
1/7

View all posts by marcoramilli April 23, 2019

APT34: webmask project
marcoramilli.com/2019/04/23/apt34-webmask-project/

Today I’d like to share a quick analysis on the webmask project standing behind the DNS
attacks implemented by APT34. Thanks to the leaked source code is now possible to check
APT34 implementations and techniques.

Context:

Since at least 2014, an Iranian threat group tracked by FireEye as APT34 has conducted
reconnaissance aligned with the strategic interests of Iran. The group conducts operations
primarily in the Middle East, targeting financial, government, energy, chemical,
telecommunications and other industries. Repeated targeting of Middle Eastern financial,
energy and government organisations leads FireEye to assess that those sectors are a
primary concern of APT34. The use of infrastructure tied to Iranian operations, timing and
alignment with the national interests of Iran also lead FireEye to assess that APT34 acts on
behalf of the Iranian government. (Source: MISP Project).

On April 19 2019 researchers at Chronicle, a security company owned by Google’s parent
company, Alphabet, have examined the leaked tools, exfiltrated the past week on a Telegram
channel, and confirmed that they are indeed the same ones used by the OilRig attackers.
OilRig has been connected to a number of intrusions at companies and government
agencies across the Middle East and Asia, including technology firms, telecom companies,

https://marcoramilli.com/2019/04/23/apt34-webmask-project/
https://github.com/marcoramilli/APT34
https://www.fireeye.com/blog/threat-research/2017/12/targeted-attack-in-middle-east-by-apt34.html
https://github.com/MISP/misp-galaxy/blob/master/clusters/threat-actor.json
https://attack.mitre.org/groups/G0049/

2/7

and even gaming companies. Whoever is leaking the toolset also has been dumping
information about the victims OilRig has targeted, as well as data identifying some of the
servers the group uses in its attacks.

According to Duo, “OilRig delivered Trojans that use DNS tunneling for command and
control in attacks since at least May 2016. Since May 2016, the threat group has
introduced new tools using different tunneling protocols to their tool set” Robert
Falcone of Palo Alto Networks’ Unit 42 research team wrote in an analysis of the group’s
activities.

“Regardless of the tool, all of the DNS tunneling protocols use DNS queries to resolve
specially crafted subdomains to transmit data to the C2 and the answers to these
queries to receive data from the C2.”

Leaked Source code

The initial leaked source code sees three main folders: webmask , poisonfrog and
Webshells_and_Panel . While webmask and poisonfrog seems to be single projects,

the folder Webshells_and_Panel looks like wrapping more projects into a single bucket.
But, for today, let’s focus on webmask .

WEBMask Focus

The webmask project, in my personal opinion, is an APT34 distinction since implementing
their DNS attack core. APT34 is well-known to widely use DNS Hijacking in order to redirect
victims to attackers websites. So let’s see what they’ve implemented so far on this direction.

The webmask project comes with both: a guide (guide.txt) and an installation script
(install.sh). From the latter we might appreciate the NodeJS installed version which
happens to be 6.X. This version was released on 2016-04-26 for the first time. Nowadays is
still on development track as the name of “Boron”. According to the NodeJS historic
versioning that project could not be dated before April 2016 since Nodejs_6.x was not
existing before that date. The guide.txt file suggests two solutions (this is the used term) both
of them base their ‘core engine’ on a developed DNS server, used as authoritative name
servers to respond crafted ‘A’ records to specific requests. The attackers suggest to use
solution2 (they write “use this” directly on configuration file), the one who implements DNS
server in NodeJS language. On the other side the Solution1 uses python as DNS server. The
following image shows the suggested Solution.

https://duo.com/decipher/someone-is-leaking-an-iranian-hacking-group-s-arsenal
https://unit42.paloaltonetworks.com/dns-tunneling-in-the-wild-overview-of-oilrigs-dns-tunneling/
https://github.com/marcoramilli/APT34

3/7

APT34: WebMask Project Suggested Solution
Some domain names and some IPs are used as configuration example. Personally I always
find interesting to see the attacker suggested examples, since they lets a marked flavour of
her. That time the attacker used some target artefacts (IP and DNS) belonging to ‘Arab
Emirates’ net space while she used as a responsive artefact (the one used to attack) an IP
address belonging to a NovinVPS service.

The guide follows on describing the setup of ICAP proxy server, used to proxy the victims to
the real destination but trapping the entire connections. The attacker suggests Squid3 and
guides the operator to install and to configure it. She uses as ICAP handler a simple python
script placed into icap/icap.py folder. This script has been developed in order to log and
to modify the ICAP/connection flow coming from squid3 proxy. Then a well-known Haproxy is
used as High Availability service for assuring connections and finally certbot (Let’s Encrypt)
is used to give valid certificate to squid3 (but it’s not a mandatory neither a suggested step).

DNS Server scripts

In the folder dns-redir 3 files are placed. A configuration file called config.json is
used by dnsd.py . The python script implements a class named MyUDPHandler which is
given to the native SocketServer.UDPServer and used as UDP handler. The script
overrides only DNS A records if included into the overrides object (variable at the
beginning of source code). In other words if the DNS request is an A record and if the
requested name belongs to specific domain name, the script responds with the attacker IP
address. The following image shows the main 3 steps of the override chain.

https://www.novinvps.com/
http://www.haproxy.org/

4/7

DNSD.py: Three steps DNS overriding chain
According to the guide.txt the suggested solution wont be the dnsd.py, but the attacker would
prefer the dnsd.js script. This script appears not externally configurable (it does not import
config.json) so if you want to configure it you need to manually edit the script source code.
The source is written in an classic style ECMAScript without any fancy or new
operators/features introduced in ECMAScript6 and ECMAScript7. The dnsd.js performs the
same tasks performed by dnsd.py without any specific change.

ICAP script

In the icap folder a python script called icap.py is placed. This script handles ICAP
flows coming from squid3, extracts desired informations and injects tracking pixels. The
python script implements a ThreadingSimpleServer as an implementation of
SocketServer.ThreadingMixIn which is a native framework for multi-threading Network

servers. SocketServer.ThreadingMixIn needs a local address and local port to be
spawned and a BaseICAPRequestHandler class as second parameter in order to handle
ICAP flows. The attacker specialised that class by referring to the general ICAPHandler .
Aims of the script is to log into separated files the following information: credentials, cookies,
injected files and headers. It silently injects a tracking pixel into communications by adding
the following javascript to HTML body.

script = ';$(document).ready(function(){$(\'
\');});'

If the parsed request is a HTTP POST the ICAPHandler tries to extract credentials through
special function called: extract_login_password . The following image shows the process
flow of the credential extraction.

5/7

ICAP.py: Credential Extraction Process
It would be interesting, at least in my point of view, to check the used patterns as login
detection. For example the parsing function looks for the following “form names”:

logins = ['login', 'log-in', 'log_in', 'signin', 'sign-in', 'logon', 'log-on']

It also looks for the following user field names:

userfields = ['log','login', 'wpname', 'ahd_username', 'unickname', 'nickname',
'user', 'user_name','alias', 'pseudo', 'email', 'username', '_username', 'userid',
'form_loginname', 'loginname',
'login_id', 'loginid', 'session_key', 'sessionkey', 'pop_login', 'uid', 'id',
'user_id', 'screename', 'uname', 'ulogin', 'acctname', 'account', 'member',
'mailaddress', 'membername', 'login_username', 'login_email', 'loginusername',
'loginemail', 'uin', 'sign-in', 'usuario']

and finally it also looks for the following password fields names:

passfields = ['ahd_password', 'pass', 'password', '_password', 'passwd',
'session_password', 'sessionpassword', 'login_password', 'loginpassword', 'form_pw',
'pw', 'userpassword', 'pwd', 'upassword', 'login_password','passwort', 'passwrd',
'wppassword', 'upasswd','senha','contrasena', 'secret']

Interesting to see specific string patterns such as (but not limited to): form_pw,
ahd_password, upassword, senha, contrasena, which are quite indicative to victim
scenarios. For example strings such as: senha , contrasena , usuario , and so on
seems to be related to”Spanish” / “Portuguese” words. So if it’s true (and google translate

6/7

agrees with me) it looks like APT34 are proxying some connections that might have those
username and password fields, which might refer to “Spanish”/”Portuguese” targets. But this
is only a Hypothesis.

The icap.py is able to intercept basic authentication headers, cookies and general
headers as well, implementing similar functions able to extract interesting information and
eventually to modify them if needed. I wont describe every single functions but one of the
most interesting function that is worth of being showed is the inject_RESPMOD which
injects a tracking image into the ICAP flow. The following image shows the attacker’s
implementation of the Injection_RESPMOD function.

ICAP.py: script injection function
The injected script is added to the HTML body and eventually is GZipped and shipped back.
In such a way the attacker tracks who is landing to the target domain.

Interesting points

7/7

WebMask is >= April 2016 (From Installed Dependencies)
APT34 might target ‘Arab Emirate’ (From examples into config files)
APT34 might target Spanish/Portuguese (From code into the
extract_login_password function)

APT34 might use NovinVPS (From examples into config files)
APT34 needs credentials for change Authoritative DNS (From guide.txt)

