Malware Against the C Monoculture

research.checkpoint.com/malware-against-the-c-monoculture/

May 20, 2019

May 20, 2019
Research by: Ben Herzog

It's possible to write any program in any programming language; that's what Turing
completeness means. Therefore, it's possible to write malware in any language, too. But in
both cases, what’s possible isn’'t always feasible. Performance issues, compatibility issues,
the availability of third-party libraries and useful primitives — all of these can spell the
difference between a huge success and a huge headache.

Malware authors face “product specifications” unlike any other developer. They need their
product to run silently, reliably, and with minimum user interaction. As a result, they will go to
great lengths to avoid an extra dependency that requires separate installation, or an extra
dialogue box that asks “are you sure?”. These things are usually just “nice-not-to-have”s, but
for malware authors, they directly hurt the campaign’s bottom line.

This contributes to somewhat of a monoculture in the malware landscape. A great majority of
notable malware is written in C language, or at best C++. These may not be the most
developer-friendly languages in the world (C language creator Dennis Ritchie sardonically
noted in 2011 that C has “all the power of assembly language, combined with all the

117

https://research.checkpoint.com/malware-against-the-c-monoculture/
https://en.wikipedia.org/wiki/Turing_completeness

convenience of assembly language”), but the amount of example code and reference
materials available for these languages is very great. More importantly, a well-built C binary
looks just like a legitimate program to the untrained eye, and runs without a hitch or a
dialogue box. If we started listing current or historical high-profile malware that’s written in C
or C++, we wouldn’t stop.

Still, is this choice set in stone? How much of it is well-founded decision, rather than just
attachment to the status quo? In this article, we explore that question via a review of some
malware where the authors chose otherwise. We’'ll separate the chosen languages into
rough categories (dynamic, VM and static), and ask ourselves: Was this a good choice? Is
this language — even this kind of language — a good fit for writing malware with, and why?

Easy, but There’s a Catch: Dynamic-Language Malware

There is no single well-defined quality that makes a programming language “dynamic” or
“static”. These are more terms of art than rigid definitions. A programming language will tend
to be called “dynamic” if it has enough of the following characteristics:

1. Dynamically typed: Types are only assigned to objects at run-time.

2. Weakly typed: Type conversions can happen without the developer explicitly invoking
a conversion function.

3. Garbage Collected: Memory management happens automatically at run-time, and is
invisible to the developer.

4. Interpreted: Language instructions are converted into machine instructions as a part of
the execution process.

Some well-known examples of languages generally considered “dynamic” are Lua,
Javascript, PHP, Perl, and Python (which isn’t weakly typed). These stand in contrast to
“static” languages, which have traditionally had these characteristics:

1. Statically typed: Types are assigned to variables at compile time.

2. Strongly typed: Type conversions can only happen if the developer explicitly invokes
a conversion function.

3. Manual memory management: The developer is responsible for specifying correct
allocation and de-allocation of memory at compile time.

4. Compiled: Language instructions are all converted directly into machine instructions in
a separate step, which must be completed before the program can be run.

This category includes C, C++, Pascal and Fortran.

On paper, dynamic languages should be very attractive to malware authors. When using
them, the development process takes less time and is much less of a hassle — things “just
work”, and quickly. There are no long compilation times, barely any time spent satisfying the

217

type system, no boilerplate code to manage memory, and relatively little debugging before
the code’s first successful run from beginning to end. It's a much breezier experience than
using “static” languages in general, let alone C.

That’s not to say Dynamic languages are without drawbacks. Garbage collection has a
performance cost; some run-time errors will get into production that a rigid type system
would’ve caught; and dynamic code is empirically known to not “scale” as well when the
project grows, due to the languages’ lax guarantees and fountain of implicit magic. Still,
malware authors don’t typically care about these issues. They don’t mind if the malware
takes 3 minutes to run instead of 10 seconds; they’d rather ship quickly than enjoy any
fancy-pants guarantees on esoteric edge cases; and they certainly aren’t in it for the ‘scaling’
experience. From their point of view, you can live the dream of zero bugs, zero features, and
zero technical debt — as long as you give zero priority to any of those aspects of software.

.
/

T LEARNED IT LAST
NIGHT! EVERYTHING
15 SO SIMPLE!

I

HELLO WORLD IS JUsT
print "Hello, world!"

The Joy of Dynamic Languages (Credit: Randall Munroe)
So why isn’t all malware just written in dynamic languages? Generally, it's because:

1. Some actors have the above attitude to maintaining projects, and then others don't.
They aim high, and their goal is to build a robust product and a lucrative brand identity,
where they get to sit and watch as other criminals fork over cash to participate in their
affiliate program or to use their product in a separate campaign. Feature logs, bug
fixes, and technical debt are not mere hassles to these actors, but legitimate concerns.

3/17

https://research.checkpoint.com/wp-content/uploads/2019/05/dynamic.png
https://xkcd.com/353/

2. Dynamic languages typically require an interpreter to function, which may not even be
installed at the victim machine. Socially engineering someone to double-click a file is
one thing, but socially engineering them to first install the Perl interpreter and then
double-click the file is something else entirely.

3. Victims are used to running compiled binaries. When you hand them a compiled binary
and name it frog_blender.exe, they’ll just double-click it and get infected. The same
gambit with an interpreted file will not work as easily. “Why does this file have a py
extension instead of exe? Why is Windows asking whether | want to run or edit the file?
Why do | need to pick a program to run it with?”. A whole separate effort has to be
made to socially engineer the victim into running the code at all.

4. In any language, some functions that are a malware author’s bread and butter — such
as reading and writing to the registry, working with remote processes, and sending
HTTP requests — will be absent from the language’s standard library. The difference is
that in a compiled language, these dependencies can be baked into the malware at
compile time, on the author’s end; but in the case of an interpreted language, the
malicious code looks for these dependencies at run time, on the victim machine, where
they are almost certainly missing.

THE LiFE OF A SOFTWARE MUCH LATER...
ENGINEER. .

OH MY. T’VE
DONE iT AGAIN,
HAVEN'T T 7

CLEAN SLATE. SoLiD
FounDATIONS. THIS TIiME
T wWill BUILD THINGS THE

RiGHT wWAY.

W e e e

4/17

https://research.checkpoint.com/wp-content/uploads/2019/05/programming_project.jpeg

The Sorrow of Dynamic Languages (Credit: Manu Cornet)

Dynamic code is typically much easier to analyze. Whole classes of anti-disassembly, anti-
debugging, anti-VM, anti-Analyst’s-will-to-live tricks are just out of reach when writing in a
dynamic language. This is the result of several factors, and mostly the semantic gap
between the interpreted script and the machine code that these techniques are typically
written in. Also, interpreted malware doubles as its own source code, which is easier to
understand and modify. Severely “obfuscated” scripts have been known to be de-obfuscated
single-handedly by changing a single eval statement into a print.

Powershell Malware (MuddyWater, 2018; GhostMiner, 2018)

Powershell is a “task automation and configuration management
framework” which Microsoft introduced in the year 2000. It is
roughly analogous in function to Linux’s bash, which means that if
you want to do something, there’s probably a command for it.
Powershell is built on top of Microsoft’s “.NET framework” —
meaning that similarly to Java, it ultimately runs on a specific
Virtual Machine, created for this purpose.

For a dynamic language, Powershell is unusually suited to writing malware, as it
compensates for two of the drawbacks noted above. First, every version of Windows since
XP ships with the Powershell interpreter included out of the box; second, all of Powershell’s
functionality is accessible immediately without the need to download third-party code. This
leaves merely the concerns of poor scalability, weaker obfuscation and the lack of built-in
social engineering. Actors willing to tolerate these issues, or to do some work and
compensate for them, actually have the option to write their malware in a dynamic language,
with all the resulting productivity gains.

One notable campaign that went the Powershell route is MuddyWater, a backdoor operation
attributed to an Iranian threat actor that’s been active since at least 2017. MuddyWater was
mostly noted for an elaborate campaign targeted at the Saudi Arabian government, but has
also been known to pick targets in the US and Europe. A year after the campaign’s debut, in
2018, Turkish public companies in the finance and energy sectors were hit with a malicious
document campaign that, as its payload, basically had a Powershell rewrite of previously-
known MuddyWater tools. The payload itself was moderately obfuscated by BASE64
encoding, AES-encryption with a known key, and the hiding of some code fragments behind
variables named after colorful English swear words. Once you got past that, the backdoor
itself was minimalistic in function, and mostly used Powershell’s facilities to easily perform
tasks such as getting the victim’s system architecture and privileges. When using C, these
trivial tasks can require correctly chaining several calls from the Win32 API, which is
notorious for functions such as the succinctly-named
AccessCheckByTypeResultListAndAuditAlarmByHandleA that takes a mind-boggling 17
parameters.

5/17

https://ma.nu/
https://research.checkpoint.com/wp-content/uploads/2019/05/powershell_logo.jpg
https://securelist.com/muddywater/88059/
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-accesscheckbytyperesultlistandauditalarmbyhandlea

This Document is protected

1- Open the document in Microsoft Office, Previewing online is not
available for protected documents.

- If this document was downloaded from your email please click
“Enable Editing” from the yellow bar above.

- Once you have enable editing please click “Enable Content from
the yellow bar above.

MuddyWater decoy document, with the blurred logo of the Kurdistan regional government.
(as initially outlined here)

Another example of Powershell malware was GhostMiner, a fileless threat discovered by
researchers at Minerva at 2018 that used its hapless victims’ CPU cycles to mine
cryptocurrency. GhostMiner was a piece of technical art, combining ready-made pieces to
create an unusually evasive infection chain. For its propagation phase, it acted akin to the
old-school Morris Worm, probing random IP addresses and targeting them with an exploit for
a certain 1-day vulnerability (in this case CVE-2017-10271, a vulnerability in Oracle’s
WebLogic server). Post-exploitation, it used two separate evasion techniques, both released
as open-source tools by legitimate penetration testers, to reflectively load a malicious DLL
from an obfuscated payload (Invoke-ReflectivePEInjection and Out-CompressedDIl).

6/17

https://research.checkpoint.com/wp-content/uploads/2019/05/img1-1.png
https://twitter.com/_CPResearch_/status/1112789106638184449
https://blog.minerva-labs.com/ghostminer-cryptomining-malware-goes-fileless
https://en.wikipedia.org/wiki/Morris_worm
https://nvd.nist.gov/vuln/detail/CVE-2017-10271
https://www.oracle.com/middleware/technologies/weblogic.html
https://github.com/PowerShellMafia/PowerSploit/blob/master/CodeExecution/Invoke-ReflectivePEInjection.ps1
https://github.com/PowerShellMafia/PowerSploit/blob/master/ScriptModification/Out-CompressedDll.ps1

Ghostminer code that removes competing miners from the victim system. (Credit: Minerva
Labs)

One can see how both those choices were made to compensate for Powershell’s
weaknesses as a tool of the malware craft. Exploiting a vulnerability — rather than the
human element — meant that the attack could proceed without socially-engineering anyone
to run a Powershell script. This insight has not escaped other actors, and as a result, in
recent years Powershell has seen wide use in “Fileless” malware built on the same principle.
This extends to other contexts where code is already running on the victim machine, such as
the tail of a malicious MS-Office macro attack (see for example here, as well as this quaint
little backdoor which liaisons with its C&C server via DNS TXT entries). By using ready-made
frameworks to handle evasion and obfuscation, the authors made sure that analyst
frustration when coming across this threat was at least moderate.

The only thing the attackers did not (and could not) compensate for was the language’s
unsuitability for commitment to large, maintenance-heavy projects. But maybe that’s for the
best: analysts suspect that GhostMiner’s technical tour de force only managed to mine 1
XMR, equivalent to a grand total of about $200.

Python Malware (Pbot, 2018)

First released by Guido von Rossum in 1991, the Python
programming language pivoted off its simple syntax and
large standard library to become a sort of lingua franca for
developers. It is one of the easiest programming language to
learn, if not the easiest, and one of the most fully-featured, in
that there’s a library for nearly everything you might want to
do. Python is the poster child for all the advantages of
dynamic languages; if malware authors could just write all
their malware in Python, all else being equal, they would.

717

https://research.checkpoint.com/wp-content/uploads/2019/05/ghostminer_removes_other_miners.png
https://www.varonis.com/blog/understanding-malware-free-hacking-part/
https://www.sentinelone.com/blog/dnsmessenger-powershell-malware-analysis-2/
https://research.checkpoint.com/wp-content/uploads/2019/05/python_logo.png

Unfortunately for them, things are not that simple. With respect to writing malware, Python
has all of Powershell’s pitfalls, and then all the rest of the issues with dynamic languages on
top of those. Python isn’t pre-installed by default on Windows, and so has to be installed
separately; also, many pieces of functionality that are essential to malware aren’t even
included with the Python standard library, and so require third-party modules. For instance,
nearly every malware will have to interact with the Windows registry and send HTTP
requests, but if you want to do that in idiomatic Python, you need to download a separate
third-party module for each of those actions (such as winreg and requests, respectively).

All of these concerns make Python malware rare — but, apparently, not unheard of. For
some malicious actors, the prospect of cutting down on 70% of their work with a few import
statements is just too good to pass up, and the result is strange creatures like Pbot.

#is PE file?
if (h{1C) !'= 23117):
R{'Not am MZ image!')

LL = s({1C + b.La.offset))
Lm = (1C + LL) #PE header
if (s(Lm) !'= 17744):
R({'Not am PE image!')
Lp = Lm #PE header
La = ({(Lp + N.mu.offset) + h{({Lp + N.md.offset) + D.Lr.offset)))
Li = h{{(Lp + N.md.offset) + D.LG.offset))
if (Li == 0}:
1()
Hcopy sections
while True:
Li -= 1
LG = (La + (Li * sizeof(Q))})
LH = (1C + s({{LG + Q.m0.offset)))
LS = (1C + s{{LG + Q.Lt.offset)))
Lx = s{(LG + {.mg.offset))

Fragment of Pbot’s loader code. (Credit: MalwareBytes)

Pbot is a piece of python Adware, noticed by Malwarebytes researchers in early 2018. It
spends a lot of energy clearing several of the hurdles outlined above. For instance, at the
time it was being spread via the RIG exploit kit, routing (again) around the requirement for
social engineering. To deal with the fact that the victim may be missing the Python interpreter
and/or the required libraries, Pbot does not deliver a raw .py script file, and instead delivers a

8/17

https://blog.malwarebytes.com/threat-analysis/2018/04/pbot-python-based-adware/
https://research.checkpoint.com/wp-content/uploads/2019/05/pbot_loader_fragment.png

large executable bundle which contains a complete Python environment and interpreter,
including all the required dependencies. Bundles such as these can be created from Python
packages using 3rd-party tools such as Pylnstaller.

Pbot’s main functionality was a framework for injects and man-in-the-browser attacks.
Without access to Pbot’s configuration, one could only speculate on the exact monetization
model that authors had in mind; but given that most malware with such functionality uses it to
steal banking credentials, and given that the malware came with a built-in whitelist of
Russian banks to refrain from attacking, we can conclude that Pbot was probably a banking
Trojan (the canonical example of such malware, ZeuS, was also known as Zbot).

By hitch-hiking on an exploit kit and using the executable bundle install, the authors of Pbot
were able to skirt some of the inherent problems of Python malware, but not all. The most
glaring drawback is the particularly weak obfuscation, which the authors didn’t do much to
offset (even leaving in some comments and debug strings). It may also be worth mentioning
that spam emails are still the most prolific attack vector, and that for cybercriminals, giving up
on spam and relying solely on exploit Kits is likely a bitter trade-off.

Variants
s B 05
Java Virtual Machine

Schema of how an application written in a VM language (in this case, Java) can be run on
multiple platforms.

Some of Column A, Some of Column B: VM Language Malware

Not all languages can be stuffed neatly into the “static” or “dynamic” pigeon-hole. There’s a
notable set of programming languages which, on the one hand, are statically and strongly
typed, and have an explicit compilation step; but on the other hand, are garbage-collected,
and are compiled to bytecode that’s only translated to machine code at run time by a
dedicated VM. You may rightly ask where’s the difference between this so-called
“‘compilation” and the flow of a fully interpreted language like, for example, Python, which
does after all have its own VM for exactly the same purpose. Mainly, the difference is that a
VM language may easily lack a REPL (interactive prompt), whereas for a dynamic language,
it's a must-have feature; and that in a VM language, the bytecode translation must be
invoked by the developer explicitly and both it and the VM itself generally have proper
specifications, whereas in a dynamic language the conversion is invoked implicitly and is

9/17

https://research.checkpoint.com/wp-content/uploads/2019/05/vm_language.jpg
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop

more of a mere implementation detail. (If you're interested in a deeper dive into this shadowy
corner, we recommend this blog_post by Ned Batchelder). Some prominent examples of VM
languages are Java, Scala and Kaotlin, all of which run on Oracle’s JVM; as well as C# and
VB.NET, all of which run on Microsoft's CLR.

VM languages’ mishmash of characteristics puts them somewhere in the twilight zone
between “static” and “dynamic”, with a resulting mix of pros and cons for malware
developers. These languages provide an immediate productivity boost over C, and their
bytecode can be run on any OS that has the appropriate VM installed; on the flip side, they
introduce a glaring dependency in the form of the VM itself, as well as the challenge of
getting the victim to run a non-PE file (there’s also the performance overhead, but again,
that’s less important in the context of malware).

Java Malware (Jrat, 2012)

Java spent several years reigning as the most popular
programming language on earth, and has a long and complicated
history, fraught with patent lawsuits and corporate acquisitions. It
(is well-known for being an essential layer in the development
stack of Android Apps, as well as a popular choice for server-side
enterprise apps. Apart from its VM nature, Java is perhaps best-
R known for its strong adherence to Object Oriented Programming
g/, principles: In Java, everything is an object (as lampooned in Steve
Yegge's Execution in the Kingdom of Nouns).

<)

Is Java a good choice for cybercriminals trying to write malware? That depends on how
much they like Java’s Object-orientation, how much their campaign stands to gain from
Java’s cross-platform reach, how much they care about obfuscation, and how much they are
willing to let victim conversion rates suffer. The tagline goes “15 Billion devices run Java”, but
the victim’s machine might not be one of them.

This apparently was not enough of a concern for the authors of JRat, a Remote
Administration Tool discovered by Fortinet in 2016. JRat supports a variety of commands,
among them deleting victim files, sending screenshots to its C&C server, killing processes
and visiting URLs (this last one may be used for DDOS attacks and click fraud). Unlike with
PBot, which included all its bundled dependencies, JRat only targets machines which
already have Java installed.

JRat is obfuscated to a reasonable standard for a dynamic language; all the package and
variable names are replaced with random gibberish, all the strings are split into many shreds
that are only assembled at run-time, and some of the functionality is buried behind an AES-
encrypted blob. While frustrating, these stumbling blocks still can’t hold a candle to the
obfuscations and evasions one often encounters on classic-flavor C malware.

10/17

https://nedbatchelder.com/blog/201803/is_python_interpreted_or_compiled_yes.html
https://research.checkpoint.com/wp-content/uploads/2019/05/Java_logo.png
https://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html
https://www.fortinet.com/blog/threat-research/new-jrat-adwind-variant-being-spread-with-package-delivery-scam.html

public class Unmedaled
r

L
[..]
public static void hayneTech()

r
L

Unpeg.difdaBruzz = "com.oofiest.flatterer.Shreds.get”;
Unpeg.noxChoop = "Bu
Unpeg.corrBlimy = "miesFu
Unpeg.jismDupe = "stils.Un";
Unpeg.mhofevum = "m.cholle”;
Unpeg.thyselBazar = "f
Unpeg.mendeeHunh = "AES™;
Unpeg.boohooTalked = "'B882216cad";
Unpeg.rebellWasir

Unpeg. pnyxLuwo

1

I
1
I

Jrat source containing obfuscated string shreds. (Credit: Fortinet)

Happily, judging by JRat itself, we are still far away from the specter of true cross-platform
malware. The malware was not actually written fully in Java, and contained OS-specific
components which were executed depending on the victim OS. Also, according to analysis
by Trend Micro, the authors did not fully implement all of the malware’s functionality for all
operating systems, and instead showed clear “preferential treatment” to compatibility with
Windows OS. This makes some sense, given that Windows OS is probably more familiar to
the malware authors and has a significantly larger market share — but if we put ourselves in
the authors’ shoes, we can’t help but see this choice as a missed opportunity.

We Fear It’s the Future: Ergonomic Static Language Malware

As mentioned above, ergonomics for static languages have been historically poor, especially
so for C language. This deficiency gave birth to dynamic and VM-based languages, but also
produced efforts to create new static languages with improved ergonomics. The most well-
known effort in this direction is old reliable C++, which introduced exceptions, operator
overloading, improved memory management and built-in support for Object Oriented
Programming; yet during the years, has also inspired a litany of criticisms leveled at its ad-
hoc patchwork design, Turing-complete template system and, most importantly, its manual
memory management. The last 20 years therefore saw many efforts to address these issues
by creating “a better C++”, many of which failed to catch on and faded into obscurity.

For malware authors, the modern static languages in serious use today generally share the
advantages and disadvantages of static languages, apart from some differences. First, the
ergonomics tend to be much better, but still can’t match the experience of writing in, say,

11/17

https://research.checkpoint.com/wp-content/uploads/2019/05/jrat_source.png
https://blog.trendmicro.com/trendlabs-security-intelligence/jacksbot-has-some-dirty-tricks-up-its-sleeves/

Python. Second, these languages use stronger typing systems than C, which place more
restrictions on conversions between types. This improves scalability with respect to project
size, but means that some categories of clever tricks are right out, and the malware
developer may have come to rely on those in their coding style. Third, these languages are
typically new, with a smaller niche than C++, and so studying them is a costly, avoidable
investment. Fourth, and related to the third: there is no large repository of leaked malicious
code to pick and choose from, and the third-party libraries are sometimes not mature by the
standard you’d come to expect from more established languages.

Golang Malware (Mirai, 2016; Zebrocy, 2019)

Golang, which was created at Google in 2007, puts a particular
emphasis on readability, simplicity, built-in concurrency
primitives, and a minimal feature set. The authors reportedly
wanted the language specification to be “small enough to hold
m in a programmer’s head”, and opted to leave out many complex
features (most notably generic programming facilities), which
makes the learning curve for Golang a treat. Golang is therefore
an opportunity for malware authors if they are willing to put in
the moderate learning effort, and as long as they are also willing

to roll up their sleeves and make do when otherwise they would have used a third-party
library or copy-pasted code from the leaked Gozi sources.

Since 2012, the infosec world has been subjected to an intermittent drizzle of Golang
malware. Among the notable examples, one can find this tool that co-opts the victim machine
to assist in brute-forcing the credentials to phpMyAdmin and WordPress websites; WellMess,
a simple backdoor that allows remote execution of shell commands on the victim machine;
and we would be remiss not to mention the Mirai Botnet, a juggernaut made out of hundreds
of thousands of loT devices that were compromised via credential brute-force, and was
infamously used to launch a gigantic denial of service attack against the blogging platform of
investigative reporter Brian Krebs. (If you happen to have a spare hour, the follow-up
investigation report by Krebs is really something.)

12/17

https://research.checkpoint.com/wp-content/uploads/2019/05/golang_logo.png
https://golang.org/
https://en.wikipedia.org/wiki/Generic_programming
https://blog.malwarebytes.com/threat-analysis/2019/02/new-golang-brute-forcer-discovered-amid-rise-e-commerce-attacks/
https://fossbytes.com/wellmess-malware-go-linux-windows/
https://medium.com/@cjbarker/mirai-ddos-source-code-review-57269c4a68f
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-ddos/
https://krebsonsecurity.com/2017/01/who-is-anna-senpai-the-mirai-worm-author/

package main
import |

L Er,t L
wapi "github.com/iamacarpet/go-wintdapi™

func main(){

if err !'= nil {

fmt.Printf {"Error fetching user =ession list.\r\n")

return
fmt.Printf({"Users currently logged in (Admin check doesn't work for AD Accounts):i\r\n")
for , u := range users {

fmt.Printf {"\t%-505 - Local User: %-5t - Local Bdmin: %tA\r\n"™,

u.FullU=ser(), u.LocalUser, u.LocalZdmin)

This open-source Golang code to retrieve the list of logged-in users was used verbatim in
Zebrocy. (Credit: Vitali Kremez)

Perhaps the most technically notable incident was in late 2018, when a new variant surfaced
of the Zebrocy Downloader / Infostealer, a large piece of which was written in Golang. This
piece of malware originated with the Sofacy Group (APT28), thought connected to the
Russian military intelligence agency GRU. According_to researchers at Kaspersky, this new
variant was mainly used to attack central Asian governments, and rode on the tail of a
complex infection chain that lured victims to run an executable file with an icon mimicking
that of an MS-Word document. Post-infection, the malware displayed a decoy document to
mitigate suspicion, which certainly implies some degree of author dedication.

Rust Malware (Exaramel Backdoor, 2017)

Rust language was originally conceived at Mozilla Research, and
its main feature is a “borrow checker” that enforces thread and
memory safety at compile time, removing the need for a run-time
garbage collector and making the language viable for real-time
and embedded systems. Apart from that, Rust has a complex
type system, mind-boggling_iterator adapters and many other
such features directly inspired by Haskell and its functional ilk.

13/17

https://research.checkpoint.com/wp-content/uploads/2019/05/zebrocy_source.png
https://www.vkremez.com/2018/12/lets-learn-dissecting-apt28sofacy.html
https://securelist.com/a-zebrocy-go-downloader/89419/
https://research.checkpoint.com/wp-content/uploads/2019/05/rust_logo.png
https://www.rust-lang.org/
https://danielkeep.github.io/itercheat_baked.html
https://www.haskell.org/

transform=T:Glyph,K:Glyph
{bUfI&[T], key:&[H], comb : &{ { {&T;&H} T}
T A
buft
.into_iter()
1(key.len())

=

(i,shred) (&key[i key.len()], shred))
(k,shred) | shred.map(move |c| comb(&c, k)))

()

This Rust code performs a generalized rotating byte-wise encryption.

On the face of it, Rust is not a reasonable choice for malware authors. While practitioners
hold the language in high regard, it has a notoriously difficult learning curve, and solves
problems that cybercriminals don’t much care for. Maybe somewhere out there, there’s a
malware author with a passion for shaving 5% off their malware’ running time, running it on
embedded devices and implementing all the logic via zygohistomorphic prepromorphisms,
but we suspect this person is the exception, rather than the rule.

Imagine our surprise, then, when we first heard of Linux.Backdoor.IRC, originally discovered
in 2016. It is a simple Rust backdoor that responds to commands via IRC protocol (some
would call this “old-school”), and supports a total of 4 commands: collect & send OS
information to the C&C server; collect and send information about running processes on the
victim machine; connect to a specific chat channel; and self-destruct (delete self from file
system). The analysts at Dr. Web, who discovered this curiosity, noted that the IRC channel
was not active and the malware appeared to lack any mechanism for self-propagation, and
thus came to believe that it was a prototype or a proof-of-concept. Whatever it was, when its
authors were done, they apparently wiped a drop of sweat off their brow and said, “we’re not
doing that again”.

14/17

https://research.checkpoint.com/wp-content/uploads/2019/05/rust_sample_source.png
https://www.theregister.co.uk/2019/04/09/stack_overflow_survey/
https://wiki.haskell.org/Zygohistomorphic_prepromorphisms
https://news.drweb.com/show/?i=10193&lng=en&c=14

EOF From client
#secure2016_malware

) bot-Rrkf

eric #64~14.04.1-Ubuntu SMP Fri Mar 18

ic #64~14.04.1-Ubuntu SMP Fri Mar 18

VEX
5 bot-GVEX

bot-GVEX
irc 127.0.0.1 2 #secure2016_malware 1

Screenshot of the IRC channel used to control Linux.Backdoor.IRC. (Credit: Dr. Web)

We would disregard Linux.Backdoor.IRC as a freak coincidence and/or urban legend, except
that two years later it was followed by another, and rather more serious, instance of Rust
malware: the Exaramel backdoor, used by the Telebots group. This group is thought to have
been behind the high-profile NotPetya outbreak, as well as several attacks against critical
infrastructure in Ukraine (which were dressed up as ransomware attacks with a highly
unreasonable ransom demand). The group is thought to have connections with the
BlackEnergy group, which was known for a similar modus operandi; the name “Telebots” is
derived from its standard backdoor tool, which communicates with its C&C server via the
Telegram bot API.

15/17

https://research.checkpoint.com/wp-content/uploads/2019/05/rust_trojan_irc_channel.png
https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/

.text:Aa405185 lea ecx, [esp+88h]

-text:AA4A518C nov edx, offset _str D ; “https://api.telegram.org/botprefix@BEcom’. ..
text:aeua5191 push 1Ch

.text:-AaB405193 call _ ZH93 $LTScollections string Stringju2@$asSu28icore convert From$LT$$RFS5u2
.text:88485198 add esp, 4

.text:-ap4a519B nov eax, [esp+18Bh]

-text:oap4as1A2 novsd #mm@, quord ptr [esp+BF8h]

-text:-po4051AB nou [esp+26Bh], eax

-text:-9O40851B2 movsd qword ptr [esp+258h], =xmmB

-text:904051BB nouv eax, [esp+138h]

.text:8840851C2 novsd ®mm@, quord ptr [esp+136h]

.text:884051CB nowv [esp+26Ch], eax

.text:8e4051D2 novsd qword ptr [esp+264h], =xmmB

.text:@884051DB nowv eax, [esp+88h]

.text:@a40851E2 novsd ®xmm@, quord ptr [esp+86h]

.text:804051EB nowv [esp+278h], eax

.text:A84851F2 novsd qword ptr [esp+278h], xmmA

.text:804851FB call _ ZHarandi18thread_rngi17h6294c590880e41563E ; rand::thread rng::h6294c59080e41563
.text:@AB40852 00 nowv [esp+1CBh], eax

-text:-ap4as287 lea ecx, [esp+BF8h]

-text:oap4a528E nov edx, offset _str w ; "getmac JFOD csul foo 2\

.text:-pp4as213 push BEh ; size_t

-text:-9a4085215 call _ ZH7suchostiexec17h59957a2b5edc2570E ; svuchost:iexec::h59957a2b5edc2570

A part of the Exaramel backdoor disassembly. (Credit: ESET)

The Exaramel backdoor was originally written in Python but was later Rewritten in Rust.
According to ESET, it was distributed as a Trojan pretending to be an AV solution, and even
communicated with domains that were forged to appear to be legitimate AV vendor domains.
It supported a fairly sophisticated API, including the ability to create processes as a specific
user, start and stop Windows services, and evaluate arbitrary VBS code. It was also bundled
with an embedded credential stealer, which harvested passwords from a long list of web
browsers and FTP clients.

We finally note that versions of this backdoor were spotted in the wild that were compiled to
run on Linux OS, which implies that the Telebots group makes a point of being a cross-
platform threat. This at least may explain why they rewrote their backdoor in a “modern C++
replacement” language. Outside of Rust and Golang’s 3" party code ecosystems, to retarget
your executable you’d either have to rely on a VM/interpreter at the victim end, or else go
back and individually change OS API calls. As to why this group didn’t rewrite the backdoor
in Golang instead, it is a mystery for the ages. Maybe they just really like generics.

Other Honorable mentions

e Linux.Grip (2005) reportedly used a snippet of the esoteric language Brainf*ck for
generating encryption keys.

o Retefe (2013), a banking Trojan, has a history of unorthodox clones meant for non-
Windows operating systems — including a clone written in Apple’s Objective-C, which
was distributed circa April 2017 in a campaign that targeted the key demographic of
Swiss macOS users.

o Gootkit (2014), also a banking Trojan, is written mostly in Javascript (Node.js), a
language usually reserved for web development.

16/17

https://research.checkpoint.com/wp-content/uploads/2019/05/exaramel.png
https://www.welivesecurity.com/2017/06/30/telebots-back-supply-chain-attacks-against-ukraine/
https://www.welivesecurity.com/2018/10/11/new-telebots-backdoor-linking-industroyer-notpetya/
https://esolangs.org/wiki/brainfuck
https://www.govcert.admin.ch/blog/33/the-retefe-saga
https://www.certego.net/en/news/malware-tales-gootkit/

» LatentBot (2017), an all-purpose modular backdoor, as well as several packers that
have been spotted in the wild, were written in Delphi — a dialect of Pascal, a language
invented in 1970 for educational purposes.

Conclusion

As you've probably heard, the malware landscape is in constant evolution. Most actors just
copy what’s known to work, but some like to experiment — whether due to an actual need or
sheer hipster spirit. The failures are then discarded as dead ends, while the successes are
imitated. Some technologies are esoteric right now because they genuinely aren’t a good fit
for writing malware; others, because they haven't picked up credibility, or because threat
actors shy away from their slightly different mix of pros and cons, and would rather deal with
the devil they know.

It's difficult to say in advance which of these technologies, if any, will become the “next big
thing” in the malware world. Some technologies, such as Golang and Powershell, seem
particularly well-poised to do so (Powershell is already halfway there). Others, like Java and
Rust, not so much. But for a technology to become fashionable in the cybercrime circles, all
it takes is one ambitious author to produce one high-profile successful campaign that hinges
on it.

Will we all still be looking at C malware all day long 10 years from now? 207? It’s difficult to
know. But maybe we should hope so. The current malware landscape, which is enough of a
problem, came to be even as threat actors duly spent a bulk of their resources debugging
segmentation faults, looking up function parameter order in the MSDN database and copy-
pasting code from header to source files and back again. Maybe we don’t want to find out
what happens when all of that time suddenly becomes free time.

17/17

https://blog.malwarebytes.com/threat-analysis/2017/06/latentbot/
https://www.fireeye.com/blog/threat-research/2018/09/increased-use-of-delphi-packer-to-evade-malware-classification.html
https://en.wikipedia.org/wiki/Pascal_(programming_language)

