
1/10

Detricking TrickBot Loader | CERT Polska
cert.pl/en/news/single/detricking-trickbot-loader/

TrickBot (TrickLoader) is a modular financial malware that first surfaced in October in 2016 . Almost immediately researchers have
noticed similarities with a credential-stealer called Dyre. It is still believed that those two families might’ve been developed by the
same actor.
But in this article we will not focus on the core itself but rather the loader whose job is to decrypt the payload and execute it.

Samples analyzed

preloader b401a0c3a64c2e5a61070c2ae158d3fcf8ebbb51b33593323cd54bbe03d3de00
loader 8d56f6816f24ec95524d6b434fc25f9aad24a27dbb67eab0106bbd7b4160dc75
core-32b cbb5ea4210665c6a3743e2b7c5a29d10af21efddfbab310035c9a14336c71de3
core-64b 028e29ef2543daa1729b6ac5bf0b2551dc9a4218a71a840972cdc50b23fe83c4
core-64b-loader 52bc216a6de00151f32be2b87412b6e13efa5ba6039731680440d756515d3cb9

Original binary
While the binary has two consecutive loaders, the first one will be glossed over because of low level of complexity:

1

https://www.cert.pl/en/news/single/detricking-trickbot-loader/

2/10

Original binary’s entry point, observed symbols were embedded in the binary

Functions buffer
The first thing we notice after loading the RC4-decrypted payload from the previous stage is that IDA hasn’t automatically
recognized a single valid function.

https://www.cert.pl/uploads/2018/11/trickbot_org.png

3/10

The binary’s entry point

This section’s permissions are also looking quite suspicious, because section needs to be readable, executable and writable.

Function that starts just after the chunks lengths’ last entry (begins at 0x40108C), is responsible for calculating the starting offset for
each function (or binary chunk) and storing it into an array stored on stack.

Function used for calculating addresses

The functions’ objective is pretty straight-forward:

Iterate over the null-terminated chunks lengths array
If a length is larger than or equal to 0xFFF0, fetch the full length from a second buffer located further in the data (+0xCDFA in
this sample)
Add the current function’s length to the accumulator
Push the accumulator onto stack

The final array of pointers looks as follows (remember that since values are pushed onto stack, the pointers are reversed relatively
to their position in the lengths array):

4/10

The pointer to the array is stored in EBP register and passed between almost all functions in the future

Code encryption
The previously mentioned code encryption is done using a standard repeating xor cipher:

The xor key seems to be located around the base64-encoded strings:

In this sample, the key is equal to FE9A184E408139843FA99C45943D

Detricking
All we really have to do is iterate over all functions, decrypt their body with xor and mark the functions.

5/10

Wrapper function
As seen in previous screenshots, all function calls are performed using a function wrapper that:

Accepts index of the function to execute
Grabs the function’s address from the global table
Decrypts the function code
Calls the decrypted function
Encrypts the function code back again

Example function wrapper call

Detricking
In order to simplify our analysis we’ll patch the binary and replace the wrapper calls with direct function calls.

Almost every wrapper call is exactly the same, which will be very helpful:

XX is a single unsigned byte that determines the index of the wrapped function.

YY YY YY YY is a 32-bit, relative, little-endian integer that marks the address of the wrapper function.

Our plan is to patch the whole call blob to:

where ZZ ZZ ZZ ZZ is the relative address of the wrapped function.

To do that, we’ll use an idapython script:

Before:

After:

Imports
All imports are loaded into a static location in memory using a hash lookup:

6/10

Function used to calculate strings hash

C decompilation:

Function hash list

7/10

Detricking
We can find the correct API function table using different methods but we are going to focus on doing it manually by looking for the
correct function name.

Start off by rewriting the hash function to Python:

We’ll also need a list of functions exported by windows DLLs. We’ve found that scraping http://www.win7dll.info/ actually works
pretty well for that purpose.

Now we need to iterate over all hashes and find a correct function name for each one:

All that’s left now is to create an IDA struct that contains the function names and set the global array to the proper type:

Before

After

Now, it looks much better!

String encoding
All strings are encoded using base64 with a custom alphabet, it’s explained pretty well in several blog posts already

The custom charset is a permutation of the default base64 charset, e.g.
JTQ2czLo5NfrsUjZFSkgOlYRB6yKhva/uA83d4GiteMwn17xmIEVX+qP0W9DbHCp.

23

http://www.win7dll.info/

8/10

Function used to fetch a decrypted base64 string with a given index

Detricking
After de-wrapping the function calls, the assembly actually looks quite similar to the previous iteration (notice the nops that are
result of our earlier patches):

Which means we can reuse some of our previous code. But instead of patching the call instructions to mov instructions, we’re just
going to add comments in assembly to annotate the original string:

Overview
After applying all of the described anti-anti-analysis patches, we end up with a pretty decent-looking binary.

Main function:

9/10

Anti-debugging/sandbox checks
DLL checks
The binary iterates over DLL names stored in strings and checks if any of them is present in the PEB InMemoryOrderModuleList
linked list:

DLLs checked:

pstorec.dll
vmcheck.dll
dbghelp.dll
wpespy.dll
api_log.dll
SbieDll.dll
SxIn.dll
dir_watch.dll
Sf2.dll
cmdvrt32.dll
snxhk.dll

Antimalware services
A series of checks is performed using QueryServiceStatusEx in order to detect any anti-malware services currently running on the
system. If a service is detected, the loader tries to disable it accordingly:

WinDefend
cmd.exe /c sc stop WinDefend
cmd.exe /c sc delete WinDefend
TerminateProcess MsMpEng.exe
TerminateProcess MSASCuiL.exe
TerminateProcess MSASCui.exe
cmd.exe /c powershell Set-MpPreference -DisableRealtimeMonitoring $true
RegSetValue SOFTWARE\Policies\Microsoft\Windows Defender DisableAntiSpyware
RegSetValue SOFTWARE\Microsoft\Windows Defender Security Center\Notifications DisableNotifications

MBAMService
ControlService MBAMService SERVICE_CONTROL_STOP

SAVService
TerminateProcess SavService.exe
TerminateProcess ALMon.exe
cmd.exe /c sc stop SAVService
cmd.exe /c sc delete SAVService
Checks IEFO . key for
‘MBAMService’,’SAVService’,’SavService.exe’,’ALMon.exe’,’SophosFS.exe’,’ALsvc.exe’,’Clean.exe’,’SAVAdminService.exe’
and sets Debugger registry key to kjkghuguffykjhkj if a match is found

Loading binary
The binaries embedded in the loader are encrypted using the same xor cipher method as the functions, however they are also
compressed using MiniLZO .

The methods of executing the payload differ for 32 and 64-bit binaries. While the former is pretty straight-forward, the latter
integrated a more sophisticated code injection technique.

Firstly, a new suspended process is created (in this sample with process name equal to “svchost”), then the execution transfers to a
dynamically-generated shellcode that performs a switch from 32-bit compatibility mode to 64-bit using a trick called Heaven’s Gate .
Finally, the shellcode performs a call to the decrypted 64-bit helper shellcode which then finally jumps to the 64-bit core.

The included shellcode deassembles to

Modules
As of today, TrickBot is distributing following modules:

domainDll32.dll
bf50566d7631485a0eab73a9d029e87b096916dfbf07df4af2069fc6eb733183

importDll32.dll
f9ebf40d1228fa240c64d86037f2080588ed67867610aa159b80a553bc55edd7

4

2

5

10/10

injectDll32.dll
a515f4f847e8d7b2eb46a855224c8f0e9906435546bb15785b6770f2143bc22a

mailsearcher32.dll
46706124d4c65111398296ea85b11c57abffbc903714b9f9f8618b80b49bb0f3

networkDll32.dll
c8c789296cc8219d27b32c78e595d3ad6ee1467d2f451f627ce96782a9ff0c5f

outlookDll32.dll
9a529b2b77c5c8128c4427066c28ca844ff8ebbd8c3b2da27b8ea129960f861b

pwgrab32.dll
fe0f269a1b248c919c4e36db2d7efd3b9624b46f567edd408c2520ec7ba1c9e4

shareDll32.dll
af5ee15f47226687816fc4b61956d78b48f62c43480f14df5115d7e751c3d13d

squlDll32.dll
b8b757c2a3e7ae5bb7d6da9a43877c951fb60dcb606cc925ab0f15cdf43d033b

systeminfo32.dll
dff1c7cddd77b1c644c60e6998b3369720c6a54ce015e0044bbbb65d2db556d5

tabDll32.dll
479aa1fa9f1a9af29ed010dbe3b080359508be7055488f2af1d4b10850fe4efc

wormDll32.dll
627a9eb14ecc290fe7fb574200517848e0a992896be68ec459dd263b30c8ca48

References
 https://blog.malwarebytes.com/threat-analysis/2016/10/trick-bot-dyrezas-successor/

 https://sysopfb.github.io/malware/2018/04/16/trickbot-uacme.html

 https://blog.malwarebytes.com/threat-analysis/malware-threat-analysis/2018/11/whats-new-trickbot-deobfuscating-elements/

 https://blog.malwarebytes.com/101/2015/12/an-introduction-to-image-file-execution-options/

 http://rce.co/knockin-on-heavens-gate-dynamic-processor-mode-switching/

1

1

2

4

5

https://blog.malwarebytes.com/threat-analysis/2016/10/trick-bot-dyrezas-successor/
https://sysopfb.github.io/malware/2018/04/16/trickbot-uacme.html
https://blog.malwarebytes.com/threat-analysis/malware-threat-analysis/2018/11/whats-new-trickbot-deobfuscating-elements/
https://blog.malwarebytes.com/101/2015/12/an-introduction-to-image-file-execution-options/
http://rce.co/knockin-on-heavens-gate-dynamic-processor-mode-switching/

