
1/5

Jacob Pimental July 1, 2019

Robbinhood Malware Analysis with Radare2
goggleheadedhacker.com/blog/post/12

01 July 2019

 
This article will provide an overview of how we can extract function names from Windows
GoLang binaries to make reversing easier and to give a brief analysis on the Robbinhood
Ransomware that attacked Baltimore recently. GoLang is a programming language designed
around multi-threaded applications. The difficulty in reversing GoLang binaries is that all
libraries are statically linked which means there will be a large number of functions in the
application, most of which are not even used during execution. For example, in a normal
Hello World compiled GoLang binary, radare2 detects 1800 functions.

The gopclntab section in a GoLang program contains a table of function locations along with
their names. Radare2 is able to parse out this table and label every function accordingly,
however this only works on binaries compiled for Linux. When it comes to Windows,
Radare2 is not able to find the gopclntab and we are left with thousands of unlabeled
functions with no clue as to what they do. I decided to learn how the gopclntab works and
create a parser using r2pipe to label all functions.

Gopclntab

https://goggleheadedhacker.com/blog/post/12


2/5

The gopclntab section always seems to start with the bytes 0xfbffffff, and after that contains
the size of the table. The next 8 bytes contains the location of the first function, then the
offset of that function from the start of the table. If you go to that offset from the start of the
table you’ll get the offset for the name of the function.

Using this table we can get all of the function information for the binary. I created a small
python script that uses r2pipe to parse this table and rename/create the necessary functions.
You can get the script on my gitHub. There is also a really in-depth article you can read
about the gopclntab here.

Robbinhood

In May, Baltimore was hit by a ransomware known as Robbinhood, that took out multiple
services. The ransomware itself was written in GoLang, so I thought this would be a good
opportunity to become familiar with GoLang reversing and analyze the sample.

When reversing a GoLang binary, the main function will be located at main.main. Seeking to
that function in radare2, we can see the binary trying to open the file
“C:\Windows\Temp\pub.key”. Strings in a GoLang binary are not null-terminated like most C-
type programming languages. Instead, they have a variable that contains the length of the
string.

If the file “pub.key” does not exist, the program throws an error and exits. If it does exist, the
program will get a list of drives that the computer has access to and run the function
main.CoolMaker. The CoolMaker function spawns multiple processes of “cmd.exe” to run the
service control manager in order to to shut down any endpoint agents or antivirus on the
infected host.

http://github.com/JacobPimental/r2-gohelper
http://lekstu.ga/posts/pclntab-function-recovery/


3/5

After the CoolMaker function has been called, Robbinhood will spawn 4 processes of the
function main.main.func1, which appears to be where the actual encryption occurs. The
function calls another function, main.doit, which creates an encryption key based on the
“pub.key” file found at the start of execution. These processes will then recursively walk
through the file system and encrypt any files it finds.

The program also logs the encrypted files names to four different log files, rf_l, rf_s, ro_l,
ro_s. Both of the rf_* files log the names of the files the program deems “interesting”. The
ro_* logs contain all other filenames. Both sets of logs are separated into large file sizes (rf_l,
ro_l), and small file sizes (rf_s, ro_s). These logs are deleted as soon as execution is
completed.



4/5

The dropped ransom note is contained in the binary as a base64 encoded string. The
different aspects of the note, such as payment amount and user id are defined by different
variables in the note to make them easily interchangeable depending on who the victim is.
For example, the wallet id is defined in the ransom note as “#WALLAD#” and is replaced by
the string “14yos7dpe4bx3imnoGVUcMsNBwU1hLutfj”. I did check to see if any payments
had been made to the bitcoin wallet address and it looks like Jack Young was true to his
word and the city didn’t pay the ransom at all.



5/5

Overall, this was not a very advanced Ransomware. It is very loud due to the fact that it is
shutting down multiple Endpoint agents and AV. It also did not have the ability to spread at
all. Every infected computer had to be targeted individually for it to cause real damage.

However, this was a fun sample to analyze and taught me a lot about GoLang reversing. As
always, if you have any questions or comments on this, or any of my other articles, feel free
to reach out to me on my Twitter and Linkedin.

Thanks for reading and happy reversing!

Tutorial, Radare2, Malware Analysis, Malware, Linux, Windows, Scripting, Automation,
r2pipe, GoLang

More Content Like This:

http://twitter.com/jacob_pimental
http://www.linkedin.com/in/jacobpimental/

