Analyzing KSLOT (Turla’s Keylogger), Part 1 — Reupload

’-\ Offset.net/reverse-engineering/malware-analysis/analyzing-turlas-keylogger-1

8 July 2019

o overflow
e 8th July 2019
e No Comments

(This post is a reupload from my old site which is no longer available — you may have seen it
before)

Whilst I'm working through the Hancitor write up and the Flare On challenges, I decided to
take a short break and focus on a smaller piece of malware — such as a keylogger, which in
this case is on a much larger scale than $32 keylog-as-a-service, as it has been attributed to
a Russian Advanced Persistent Threat group known as Turla, or Waterbug. This APT
group has been in the news quite frequently over the past month,

after compromising European government foreign offices and creating an

extremely stealthy backdoor that utilizes PDF files to exfiltrate data, via emails. I noticed
a sample of malware uploaded to VirusBay, tagged with Turla and Venomous Bear (yet
another moniker given to the group), and decided to analyze it. As I statically analyzed a lot
of the Flare On challenges that I have completed, I decided I wanted to approach this
sample primarily using static analysis, unless it became too difficult to do so. So, let’s begin
cracking this sample open!

MDs5: 59b57bdabee2ce1fb566des1dd92eco4

As per usual, I ran the file and strings command on the binary to see the format and if
there was anything interesting that was visible. The binary is in fact a DLL, and a 64 bit one.
The output of strings displayed a lot of junk, although we are able to see a few error
messages and several Windows API calls, such as IsDebuggerPresent, WriteFile, and
dynamic loading calls; GetModuleHandle, LoadLibrary and GetProcAddress.

After opening the file in IDA, we are able to view the entry point of the user

code, DLLMain. After a cmp operation, the program jumps to 0x1800019BD, where an
extremely important function at 0x1800017Do is called. It might not look like much at a
first glance, just multiple calls with 3 arguments passed to them — until you realize it is
calling the same function each time, with the second argument being what seems to be
pointing to some encrypted text ...

1/10

https://www.0ffset.net/reverse-engineering/malware-analysis/analyzing-turlas-keylogger-1/
https://www.0ffset.net/author/dan489400/
https://www.zdnet.com/article/turla-backdoors-compromise-two-european-government-offices-defense-contractor/
https://www.bleepingcomputer.com/news/security/turla-outlook-backdoor-uses-clever-tactics-for-stealth-and-persistence/
https://beta.virusbay.io/

GetProcessWindowStation
GetUserObjectInformationA
GetlLastActivePopup
GetActiveWindow
MessageBoxA

USER32.DLL
sunMonTueWedThuFrisat
JanFebMarAprMayJunJulAugSepOctNovDec
GetProcAddress
GetModuleHandleW

Sleep

KERMNEL32.d11

RtlUnwindEx
GetCurrentThreadId
FlsSetValue

GetCommandLineA
TerminateProcess

GetCurrentProcess
UnhandledExceptionFilter
SetUnhandledExceptionFilter
IsDebuggerPresent
RtlvirtualUnwind
RtlLookupFunctionEntry
RtlCaptureContext
EncodePointer
DecodePointer
FlsGetValue

FlsFree

SetLastError
GetLastError

FlsAlloc

2/10

mov
lea
mov
call
mov
lea
mov
call
mov
lea
mov
call
mov
lea
mov
call
mov
lea
mov
call

As you may have guessed, this is in fact a decryption function. When we view the function
called at 0x180001750, we can determine that it is a decryption function based on both
the arguments, and on the xor edx, eax. Also take note of the for loop, which compares

r8d, 1Ch

rdx, unk_18000F078
ecx, 37h
sub_180001750

r8d, 16h

rdx, unk_18000F0C8
ecx, 22h
sub_180001750

r8d, 38h

rdx, unk_18000FOEOQ
ecx, 7

sub_180001750

r8d, 4Ch

rdx, unk_18000F120
ecx, 1llh
sub_180001750

r8d, OEh

rdx, unk_18000F170
ecx, 1lBh
sub_180001750

call
lea
call

laa
mov
call
Moy
lea

call
lea

=all
oV
lea
mow
call

lea
call

laa
mov
call
mov
lea
mow
call

lea

=all
mow
lea
mo
call
mov
lea

call

sub_180001750

rad, 1l4dh

rdx, unk_18000F038
ecx, 4Th

sub_ 180001750

rid, 10h

rdx, unk_18000F0BO
ecx, 3Dh
sub_180001750

rBd, &

rdx, unk_18000F004
acx, 3%h
sub_180001750

rid, 1Ch

rdx, unk_ 1B8000F07E
ecx, 3Th
sub_180001750

r8d, 1&h

rdx, unk_18000F0CE
eex, 22h
sub_180001750

rid, 38h

rdx, unk_18000F0ED
ecx, 7
sub_1800017350

rid, 4Ch

rdx, unk_ 18000F120
ecx, 1lh
sub_180001750

rdd, OEh

rdx, unk_18000F170
ecx, 1lBh
sub_180001750

rAd, 46h

rdx, unk_18000F180
ecx, 23h
sub_180001750

r8d, 40h

rdx, unk_18000F1D0
ecx, 2Eh
sub_180001750

r8d, 12h

rdx, unk_18000F218
wex, 2Fh
sub_1800017350

the value in eax (value stored in arg_10) and the value in var_ 18.

3/10

L IR]
: loc_180001774:
el mow eax, [rsp+lihtarg_10]
cmp [Espt+lEh+var_18], eax
sk _LBOOELTED proc mear Jge zhort loe_lE0DDL1T7CE
aE_1#= dword PUE I 1
arg_tw dwerd pir B
T s T -
e jcapéarg 100, cBd Iﬁl’g
e 5;:::"-‘-”- Fan movsxd rcx, [csp+lfh+4var_18]
et = ' mev rax, [csp+l8htarg_ 8] loc_1800017C3:
e movExX r8d, byte ptr [rax+rcx]| |add rsp, lEh
movexd rax, [reptlEhtarg 0] retn
XOE edx, edx sub_ 180001750 endp
oV ecx, 64h
Hoe_ 1A T T4 div ICK
- *.*;-P_Q:_!'_":_'.: el lea rax, wunk_l8000F0L10
abort ioc_1850017C MOVER eax, byte ptr [rax+rdx]
™1 ¥ mov edx, rid
l__' = XOE edx, eax
E:;E o=, [EeptaRTTAT_TH] M & movaxd rox, [rap+lBh+var_18]
e '.J:E-'..'::I--ul'!_:lﬂ. '.:_'.-:::\:".h:: . mov rax, [rsp+lfh+arg_g2]
x::a :::. ?Eupo-ﬁ"h}::,tlr I ratz r-lp. mov [cax+rcx], dl
s T Mb_LEDNLTH0 amap MY eax, [esptlBhiarg 0]
Jaew roa add eax, 1
orax sax. byvs par [t mov [rep+lBhiarg 0], eax
e iz, oid Jmp short lec_1B00017&6E
wdn;, aax
ewamd Tom, [Eeptldhdvar_1d4)
hi=r rax, [rapslihtarg 8]
== jramécrex], dl
e #ax, [mapidhtarg 0] -
= :Iléll::::lllq_ﬁl. LTES @
1mg shart Loo_ 180044748
loc_18000176B:
maw sax, [rap+lih4var 18]
add cax, 1
mav [rsp+léh+var_18], eax
|

We can further deduce that var_ 18 is in fact the counter, based off of this section of code:

mov eax, [var_18]
add eax, 1
mov [var_18], eax

As we now know this, we can rename var_ 18 to Counter. Click on var_ 18 and push ‘n’,
and a prompt will appear, allowing you to rename the variable. We now need to figure out
what the counter value is being compared to, meaning we need to analyze arg_10. As it
isarg_* and not var_*, we have to look at the arguments passed to this specific function.
In this case, the arguments are not passed using the push mnemonic and are

instead mov’d into the arguments. As the value in the r8d register is being moved

into arg_ 10, let’s jump back the the calling function to view what was in r8d before
executing the decryption function.

mov r8d, 25Eh

lea rdx, unk_18000F2F0
mov ecx, 47h

call sub_180001750

We can convert the hexadecimal number to decimal by pressing ‘H‘ while selecting it,
resulting in the decimal value 606. So for this particular call, the XOR algorithm
loops 606 times, XORing each character. Now we have identified arg_ 10, we can go ahead

4/10

and rename it. Next, let’s try and figure out the values that are being XOR’ed together, to see
if we can locate the key used and the data being decrypted. The xor mnemonic performs the
XOR operation on the value in edx, with the value in eax. The result of the operation is
always stored in the first argument, in this case the result is stored in edx. We can assume
that edx contains the data to be decrypted, and eax contains the key. In order to find these
values out, we have to see what was moved (mov) or loaded (lea) into

the edx and eax register.

ol il 5=
movsxd rcx, [rsp+l8h+var_18])
mov rax, [rsp+l8h+arg_B8]

movsx r8d, byte ptr [rax+rcx]
movsxd rax, [rsp+l8h+arg_0]

Xor edx, edx

mov ecx, 64h

div rcx

lea rax, unk_18000F010
movsx eax, byte ptr [rax+rdx]
mov edx, réd

Xor edx, eax

movsxd rcx, [rsp+l8h+var_18])
mov rax, [rsp+l8h+arg_8]
mov [rax+rex], dl

mov eax, [rsp+l8h+arg_0]
add eax, 1

mov [rsp+l18h+arg_0], eax
mp short loc_18000176B

As you can see, r8d is moved into edx before the XOR occurs, so we have to then see what
was moved into r8d beforehand — which is seen in the third instruction of this

segment: movsx r8d, byte ptr [rax+rcx]. Just above this, [rsp+18h+counter] is
moved into rex, and whatever is stored in arg_ 8 is moved into rax. As we

know counter is incremented by 1 each loop, we can determine that the byte ptr
[rax+rcx] is iterating over something 606 times, with that something being encrypted
characters. We can double check this by finding out what is stored in arg_ 8, the same way
we discovered what was in arg_10: unk_18000F2Fo0, which contains a lot of encrypted
data (specifically, 606 bytes of it).

5/10

Next, let’s find out what is being stored in eax. In this instance, one byte of data

at [rax+rdx] is being movsx into eax. Therefore, we need to locate the data stored

in rax and rdx. The data in rax is quite easy to find out, as there is a mov rax,
unk_18000F010 before the movsx. When viewing the data at 0x18000F010, we can
see what seems to be more encrypted text — the key used to decrypt the data

at 18000F2F0. However, it is not that simple. Remember the rdx register that is used?
Well we can assume that the value in rdx changes on each iteration. In order to figure this
value, we need to look at the div instruction.

Key Array:

.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:
.data:

000000018000F2ZF0 unk_18000F2ZF0

000000018000F2F0
000000018000F2F1
000000018000F2F2
000000018000F2F3
000000018000F2F4
000000018000F2F5
000000018000F2F6
000000018000F2F7
000000018000F2FE
000000018000F2F 2
000000018000F2FA
000000018000F2FB
000000018000F2FC
000000018000F2FD
000000018000F2ZFE
000000018000F2ZFF
000000018000F200
000000018000F301
000000018000F302
000000018000F303
000000018000F304
000000018000F305
000000018000F306
000000018000F307
000000018000F208
000000018000F303
000000018000F30A
000000018000F20B
000000018000F30C
000000018000F20D
000000018000F20E
000000018000F20F
000000018000F210
000000018000F311
000000018000F312
000000018000F313
000000018000F314

GGGEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE B

0BE3h

BCh
0BZ2h
E8h
0Eh
0Ch
32h
4Eh
52h
0Dh
31h
38h
T0h
21h
23h
TEh
5&h
6Ah
65h
42h
T&h
5Dh
85%h
2Eh
1Dh
17h
53h
0Fh
ZEh
0Ah
TFh
3%h
5%h
6Ch
&Th
&Fh
0Ce&h

i

T N - N AP R R |

B O e e

6/10

.data:000000018000F010 unk_18000F010 db OAh
.data:000000018000F010

.data:000000018000F011 db 15h
.data:000000018000F012 db 55h Y
.data:000000018000F013 db ZDh -
.data:000000018000F014 db &Ch 1
.data:000000018000F015 db 55h Y
.data:000000018000F016 db &Fh o
.data:000000018000F017 db OFAh a
.data:000000018000F018 db EEh <
.data:000000018000F015 db &Fh o
.data:000000018000F01A db SEh H
.data:000000018000F01B db OFFh)
.data:000000018000F01C db 37h 7
.data:000000018000F01D db SEh ¥
.data:000000018000F01E db O0BDh Ya
.data:000000018000F01F db TEh {
.data:000000018000F020 db 55h Y
.data:000000018000F021 db 4Eh K
.data:000000018000F022 db TEh {
.data:000000018000F023 db 0DDh ¥
.data:000000018000F024 db OFh
.data:000000018000F025 db &4h d
.data:000000018000F026 dk 21h !
.data:000000018000F027 db 0CTh c
.data:000000018000F028 db 0D&h 0
.data:000000018000F025 db 5Ch <]
.data:000000018000F02A db &Fh o
.data:000000018000F02B db T7Eh {
.data:000000018000F02C db S5Ch <
.data:000000018000F02D db 1
.data:000000018000F02E dk 5Ch <]
.data:000000018000F02F db 21h !
.data:000000018000F030 db 75h ¥
.data:000000018000F031 db 0CTh c
.data:000000018000F032 db 0C8h E
.data:000000018000F033 db 0C3Sh E
.data:000000018000F034 db O0DFh B
.data:000000018000F035 db 0Elh a
.data:000000018000F036 db O0FAh L
.data:000000018000F037 db OFFh i

mov rax, arg_0
xor edx, edx
mov ecx, 100
div ecx

The div instruction takes one operand — this contains the value to divide rax by. A division
of 0x8003 by 0x100 in x64 Assembly would look something like this:

xor rdx, rdx ; clear dividend

mov rax, 0x8003 ; dividend

mov rcx, 0x100 ; divisor

div rcx ; rcx = 0x80, rdx = 0x3

It is basically a division, however the remainder value is stored in rdx, meaning rdx is
equal to 0x3. In the case of the keylogger, the XOR key is decided based on the value

of rdx, and therefore we need to figure out what rax is, so we can divide it by 0x64 in order
to get the first value of rdx. We know that arg_ o contains the value of ecx before the
function is executed, which is 0x47. When we convert it to decimal format, it is 71 / 100,
leaving us with 0.71. The value stored in rdx is 71. Simply perform the modulo operation
(%) on these two values and you will get 71. This means that the 71st byte in the key array is

7/10

the first byte to be used in the XOR: 0x85. For each loop, the value inside of arg_o is
incremented by 1, meaning the key byte is always changing — although now that we know
how the algorithm works, we can automate the decryption statically, rather than relying on
a debugger.

mov eax, [rsp+18h+arg_0]
add eax, 1
mov [rsp+18h+arg_0], eax

So how do we go about the static decryption? Well the answer is IDC, which is a scripting
language incorporated inside of IDA. Another option is IDAPython, however that isn’t
available inside the IDA 7 Pro Free version, so we’'ll stick with IDC. So far, we know that the
decryption part is all contained inside of a loop that loops a pre-determined amount of
times, using a specific key array and a determined data array. In addition, the value that is
used for the div operation is also passed as an argument. Therefore, we will require 3
arguments for our function: base_ data, div, and loop. We will also need 6

variables: index, x1, x2, data, i, and base_ xor. index will contain the result of the
modulo operation, x1 will contain a byte of data from the encrypted text, x2 will contain a
byte of data from the key, data will contain the result of the XOR, i will be the counter
and base_ xor will hold the address to the key array. To store an address, simply add

an ox to the beginning of said address. The rest of the script will contain the necessary
incrementations and XOR’s.

static decrypt_data(base_data, div, loop) {
auto index, x1, x2, data, i, base_xor;
base_xor = 0x18000F010;

for (i = 0; i < loop; i++) {

index = div % 100; // Get value from div % 100

x1 = Byte(base_data); // Get byte from encrypted data

x2 = Byte(base_xor + index); // Get XOR key using value from div / 100
data = x1 N x2; // XOR data

PatchByte(base_data, data); // Replace enc. byte with dec. byte
base_data = base_data + 1; // Increment Encrypted Data

div = div + 1; // Increment Divider

}
}

In order to *install* this script into IDA, click File -> Script Command, and then paste it
into the dialog box.To call the function, simply type (in the command line at the

bottom) decrypt_data(ox18000F2Fo0, 71, 606) to decrypt the first section of data,
which should look like the image below.

8/10

https://www.hex-rays.com/products/ida/support/idadoc/157.shtml

.data:000000018000F2F0 unk_18000F2F0 dk 3Ch <
.data:000000018000F2F0

.data:000000018000F2F1 db 4]
.data:000000018000F2F2 db Z23h
.data:000000018000F2F3 db 4]
.data:000000018000F2F4 db 52h R
.data:000000018000F2F5 db 4]
.data:000000018000F2F6 dk 53h s
.data:000000018000F2F7 db 4]
.data:000000018000F2F8 db &8h h
.data:000000018000F2F2 db 4]
.data:000000018000F2FA db &5h i
.data:000000018000F2FB db 4]
.data:000000018000F2FC db &6h £
.data:000000018000F2FD db 4]
.data:000000018000F2FE dk 74h t
.data:000000018000F2FF db 4]
.data:000000018000F300 db 3Eh >
.data:000000018000F301 db 4]
.data:000000018000F302 db 3Ch <
.data:000000018000F303 db 4]
.data:000000018000F304 db Z23h #
.data:000000018000F305 db 4]
.data:000000018000F306 db 4Ch L
.data:000000018000F307 db 4]
.data:000000018000F308 db 53h s
.data:000000018000F305 db 4]
.data:000000018000F30A db &8h h
.data:000000018000F30B db 4]
.data:000000018000F30C db &5h i
.data:000000018000F30D db 4]
.data:000000018000F30E db &6h b
.data:000000018000F30F db 4]
.data:000000018000F310 db T4h t
.data:000000018000F311 db 4]
.data:000000018000F312 db 3Eh >
.data:000000018000F313 db 4]
.data:000000018000F314 db 3Ch <

Select all of the data and press A, which should arrange it into more legible data, although

every second byte is a 0, so we will need to remove them.

:000000018000F2ZF0 asc_18000F2F0
:000000018000F2F0
:000000018000F2F0
:000000018000F2F0
:000000018000F2F0
:000000018000F2F0
:000000018000F2F0
:000000018000F2F0
:000000018000F2F0
:000000018000F2F0
:000000018000F2F0
:000000018000F2F0
:000000018000F2F0
:000000018000F2F0
:000000018000F2F0
:000000018000F2F0
:000000018000F2F0
:000000018000F2F0
:000000018000F2F0
:000000018000F2F0
:000000018000F2F0
:000000018000F2F0
:000000018000F2F0
00000001 8000F2FO
:000000018000F2ZF0
:000000018000F2ZF0
:000000018000F2ZF0
:000000018000F2FO
00000001 8000F2FO

&

EBEBEEBEEEEEEEEREEEEREREER

"£',0,'#',0,'R",0,'8",0,'h",0,"4",0,"€',0,'t",0,'>",0,'<",0,"#",0,"'L"
; DATA XREF: sub_1800017DO0+Ato
; sub_1800022C04883t0 ...
o,'s",0,'n",0,'1",0,'¢',0,'t',0,'>",0,'<",0,"§",0,'R",0,'C",0,'t",0
‘r',0,'1',0,'»",0,'<",0,'%",0,'L",0,'C',0,"t",0,'¢",0,'1",0,">»",0,"'<"
o,'1*,0,"R",0,5*,0,'h' ,0,"1',0,"£",0,'t*,0,"'>",0,"<",0,"1",0,"L",0
'§',0,'h',0,'i",0,'£',0,'t",0,">",0,"<',0,'1",0,'R",0,'C",0,'t",0,'s"
nrlllrni'}'Jor'<'|°»'|'rni'L'rar'c1i°1't'rnr'r’;or'llinar’rrni'—1;a
;4:rﬂr;l:a?a;]:.Dné\'ﬁﬁr;i'u?:;f:n?-; :r0r§7§6?aé-:-Du;-::?:;‘:-?;;p'
,'a",0,'g",0,"=",0,'0',0,"p',0,">",0,'<",0, ,0,'a",0,'9g",0,'e",
R A A A AR S A
¥ $0, ', 0,"<",0,'", 0, £0, 7,0, 0, 'c",0,*",0, ", 0,27,
;E:Faf;_:E?Jé,:inlé{:rof;r-i?fé+:5?l;3:Pof;<:J?Jér:lniél:ieréi:l?r;{.
', 0, #0,'>",0,'<',0,'c',0, ;0,'>"',0,"'<",0,'s",0, P02,
P00 tE 0,150,013, 0, 1510, 110,161, 0,131,015, 0, k1,0, 1010, e
s "<, 0,'c",0, o0, > ,0,%<',0,'",0, ‘y0,'»",0,'<",0,'r",0, i
A A A AN AR AN A
;'®',0,'<",0,'F",0,"3',0,">',0,"<",0, ‘0, #0,'>",0,"<", 0,)
s el el e e e
,'8°,0,'>",0,%°<",0, (0,*9',0,">",0,'<",0, £0,'1%,0, fO T,
‘<',0,'F',0,'1*,0,'1*,0,'>",0,'<",0,'F',0,'1",0,'2",0,'>",0,'<",0,'D"
0,'e",0,'w",0,"n",0,">',0,"<',0,'0',0,'p',0,"'»",0,"<",0,"'R",0,'4",0
‘g',0,'h',0,'t",0,'>",0,'<",0,'L",0,'e',0,'£",0,'t",0,'>",0,"'<",0,'D"
o,'e",0,"1",0,">",0,"'<',0,"P',0,'",0,'L',0,'n",0,'t",0,">",0,'<",0
‘E',0,'n',0,'d",0,'>",0,'<*,0,'I",0,'n',0,'s",0,'&",0,'E",0,'t",0, " '>"
o,'<*,0,'cC",0,"a",0,'p',0,'s',0,'L",0,'s",0,'e",0,'k",0,'>",0,'<", 0
‘E',0,'n',0,'t",0,'e',0,'s",0,'>",0,'<',0,'B",0,'a',0,'e",0,'k",0,"'s"
o,'p*,0,'a',0,'c*,0,'e’,0,">,0,"<",0,'E"',0,'s",0,'c",0,'>",0,'<,0
T,0,'a',0,'b",0,'>",0

After removing the 0’s, we are left with this:

9/10

<#RShift> <#LShift> <#RCtrl> <#LCtrl> <!RShift> <!LShift> <!RCtrl> <!LCtrl> - + [] \
; / ', . <PageUp> <PageDown> <NumLock> <r/> <r*> <r-> <r+> <r1> <r2> <r3> <r4>
<r5> <r6> <r7> <r8> <r9> <r0> <r.> <F1> <F2> <F3> <F4> <F5> <F6> <F7> <F8> <F9>
<F10> <F11> <F12> <Down> <Up> <Right> <Left> <Print> <End> <Insert> <CapsLock>
<Enter> <Backspace> <Esc> <Tab>

We can assume that this data is used to log keystrokes when pushing certain buttons such as
Left Shift and NumLock, rather than regular characters. To double check that the
decryption worked, we can run it in a debugger and check the output. Now that we have
successfully decrypted the first part, we can do the same to each of the 19 sections of data
that are encrypted. If you want to view each decrypted string, you can check them out here.
One particularly interesting string in the data is msimm.dat, which could be the log file. In
addition to msimm, one of the strings seemed to indicate the version of said keylogger, as
well as a possible name for it: KSLOT Ver = 21.0, although I haven’t found anything
interesting linked to the name KSLOT - yet.

As this post is longer than what I planned it to be, I decided to split them into sections, as
there is quite a lot of decryption and functions to analyze — especially since it is static
analysis. I am focusing on this approach mainly to demonstrate and teach people that you
can still get a lot done through static analysis methods, even if you can’t afford the full
version of IDA Pro (which I certainly can’t!), as well as how to use IDC to automate time
consuming tasks. In the next part we will be decrypting some more stuff, and then actually
locating the loop that performs the keylogging — this should be out soon!

I10C (MD5):

Keylogger: 59bs7bdabee2ce1fb566des1ddg2eco4

10/10

https://pastebin.com/DrGVU417

