence why there are so many mov operations in a row. Due to this, we will have
to manually extract those bytes, figure out how they are decrypted, and find a way to decrypt
them, through automation or writing a script. Let’s get stuck into it!

4/25

OETRETR
EAREE

EEER R

.................

5

iEes

e
ES

i
SRR

|

There is most definitely a better way to decrypt the data, although I am unaware of it, so I
took the long route. Highlight the mov instructions and copy it to a file. We will be
stripping this down so it only contains the second argument to the instruction — the
encrypted data.

5/25

:0000000180003A5C [rsp+408h+var 24C], 27h
:0000000180003A64 [rsp+408h+var 24B], 3Ah
:0000000186003A6C [rsp+408h+var 24A], 36h
:0000000180003A74 [rsp+408h+var_249], 30h
:0000000180003A7C [rsp+408h+var 248], 26h
:0000000180003A84 [rsp+408h+var 247], 26h
:0000000180003A8C [rsp+408h+var 246], 1Ch
:0000000180003A94 [rsp+408h+var 245], 38h
:0000000180003A9C [rsp+408h+var 244], 34h
:0000000180003AA4 [rsp+408h+var 243], 32h
:0000000180003AAC [rsp+408h+var_242], 30h
:0000000180003AB4 [rsp+408h+var _241], 13h
:0000000180003ABC [rsp+408h+var_240], 3Ch
:0000000180003AC4 [rsp+408h+var 23F], 39h
:0000000180003ACC [rsp+408h+var 23E], 30h
:0000000180003AD4 [rsp+408h+var 23D], 1Bh
:0000000180003ADC [rsp+408h+var 23C], 34h
:0000000180003AE4 [rsp+408h+var 23B], 38h
:0000000180003AEC [rsp+408h+var 23A], 30h
:0000000180003AF4 [rsp+408h+var 239], 2

:0000000186003AFC [rsp+408h+var_238], 55h
:0000000186003B04 [rsp+408h+var DO], 12h

Now we need to parse the data and format it correctly, so that we only have the value being
moved into the destination. Below is a script that removes everything but the digit,
including the h specifying the hexadecimal format. For singular digits, a zero is prepended
onto the value, to make an understandable hex value.

6/25

def main():

f = open("data.txt", "r")
data = f.readlines()
f.close()

f = open("data_2.txt", "w")

for lines in data:
lines = lines.split("], ")[1]

if "h" in lines:
lines = lines.split("h")[0]
lines = lines + " "

else:
lines = "0" + lines
lines = lines.split("\n")[0]
lines = lines + " "

f.write(1lines)
f.close()
if name == “main”:
main()

After executing the script, we get this output in data_ 2.txt. This is the extracted encrypted
data, so we need to identify the decryption method used, to understand what it is encrypted
with.

Back to the assembly, after the individual bytes have been moved into the correct locations,
a function at 0x180001000 is called repeatedly in a similar fashion to the first decryption
function, except this time with 2 arguments.

7/25

Decryption_2 proc near
var_l8= dword ptr -18h
var_ld4= dword ptr -14h
arg_0O= gword ptr &
arg_B= dwerd ptr 10h
mov [rsptarg_8], edx
mow [rsptarg_0], rex
sub rap, lgh
oV [rap+l8hdvar_14], O
MoV &CcK, [rsp—l-l!:h-l-va r_14]
mev eax, [rsp+l8héarg_8)
lea eax, [rextrax—1]
mov [rsp+idhd+var_14], eax
maev eax, [raptléhdvar_14])
imul eax, [rsptléhtarg_B8]
mov [esp+ldhévar_14], esax
mov [rsp+l8h+var_18], 0
jmp short loc_lE0001044
‘e
e
loc_180001044:
mov eax, [rsp+léh+arg_8)
== [esptlB8hivar_18], eax
jnb short lec_1800010351
I 1
Y Y
F™E e
mow ecx, [rap+lEhévar 18]
mow rax, [rspt+lBhtarg_0] loc_180001031:
mMowEX ecx, byte ptr [ramérex])| |add rep, 18h
mow eax, [rspt+lBhivar_14] retn
add cAX, ©CK Decryption_2 endp
mov [rsp+ldhdvar_14], eax
mow ecx, [rsptlBhdvar_l8]
mow rax, [rap+lBhéarg_0]
MOVER edx, byte ptr [raxtrex]
oL edx, 35h
Mo ecx, [rsp+lBhivar_18]
mow rax, [rsp+lBh+arg_0]
mow [raxtrex], dl
mov rax, [zsp+l8h+arg_0]
mMoVEIX ecx, byte ptr [rax]
e eax, [rspt+lBhévar_14]
add sAX, ecK
S [rsptl8hdvar_14], eax
jmp short loc_lB8000103E
F™E
loc_1B000103B:
monv eax, [rsp+lBhévar_18)
add eax, 1
mov [espélihévar_18], =ax
l

As you’ve probably guessed, this is another algorithm, although it is a lot less complex than
the last one — this is due to the fact that each section of data is XORed using 0x55, meaning
we don’t need to write some sort of decryption script, and we can simply put it

into CyberChef and perform a basic XOR decryption, and then convert it from
hexadecimal format. If you haven’t used CyberChef before, you should check it out, as it is
extremely useful in situations like these.

8/25

https://gchq.github.io/CyberChef/

lenguh: 142 —
|ﬂpL|t lines: 1 . .

3C 21 36 13 3C 39 30 55 16 39 3A 26 30 1D 34 3B 31 39 30 55 12 30
— 21 85 27 3A 36 14 31 31 27 36 26 26 55 19 3A 34 31 19 3C 37 27 34
Auto 27 2C 14 55 12 30 21 @0 26 36 27 1B 34 38 30 10 2D 02 55 16 3A 38
38 34 3B 31 19 3C 3B 30 61 3A 14 27 32 23 02 55 26 22 25 27 3C 3B
21 33 55 22 36 26 3B 36 34 21 55 22 36 26 26 21 27 55 22 36 26 36

From Hex Qn

XOR & n 34 21 55 385 34 39 39 3A 36 55 38 30 38 26 38 21 55 38 30 38 36 25
2C 55 26 21 27 30 30 3B 55 22 36 26 39 30 3B 55 22 36 26 27 36 3D
g; HEX = 27 55 33 27 38 30 55 20 26 30 27 66 67 7B 31 39 39 55 3E 38 27 3B

30 39 66 67 VB 31 39 35 55 26 30 36 20 27 66 67 VB 31 39 39 55 26
3D 36 39 39 66 67 7B 31 39 39 55 38 26 23 36 27 21 7B 31 39 38 55

_— (] Null preserving 25 26 34 25 3C 7B 31 39 39 55
anoar

time: 3ms

Output lenoth: 714 [=1 I—D g:‘i T

lines:
GetProcessImageFlleNamew.GetForegroundWindow . GetWindowThreadProces
sId. GetWindowTextw.GetKeyboardstate, GetKeyboardLayout. ToUnicodeEx.
MapvirtualKeyExW.CallNextHookEx . SetWindowsHookExW. UnhookWindowsHoo
kEx.GetMessageW. TranslateMessage.DispatchMessagewW.GetSystemTime . Ge
tLastError.OpenProcess.CreateThread, SystemTimeToFileTime,FileTimeT
aSystemTime.FileTimeToLocalFileTime.GetFileSize.CreateMutexW. OpenM
utexw.lstrcatw.GetModuleFileNameW. FindFirstFileW. FindClose.CreateF
ilewW.SetFilePointer.WriteFile.CloseHandle.GetProcAddress.LoadLibra

.z ’ ryA.GetUserNameExW. CommandLineToArgviW. swprintf.wcsncat .wcsstr.wesc
STEP r, BAKE!
Pk at.malloc.memset.memcpy.strlen.wecslen, wesrchr, free.user3z2.dll. kern

Auto Bake)
el32.dll.secur32.dll.shell32.dll.msvert.dll.psapi.dll.

As you can see, the data contains multiple API calls and DLL’s that are loaded during
runtime — in this function. As we scroll down the graph, there are several calls to
GetProcAddress, as well as calls to variables, such as var_290. There are two ways we can
approach this to figure out what is being stored in variable 290 — using a debugger, or in
this case through static analysis (the more complex method). To do so, we need to trace
backwards. We can see that the value in rax is stored in var_ 290, just after

a GetProcAddress call, and as one of the arguments is kernel32.dll, the other must be
the function that is called — this is stored in var_58.

9/25

call
lea
mov
call
mov
mow
mow
mov
lea
call
mov
lea
call
mow
lea
call
mow
lea
call
mow
lea
call
mow
lea
call
mov
CmE
j=z

Decryption_2

rdx, [rsp+408h+var_3Eg]
rcx, [rsp+408h+kernel3z]
[esp+408h+getprocaddr]
[rsp+408h+], rax
rcx, [rsp+408h+freemem]
rax, [rsp+408h+kernel3z]
[rex], rax

rcx, [rsp+408h+var_AE]
[rsp+408h+war_230]
[rsp+408h+var_Z228], rax
rex, [rsp+408h+var_148]
[rsp+408h+war_230]
[rsp+408h+var_ 48], rax
rex, [rsp+408h+var_ BE]
[rsp+408h+war_230]
[rsp+408h+var_2DE], rax
rcx, [rsp+d408h+var_2D0]
[rsp+408h+war_230]
[esp+408h+var_1B8], rax
rcx, [rsp+408h+var_128]
[rsp+40&8h+wvar_2350]
[rsp+408h+var_328], rax
rcx, [rsp+408h+var_1A0]
[rsp+408h+wvar_230]
[rsp+408h+var_1C0], rax
[rsp+408h+freemem] , 0
loe_180005B51

Just above the GetProcAddress, the decryption function is used to decrypt 13 bytes of
data at var_ 58, so lets go to the x-ref of var_58 in this function, and count out 13 bytes

of data: var_58 -> var_4C.

10/25

mov [rsp+408h+var_1E5], 3
mowv [esp+408h+var_1E4], 27h
mowv [rsp+408h+var_1E3], 3Ah
mov [rsp+408h+var_1EZ2], 36h
mov [rsp+408h+var_1El1], 14h
mov [rsp+408h+var_1E0], 31h
mov [rsp+408h+var_1DF], 31h
mov [rsp+408h+var_1DE], Z7h
mov [rsp+408h+var_1DD], 30h
mov [rsp+408h+var_1DC], Z&h
mov [rsp+408h+var_1DE], 26h
mov [rsp+408h+wvar_1DA], 55h
mov [rsp+408h+war_S58], 13h
mov [rsp+408h+wvar_57], 3Ah
mov [rsp+408h+var_56], 34h
mowv [esp+408h+wvar_55], 3l1h
mov [csp+408h+var_354], 15h
mov [rsp+408h+wvar_53], 3Ch
mov [rsp+408h+wvar_52], 3Th
mov [rsp+408h+wvar_51], Z27h
mov [rsp+408h+wvar_50], 34h
mowv [rsp+408h+var_4F], 2Z7h
mov [rsp+408h+var_4E], 2ZCh
mov [rsp+408h+var_4D], 1l4h
mov [esp+408h+var_ 4C], 55h
408h+wvar_ 2B8], 12h

xrefs to var_58

Directic Ty| Address Text

w sub 1800039CO+FF4 mov [rsp+408h+var_58], 19h
_ D... r sub 1800039C0+1962 lea rcx, [rsp+408h+var_ 58]
_ D... r sub 1800039C0+1981 lea rdx, [rsp+408h+var 58]
_ D... r sub 1800039C0+213F lea rdx, [rsp+408h+var 58]

Copy those bytes and put them into CyberChef, and XOR with 0x55. You should
get LoadLibraryA.

11/25

1 3 —
Input lines: 2 B
19 3A 34 31 19 3C 37 27 34 27 2C 14 55
time: ©ems
Output length: 13 a |_D {:‘ L

lines: 1

LoadLibrarvyA.

From then on, only GetProcAddress and LoadLibraryA are called by this function —
and we can assume that each of the API functions in the decrypted text are imported.
Obviously we could do that all manually, but if you have access to a debugger it would be
much quicker.

12/25

mov rax, [rsp+408h+arg_10]

mov [rax+30h], rll

lea rdx, [rsp+408h+var_378]

mov rcx, [rsp+408h+var_228] ; ToUnicodeEx

call [rsp+408h+GetProcAddress]

mow rll, rax

mov rax, [rsp+408h+arg_10]

mow [rax+38h], rll

lea rdx, [rsp+408h+var_160]

mov rcx, [rsp+408h+var_228] ; MapVirtualEeyExW
call [rsp+408h+GetProcAddress]

mov rll, rax

mov rax, [rsp+408h+arg_10]

mow [rax+40h], rll

lea rdx, [rsp+408h+var_2A0]

mow rex, [rsp+408h+var_ 228] ; CallNextHookEx
call [rsp+408h+GetProcAddress]

mov rll, rax

mow rax, [rsp+408h+arg_10]

mov [rax+48h], rll

lea rdx, [rsp+408h+var_330]

mow rcx, [rsp+408h+var_228] ; SetWindowsHookEx
call [rsp+408h+GetProcAddress]

mow rll, rax

mov rax, [rsp+408h+arg_10]

mov [rax+50h], rll

lea rdx, [rsp+408h+var_2F0]

mov rcx, [rsp+d08h+var_228] ; UnhookWindowsHookEx
call [rsp+408h+GetProcAddress]

mow rll, rax

mov rax, [rsp+408h+arg_10]

mow [rax+58h], rll

lea rdx, [rsp+408h+var_2B0O]

mov rcx, [rsp+408h+var_228] ; GetMessageW

call [rsp+408h+GetProcAddress]

mov rll, rax

mov rax, [rsp+408h+arg_10]

mow [rax+&0h], rll

lea rdx, [rsp+408h+var_308]

mow rex, [rsp+408h+var_228] ; TranslateMessage
call [rsp+408h+GetProcAddress]

mov rll, rax

mow rax, [rsp+408h+arg_10]

mov [rax+&8h], rll

lea rdx, [rsp+408h+var_1DE&]

mow rex, [rsp+408h+var_228] ; DispatchMessageW
call [rsp+408h+GetProcAddress]

mow rll, rax

mov rax, [rsp+408h+arg_10]

mov [rax+7T0h], rll

lea rdx, [rsp+408h+var_178]

mov rcx, [rsp+408h+var_lBE8] ; CommandLineToRArgvi
call [rsp+408h+GetProchAddress]

As all of the imports have been resolved, we can move on, out of the function, where the
program calls GetUserNameExW twice. In my case, the call will return Reversing\RE —
the domain name and username. The malware then moves it to a different location

using wescat, and checks to see if there is a backslash in the returned value, using wesstr.
If there is, a pointer to it will be returned. The backslash is then replaced with a full stop,
leaving us with Reversing.RE. The formatted string is used to create a mutex. The
program first checks to see if a mutex has been created under that value by

calling OpenMutexW, and if it hasn’t been created, CreateMutexW is called. We are
able to double check that this mutex is created by using a tool called SysAnalyzer, which is
useful for analyzing malicious programs whilst performing dynamic analysis.

13/25

Once a mutex has been created, a function at 0x180003960 is called, which creates a new

lea rdx, Username

mov ecx, 2 ; NameSamCompatible
call cs: GetUserNameExW
MoOVIE eax, al
test eax, eax
jz loc_l1EB0001ADS
_ Y
Ll s =]
lea rdx, Username
lea rcx, Hew Username
call cs:wescat
lea rdx, Splitter Y
lea rex, Hew Username
call cs:wesstr ; Gets pointer te first "\
mov [rsp+4Bh+var_10], rax
cmp [Esp+48h+var_10], © ; Is a '\' present in the string?
jz short loc_180001A33
_ J
il s =]
mowv ecx, '.'
mow rax, [rsp+48h+var_10]
mowv [rax], cx ; Replace '"\' with '.'
| ¢
il s =
loc_180001A33:
lea r8, New_Username
KO edx, edx
mov ecx, 1F0001h
call o8 OpenMutexW ; Value should be domain.user
mov [rsp+48h+var_ 18], rax
cmp [rsp+48h+var_l18], 0
jnz short loc_l80001ACF ; Check if mutex has been created and exists

) J
lea r8, New_ Username
mov edx, 1
Xor eCX, ecx
call es:CreateMutexW ; Based on username
mov [Ersp+48h+var_l8], rax
jmp short loc_180001AD3

v

thread pointing to 0x180001B70. When the created thread exits, the malware exits as

well.

14/25

So, let’s take a look at the newly created thread. It seems that immediately after the thread
executes, a function located at 0x180001B0O is called, containing the ‘meat’ of the
keylogger. I have labelled this as Set_ Hooks, based off of the method used by the

keylogger.

i s 5

sub_180003360 proc near

var_28= dword ptr -Z8h
var_20= gqword ptr -20h
var_l8= gword ptr -18h
arg_0O= byte ptr &

mov [rsp+arg_0], el
sub rsp, 48h
MoOVEX eax, [rsp+48h+arg_0]
test eax, eax
j= short loc_1800033B3
_ , J
FIZE
mowv cs:dword_1B8001075C, 1
mov [rsp+48h+var_20], O
mowv [rsp+d48h+var_28], O
XOor rad, raid
lea r8, Thread Locaticn
Xor edx, edx
Xor ecx, ecx
call cs:CreateThread ; Create thread at 180001B70
mowv [rsp+48hivar_18], rax
cmp [rsp+48h+var_18], O
jnz short loc_1800033E1
o o '
FFIE il) (=

Xxor al, al
jmp short leoc_l1l800039B3 loc 1800033B1:
mov
|
EER
FIFIE
loc_1800033B3:
add rsp, 48h
retn
sub_ 180003260 endp

al, 1

15/25

i

Thread_Location proc near

var_48= byte ptr -48h
wvar_18= dword ptr -1&h
arg_O= gword ptr &

mav [zaptarg_0], rex
sub csp, &8h

e

loc_180001R79:
mov el, 1
call Set_Hooks

i¥

Ll s =

loc_180001RE0:

ROE r3d, rid

xor rid, riéd

ROE edx, edx

lea rex, [rsp+EBhévar_48]
call cs | GetMessaged

mory [cepé+sihévar_18), eax
cmp [espi&Bhévar_18]), 0
iz short loc_180001BC3

I |

h]
e F™E
cmp [espdéBhévar_18], OFFFFFFFFh
jnz short lec_l20001BAB loc_l1B80001BC3:
] | Jmp short §+42
A] L J
= ™ = e
XOE aax, sax Jmp short lec_l180001BC1
Jmp shert lec_180001BCY loc_180001RAR: loc_180001RCH:
laa rex, [rapiéShivar 48] | |xor SAX, SAX
call cs:TranslateMeassage
lea rex, [respééfhévar_48]
eall cs:DispatchMes sage
y |
vy (K
Ll 1 = e
loc_180001BC1: loc_180001BCT:
ymp short lec_l180001RE0 add rap, 68h
retn
Thread_Location endp

The two most common Windows API calls used in malware and ‘legitimate’ software to
perform keylogging is GetAsyncKeyState or SetWindowsHooKkEx. Due to the number
of issues with using GetAsyncKeyState, most keyloggers

utilize SetWindowsHooKkEx nowadays. In this case, SetWindowsHooKEXx is used to

capture keystrokes. Whilst we are unable to use the pseudo code function in IDA, we can use
MSDN to understand what is being called and how.

HHOOK SetWindowsHookEXxA(int idHook, HOOKPROC l1lpfn, HINSTANCE hmod, DWORD
dwThreadId);

When we input all of the arguments into the function, we get:

HHOOK SetWindowsHoOKEXA(13, 0x1800022C0 , 0x180010720, 0);
HHOOK SetWindowsHOOKEXA(WH_KEYBOARD LL, LowLevelKeyboardProc, DLL_Handle, NULL);

16/25

So a hook is installed that ‘monitors low level keyboard input events’, allowing the malware
to gather each keystroke. After, the function returns back to the previous function, where

a Get, Translateand DispatchMessage loop is created. While the program is
keylogging, GetMessage will gather each key press and pass it to TranslateMessage,
which translates virtual key messages into character messages. This is then passed

to DispatchMessage, and this redirects it to another window procedure. If you want to
learn more about the inner workings of keylogging, check out this site here, it goes into the
very low levels of keystroke logging.

i s =

Set_Hooks proc near

arg_{= byte ptr &

e [rep+arg_0], el
aub rap, 28h
MOWER eax, [rspt+ifhtarg 0]
test SAR, eax
j= short loc_1B80001B48
T
h J

r3d, r3d

r8, cs:DLL Handle

rdx, LowLevelKeyboardProc

ecx, 13

cs: SetWindowsHookExH

ce:gword 180010728, rax

es:gword_l80010728, 0

short loc_la0001B42

_ ¥ [_ L
) g =1 | L 1=
xoT al, al jmp short loc_180001B57
mp ghort loc_l1830001B537) (loc _1BO00L1B42: loc_lB0001B4E:
mav al, 1 mov rocx, ca:gwerd_180010728
‘ jmp short loc_180001B57 call s UnhookWindowsHookEx
] L= al, 1

loe_180001BR57:
add rap, 2Bh
retn

Set_Hooks endp

Now lets take a look at the function called by SetWindowsHookExA, located

at 0x1800022C0. As you can see from the graph overview, this function is a huge mess.
The section at the bottom of the graph is in fact a switch statement — we can see there are
multiple case values, and a default value as well. Furthermore, IDA also tells us this is a
switch statement. Here is an overview of switch statements in C. To sum it up, it is another
method of comparing one variable to several different variables, instead of using

multiple if statements.

17/25

https://securelist.com/keyloggers-how-they-work-and-how-to-detect-them-part-1/36138/
https://www.tutorialspoint.com/cprogramming/switch_statement_in_c.htm

] ,

~ =
— _ d n

[mephLeNbras_2]
R

d: fapen, LIGEAINTC - 1ABHO00RIN] |cxzbaua]
i1 ARt TREIING = LIRE0NEN| [eninanns]
=

: mmitch ymp

i
'FIIEL

O L L]

In order to find the values of the case variables, we need to perform some simple addition.
Looking at each box, there is a lea rdx, Encrypted_ Keys and then add rdx, ...h, where
the ... indicates a certain hexadecimal value. In one particular case, the value 13C is being
added to the memory address of the Encrypted Keys, which is 0x18000F2Fo0. After adding
them together, we get 0x18000F42C, which points to ‘<‘. The next instruction after

the add, a value is moved into r8d. This indicates the size of the string, which is 4.
Therefore, the 3 bytes after 0x18000F42C are also included, meaning the full value

is <ro>.

loc_180003202; i jumptable 0000000180002DDE case 102

#
rox, Captured Char
o8 woEncat
loc_l1B0003T3F

lea rcx, Captured Char
call cs:wesncat
jmp loc_18000373F

To speed up the process, I wrote a simple script to *automate* the process, so all you have to
do is input the addition value and the string length, and the corresponding key is output to
the terminal. I have uploaded it to pastebin and you can view it here.

18/25

https://pastebin.com/7EyK8mHA

output. replace(

) + output

This value is concatenated, using wesneat, into the address 0x1800115B0. We can
rename this to Captured_ Char, as that is what it is. If the captured keystroke does not
equal any of the hardcoded values, the default case is used, however they all lead to the
same logging function. Before examining the rest of this function, lets take a look at how the
data is logged.

19/25

L |

il 1 2

Default_Case: i jumptable 0000000180002DD8 default case
lea rcx, [rap+lélBh+var_138]
call cs: GetKeyboardState
mov [csp+l6lBh4var_150], 0
lea rdx, [rsp+lEélBh+var_150]
mov rex, [rsp+lélBh+var_135B0)
=all o8 GetWindowThreadProcess Id
mov [csp+lélBh+WindowFrocessID], eax
emp [rsp+l6l8h+WindowProcessID], O
jnz short loc_lB80003&660
||
) Y
™E il [
call c8:GetLastError_0
mow [esp+lElBh4var_164], eax) |loc_lBDOD3ES&0:
mon rid, 200h mov escx, [rsp+lélBh+WindowProcessID]
XOE edx, edx call cs: GetKeyboardLayout
laa rex, ([rsp+lélBhévar_DEA] | (mov rbx, rax
call cs:memset_0 Mo ecx, [rsptlélBh+WindowProcessID]
mov rid, ([rsp+lélBh+var_164] | (call cs ; GetKeyboardLayout
lea rdx, EK_Window mav rl, rax
lea rex, [rsptlélfh+var_DER) | (xox edx, edx
call c8:_swprintf mev rax, [rsp+lélBh+Eeystroke]
jmp loc_180003716 mov ecx, [rax]
call cs:MapVirtualKeyEx
mow adi, sax
mov ecx, [rsptlElAh+WindowProcessID]
call cs:GetKeyboardLayout
mov rd, rax
mev edx, 2
mev rax, [reptlélah+Eeystroke]
mow ecx, [rax]
call ce:MapVirtualKeyEx
mov [rsp+l61Bh+var_1SEB], rbx
mov [resp+lélBhévar_15F0)], O
mov [rsp+l6lBhévar_15F8], 1
lea rd, [rsptléElBh+var_l48]
laa r@, [rapdlélBh+var_138]
mow edx, edi
mov ocx, eAX
call o8 TolnicodeEx
mov rid, 200h
XOE edx, edx
lea rex, [rsp+léElBh+var_DEAR]
call cs mamset_0
movex rBd, [rsp+lElBh+var_148]
lea rdx, aC R -5
laa rex, [rsptlél@hsvar_DEE]
call cs:_awprintf
|

jumptable 0000000180002DD8 case 1| |loc_lBOO03716:

¥s

<Tab>

r

So this function is quite long, although we just need to see the WriteFile part, to see if the
data is encrypted or not when being stored — which is right at the bottom of the function.

F™E

lea rex, [rap+l6lBh+var D68
call es:iweslen

mor ré, rax

shl rd, 1

lea rdx, [rsp+lElBh+var_DE8]
lea rex, Captured_Char

call ca:wecsncat

20/25

=
MoV [csp+32Bh+wvar_20], 0
jmp shert leoc_l80001&80
vé
-
loc_l1BO0001680:
mowv eax, [rsp+d28h+var_34]
cmp [rsp+32Bh+var_20], eax
jnk shert loc_1800016El ; Jump if i is more than Counter
™7
¥ []
=] e =
movaxd rox, [rsp+dZfhdévar_20] ; XOR
lee_1BO0016El: mov rax, [rsp+928h+var_8E0D]
mow [rap+928h+0verlapped], 0 movVEX edi, byte ptr [raxtrcx)
lea r9, [rsp+32Bhivar_ BEB] mov eax, cs:dword_ 180010738 ; Increments constantly
mow réd, [rsp+328héwvar_34] ROE edx, edx
mor rdx, [rsp+32Bh+var_ 8E0] moy ecx, 100
mow rcx, [rap+328hévar_ 460) div rox
call cs WriteFile_0D lea rax, unk_18000F010
mOVEX eax, byte ptr [rax4rdx]
mov edx, edi
HoE eds, eax
movsxd rox, [rsp+difhévar_20]
mov rax, [rsp+328h+var_8SED]
mov [rax+rex], 4l
mov eax, cs:dword_ 180010738
add sax, 1
mov cs:dword_ 180010738, eax
Jmp short loc_lB8000166F
[] ;
= =
loc_l18000170A: loc_lB000166F:
mowv rcx, [rsp+228hdvar BE0Q]| (mow eax, [rsp+328hdvar_20]
call cs:free_0 add eax, 1
mowv rex, [rsp+328hdévar_460]| [mow [rep452B8hévar_20], eax
call cs:CloseHandle
jmp short §+2

'

As assumed, the data is encrypted before being written to the file. As you can see, there is

a for loop, where on one side data is being written using WriteFile, and on the other side
data is being XORed using the original XOR keys. First, it seems that the value in var_34 is
being compared to the value in var_ 20. We can deduce that var_ 34 is the length of the
data to be XORed, due to it being the third argument in the WriteFile call:

WriteFile(hFile, 1pBuffer, nNumberOfBytesToWrite, lpNumberOfBytesWritten,
1poverlapped)

Therefore, we can rename that to NumberOfBytesToWrite. While doing so, we can also
rename the other variables used in the call, so it is easier to understand the function. You
might also have noticed that var_ 20 is being incremented each loop as well, so we can
simply rename that as i. So, lets take a look at the actual XOR part.

vy

i =]

leoc_180001680:

hl-ai eax, [rep+328h+NumberOfBytesToWrite]

cmp [csp+328h+i], eax

jnb short loc_1800016El ; Jump if i is more than Counter

|

21/25

So the value in i is moved into rex, and the value in the Buffer (highly likely the captured
keystrokes plus any additional data) is moved into rax. Once again — similar to both
decryption routines — the first character that will be encrypted is found by adding the value
in i to the address of the Buffer. This is moved into edi, and then div is called. If you
remember the first post on the keylogger, div divides the value in rax with the passed
operand, which is rex. The value in rex is 100 (0x64), and therefore rax will be divided by
100. The question is, what is the value in rax? We can see dword_ 180010738 is being
moved into the register — but it is empty. We have to locate the section where a value is
moved into the dword.

Searching for xrefs, there is only one mention of this variable before the encryption
routine, which is at 0x1800013F1. It seems that the malware gets the file size of the file
which the keystrokes will be logged to, and then performs another div operation, with the
remainder being stored in the dword. Let’s imagine that the file size is 0, as the logger has
just started up. o is then divided by 100, which is obviously 0. This means that the value

in edx is 0, and therefore the value in the dword is, you guessed it, also 0. So we can jump
back to the encryption routine and work through the rest.

call cs:SetFilePointer
lea rdx, [rsp+228h+NumberOfBytesWritten]
mov rcx, [rsp+228h+iFile]
call cs:GetFileSize
mov eax, eax
Xor edx, edx
mowv ecx, 100
diw rcx
mowv s dword 180010738, edx
lea rdx, [rsp+228h+NumberOfBytesWritten]
mov rcx, [rsp+228h+iFile]
call cs:GetFileSize
test eax, eax
jnz loc_18000154E
[l el =
mowv eax, [rsp+328h+NumberOfBytesToWrite]
mov rcx, [rsp+328h+Buffer]
add rex, rax
mev r8d, 1Ch
lea rdx, EKSLOT
call cs memmeve 0
mov eax, [rsp+328h+NumberOfBytesToWrite]
add rax, 1Ch
mowv [Esp+228h+NumberOfBytesToWrite)], eax
cmp cs :dword_180010748, O
jnz short loc_18000148C
¥

In order to get a byte from the key to XOR the data with, rdx and rax are used. The value
in rdx on the first loop is zero — this is the result of the div using the value

in dword_180010738. The address of the original XOR key is moved into rax, and a byte
is stored in eax using the same byte ptr [rax+rdx] used throughout. edi (the keystroke
data) is moved into edx, which is XORedby eax (the key). The encrypted character is used

22/25

to overwrite the character in the keystroke data, based off of the value in i. Next, the value
of dword_180010738 is incremented by 1, meaning the key used to XOR the first
character of the buffer is different to the key used to XOR the second character of the buffer.
Finally, i is also incremented by 1, and the loop continues until the buffer is completely
overwritten.

The data is then written to the file, the buffer is freed, the file handle is closed, and the
function returns.

loc_18000170A: loc_l1B000166F:

mov rex, [rsp+928h+Buffer]) mow eax, [rsp+328h+i]
call cs:free_0 add eax, 1

mov rcx, [rsp+328h+File) mev [rsp+228h+i], eax
call cs:CloseHandle
jmp short 542

il e =1

loc_180001725:

xXor eax, eax

mov rex, [rsp+228h+var_18)

Xor ECx, rsp ; StackCookie
call security_check kie

add rsp, 320h

pop rdi

retn

sub_180001100 endp

Now we have cracked the algorithm, we need to find where the data is being logged. We
already know which variable contains the handle to the file, so lets find the first instance of
it being used. Sure enough, there is a mov [rsp+928h+File], rax just after a call

to CreateFileW. When looking at the arguments CreateFile takes, we can see that the
very first argument is the file name:

HANDLE CreateFileA(lpFileName, dwDesiredAccess, dwShareMode, lpSecurityAttributes,
dwCreationDisposition, dwFlagsAndAttributes, hTemplateFile);

In this case, the first argument is a variable containing msimm.dat — one of the original
strings we decrypted. As there is no file path connected to it, it seems that this file is written
in the current directory, so wherever the keylogger is run.

We know almost everything about how the file is logged and how the data is stored, so let’s
see if we can get a sample of the encrypted data in order to analyze it. Open up a VM and
run the DLL. In order to run it, I am using x64Dbg, as I couldn’t seem to

get rundll32.exe to run it — maybe due to the lack of exports. Eventually, the file I wanted
was created on the Desktop, msimm.dat. Upon opening it, there is a lot of what seems to
be text in a different language, although this is just the encrypted text being displayed by
Notepad. Open the file in something like CFF Explorer in order to view the hex data of the

23/25

file, so that we can XOR it back to plain

text. Copy this into a text file on your FIZ IS
host machine, and get your favourite loc_180001325:
. mowv [esp+528h+HumberOfBytesToWrite], O

text formattlng tOOI up. mowv ecx? cs :dwnrd_lﬂuu-lg'? 4C
mov eax, [rsp+328h+S5ize_LShifted]
lea rex, [rexdrax+1Ch]
mowv eax, cs:5ize
lea rax, [rex+rax*241Ch]
mowv [rsp+328h+var_38], eax
movsxd rox, [rsp+2Z8h+var_38]
call cs:mallec_0
mowv [rsp+328h+Buffer], rax
movsxd r8, [rspt328h+var_38]
Xor edx, edx
mowv rcx, [esp+328h+Buffer]
call cs:memset_0
mowv [rsp+328h+var_8F8], 0
mowv [rsp+328h+var_200], E&0h
mowv dword ptr [rsp+228h+0Overlapped], 4
XOor rod, rad
mov réd, 1
mov edx, O0COOQ00000R
lea rcx, [rsp+328h+msimm] ; msimm.dat
call cs:CreateFileW
mowv [rsp+328h+File], rax

w' CFF Explones VI - [rosimen - Cogry.dat)

File Settwngs

h‘i- @ i - Copy dat
= File: mmmm - Copy dat L ew ™ pE
‘}““E"'“ Offset | 0 1 2 3 4 5 & 7 8 9 & B C D E F | hesii
B Gulok: Demmwombior DOODOD00 | 41 15 OA 20 20 5% 5F Fh 51 6F CF FF 61 98 DB 7B | Ak.= Y olyaldi

0oooooio | 2B 4B 46 DD 2D &4 A0 C7 F3 9C SF 7B 96 01 CF 91 +EFf=d cal_{1 I’
Dooooozo | oD C7 A9 C9 AD EL BE FF OE 0B 02 Eé 11 6D G4 9B CRE-S]yS =4ng]
0ooooo30 | 02 81 FF Bl 00 7D 10 54 D& ED 17 59 38 2D 73 63 1 0 R TE-sc
0ooooo40 | 37 7B 02 59 05 0B 1C 85 C9 91 8% 59 57 01 7E 34 -l IETNTW .
00000050 | 3E SB 16 16 &0 57 4E 68 44 55 70 55 6D C5 AF 4E +E=+ WHRDUpOm& W
poooooen | 2F 3B 2F 42 34 1% &D 2D 5é 59 5C FA BE 6F Al FF S B bm=RT NS
Oooooo70 | 06 9B BE FB 77 4B 4E DD 3C 64 A2 C7 BB 9C 6E 7B — N wENTcdECHIE]
goooaonsno | CF 01 F4 51 24 C¥ F2 C9 ED E1 CE FF 36 08 61 E& ¢ & SCoEidEyioas
00000090 | 52 &0 00 %E 04 81 24 81 3E 7D 1 94 06 BD 01 5% RBn.ls & #}-01-% ¥

Eile Edit Formst Yiew Help
DEEAHES D5 RET N E JH D RN S R nsEh T S I U S ETE AN A S D S Nl B LT T VLR R E SR E L e R ST -

The reason for this is because the script I have written is quite ‘hacky’. I tried several

different things in order for python to read hex bytes as hex bytes into an array — all failed.

If you guys have any ideas on how to improve it, let me know! Anyway, the text needs to be
formatted in this way:

0X..., OX..., OX...

And as CFF explorer copies the hex in one long string, we need to split it every second
character and convert spaces to , 0x. I personally used this to do so. Now my script doesn’t
work 100% of the time — I'm mainly using it as an example here to show you how to
replicate the algorithm in Python. It only seems to work on one section of the text, but I'm
sure those of you with a higher level of Pythonic knowledge and malware analysis
knowledge will be able to re purpose it so it works flawlessly. Anyway, here it is. When we
run the script, it will decrypt the section of hex data using the keys and output the plaintext.

| rresienen - Copy - Notepad [:-"IEI]E‘

24/25

http://www.unit-conversion.info/texttools/replace-text/
https://pastebin.com/Fwpz7PZf

There is also a legend that shows you which part means what. As I mentioned, there are so
many better ways to do this so that it works for different logs, however I didn’t have much
time to work on it and make it pristine.

loop = len(data array)
location =

i=

xor array = []

print i \n

for item in data array:
if location == len(key array):
location =
if i == loop:
break
data = item ~ key array[location]
xor array.append(chr(data))
i1=1+ 1;
location = location +
Xor array

Xor_array
Xor _array

= .join(xor array).replace('\x08
= Xor array.replace()
= xor array.replace(0)

print xor array

print “\n

print

That pretty much wraps up this analysis, as there isn’t much else to analyze. There is no
method of extracting the log files in the keylogger, so I believe Turla only use it when they
have remote access to the machine, and extract the logs through a remote access tool or a
backdoor. So I hope you enjoyed the two part analysis, and I should hopefully have

the Hancitor part two write up soon. Thanks!

I0Cs:

Keylogger: 50b57bdabee2ce1fb566de51dd92eco4

25/25

