
1/11

See what it's like to have a partner in the fight.
redcanary.com/blog/tracking-driver-inventory-to-expose-rootkits/

Our colleague Keya Horiuchi recently described a threat detection where the Local Security
Authority Subsystem Service (LSASS) initiated a series of suspicious processes and
attempted to install a trojan on a customer endpoint. In this post, we’re going to discuss
what turned up when we pivoted off information from a very similar detection.

Threat hunting is fundamentally about pivoting and discovering new techniques or artifacts
that you may have missed previously, which is precisely how we discovered some intriguing
driver activity a few months back. Kernel-mode drivers function at a low level in the
operating system, which can be problematic because malicious or vulnerable drivers—
especially signed ones—can provide a stealthy, privileged position to conduct malicious
activity.

https://redcanary.com/blog/tracking-driver-inventory-to-expose-rootkits/
https://redcanary.com/authors/keya-horiuchi/
https://redcanary.com/blog/lsass-behaving-badly/

2/11

Of course, driver and other signatures are meant to provide assurances for identity and
integrity—not intent or capability. In this case, the driver in question was signed; it was also
a de facto rootkit. However, there was suspicious activity prior to its installation, and the
ancillary activity might be useful in detecting this and similarly inconspicuous threats moving
forward.

An intriguing driver

An important part of incident response is to examine all of the binaries that dropped on a
system around the time of a malicious event. And that’s exactly how we stumbled on this
particular binary in the Carbon Black binary store:

File MD5 hash: 2FAD0F279F7851AD6357C2DA8CE213A2

This file was particularly interesting given its filename, path, and explicitly distrusted status
(its status has since changed to revoked). Why, for example, is a .sys file with “dump” in its
name being dropped in the c:\windows\system32\drivers\ path? There’s only one way
to find out, so we brought the driver (dump_76af3f80.sys) into a test environment for
closer analysis.

Some observations

As you can see in the following image, the file’s certificate had expired or was not yet valid.

3/11

A closer look revealed that the certificate had been explicitly revoked:

On background

The adversary delivered the payload via a well-known exploit for a server message block
(SMB) vulnerability, CVE-2017-0144, fixed in March 2017. It’s worth noting that the
research team at NSFocus seemed to have found and reported on a substantially similar
threat in their NuggetPhantom report. While their write-up focused on modules within the
malware, how it attempts to evade detection, and its history, we’re going to examine how
this particular threat manifested in endpoint telemetry and why—in general—you should
keep an eye on the drivers in your environment. Below is an image from NSFocus’ report
that, while blurry, might be a helpful visual cue for conceptualizing the execution timeline:

https://nsfocusglobal.com/nuggetphantom-analysis-report/

4/11

The process timeline

The first thing we see in the Red Canary detection is lsass.exe spawning rundll32.exe and
msiexec.exe. As our colleague Keya pointed-out a few blogs ago, it is highly unusual for
LSASS to spawn rundll32, and it’s also unusual for msiexec.exe to make an external HTTP
request. Both of these process relationships offer great opportunities for detection.

5/11

Here are some Carbon Black queries that might unearth this activity in the environment
you’re monitoring:

parent_name:lsass.exe process_name:rundll32.exe

parent_name:lsass.exe process_name:rundll32.exe

childproc_name:msiexec.exe

parent_name:rundll32.exe process_name:msiexec.exe

(process_name:msiexec.exe cmdline:"/i" (cmdline:"http:" OR

cmdline:"https:"))

As you can see in the above timeline, msiexec eventually makes an outbound network
connection and loads downloadupdatemakegood.jpg . In turn, that file decompresses
winupdate64.log :

6/11

This is a bit of a sidebar, but we can also see the malicious software using netsh.exe to
block ports 137, 138, 139, and 445, which prevents other adversaries from leveraging the
same exploit to further compromise this host.

7/11

At the time we detected this threat, there wasn’t much in the way of publicly available blogs
or research discussing this behavior, so we were largely unsure of what else may have
been dropped. However, as we continued triaging, we discovered that the msiexec
execution coincided with another file being dropped and injected into trusted processes:
ms7db53800app.dll .

Here’s the first part of the timeline:

8/11

Here’s the second part:

Examining the driver

A quick search for ms76af3f80app.dll in Carbon Black revealed that its underlying
binary is the same as another file, ms76af3f80app.dll , and that the MD5 hash
associated with both files is 4209AE0CB569EFAB29CA9D2D7F4A211B .

It’s worth noting—if only tangentially—that Carbon Black collects executables and DLLs the
first time they are observed loading or executing.

Ultimately, ms76af3f80app.dll then delivers the driver that we looked at in the opening
of this blog (dump_76af3f80.sys). It’s a signed binary, and it matches the
digsig_subject reported by NSFocus.

We observed the adversaries updating their binaries by downloading a new *app.dll file
along with a pair of .xsl files. According to NSFocus, those are the DDoS and monero-
mining modules:

9/11

This driver adds persistence to live within safe mode by modifying the safeboot registry
values, a technique that Didier Stevens first described all the way back in 2007.

Conclusion

Even in cases where a driver’s signature has expired or been revoked, it will still pass
Driver Signature Enforcement and the operating system might even load it in some
situations.

As defenders, we need to understand, enumerate, and evaluate what drivers are in our
fleet. We need to understand how they arrived and what their intentions are. Unlike user-
mode applications, we believe that kernel-mode drivers, while certainly dynamic, will have
less change over time than user-mode applications. In this way, it’s feasible to track driver
changes in order to keep an eye out for adversaries who would use kernel-mode drivers as
surreptitious rootkits.

These types of attacks are the very reason Microsoft has developed Kernel Mode Code
Integrity: to give defenders assurances that even though a driver is signed, it may not be
sanctioned or approved for your environment, and therefore will not load.

https://blog.didierstevens.com/2007/03/26/playing-with-safe-mode/
https://msdn.microsoft.com/library/bb530195
https://blogs.technet.microsoft.com/iftekhar/2017/09/20/windows-10-device-guard-against-malware-intrusion/

10/11

The following Carbon Black queries relate specifically to the binary metadata of these
drivers.

observed_filename:c:\windows\system32\drivers\ digsig_result:"Bad

Signature" digsig_result:"Invalid Signature" digsig_result:"Invalid

Chain" digsig_result:"Untrusted Root" digsig_result:"Explicit

Distrust"

And the inverse:

-observed_filename:c:\windows\system32\drivers\ digsig_result:"Bad

Signature" digsig_result:"Invalid Signature" digsig_result:"Invalid

Chain" digsig_result:"Untrusted Root" digsig_result:"Explicit

Distrust"

This may lead to a clean way to detect suspicious driver loads from ntoskrnl.exe . Very
few unsigned binaries, let alone distrusted ones, get loaded. I confirmed this theory by
sweeping across our fleet of endpoints, finding that the volume was minimal enough to sort
through manually. We can further limit this output by suppressing obviously legitimate
unsigned binaries. Ultimately, this should lead to us to identify true evil being loaded by
ntoskrnl.exe .

Here’s a related query:

(digsig_result_modload:“Unsigned” OR digsig_result_modload:“Explicit\

Distrust”) process_name:ntoskrnl.exe

On 32 bit systems, we may expect to see an unsigned modload. However, on a 64 bit
system, the Windows kernel requires that drivers be signed.

The inverse, all signed, could be an interesting play to identify suspect signed drivers being
loaded. It would take more time to tune but could reveal some interesting behaviors.

Indicators

2FAD0F279F7851AD6357C2DA8CE213A2
AE8EDBEA9F2106D59147A377B86B412E
4209AE0CB569EFAB29CA9D2D7F4A211B

Related Articles

Threat hunting

11/11

What is normal? Profiling System32 binaries to detect DLL Search Order
Hijacking

Threat hunting

Hunting for GetSystem in offensive security tools

Threat hunting

Privilege escalation revisited: webinar highlights

Threat hunting

Detection Déjà Vu: a tale of two incident response engagements

Subscribe to our blog

Our website uses cookies to provide you with a better browsing experience. More
information can be found in our Privacy Policy.

 X

Privacy Overview

This website uses cookies to improve your experience while you navigate through the
website. Out of these cookies, the cookies that are categorized as necessary are stored on
your browser as they are essential for the working of basic functionalities of the website. We
also use third-party cookies that help us analyze and understand how you use this website.
These cookies will be stored in your browser only with your consent. You also have the
option to opt-out of these cookies. But opting out of some of these cookies may have an
effect on your browsing experience.

Necessary cookies are absolutely essential for the website to function properly. This category
only includes cookies that ensures basic functionalities and security features of the website.
These cookies do not store any personal information.

Any cookies that may not be particularly necessary for the website to function and is used
specifically to collect user personal data via analytics, ads, other embedded contents are
termed as non-necessary cookies. It is mandatory to procure user consent prior to running
these cookies on your website.

https://redcanary.com/privacy-policy

