
1/2

eset

Collection of helper scripts for OceanLotus
github.com/eset/malware-research/tree/master/oceanlotus

This repository contains scripts to help analysing OceanLotus' latest campaign using the
legitimate "rastls.exe" application for side-loading.

As described in ESET research whitepaper there are two components that has encrypted
payloads: the fake document (dropper component) and the backdoor (rastls.dll).

ol_unpack_shellcode_from_decoy.py will unpack the shellcode embedded in the
resource of the (fake) decoy document.

ol_unpack_files_from_3rd_stage.py is almost the same script but it is used for the third
stage of the dropper part, obtained after the emulation (using shellcode_emulator) of
shellcode outputted by ol_unpack_shellcode_from_decoy.py . The script extracts the
encrypted and compressed configuration and parse it. It prints the possible install paths for
the backdoor and its persistence mechanism. Finally, the script drops all the backdoor
components (e.g. rastls.exe , rastls.dll and SyLog.bin). The Kaitai Struct
structure ol_decoy_dropped_files.ksy was used to create the Python class.

Both of these scripts uses lief as a PE parser so make sure to install it beforehand.
ol_unpack_files_from_3rd_stage.py uses Kaitai Struct.

https://github.com/eset/malware-research/tree/master/oceanlotus
https://www.welivesecurity.com/wp-content/uploads/2018/03/ESET_OceanLotus.pdf
https://github.com/lief-project/LIEF

2/2

ol_unpack_shellcode_from_backdoor.py decrypts the shellcode of an installed
backdoor using the key and IV embedded in the rastls.dll file and the encrypted
OUTLFLTR.DAT file (or SyLog.bin depending on the version).

The folder shellcode_emulator contains a script and its description to run the shellcode
emulator. Since the same shellcode is used everywhere during this campaign, it was faster
to emulate it instead of using dynamic analysis.

The following flow could be used to obtain the dropped files from the decoy document (the
dropper):

ol_unpack_shellcode_from_decoy.py ⇒ ol_shellcode_emulator.py ⇒
ol_unpack_files_from_3rd_stage.py

The following flow could be used to obtain the third stage of the backdoor component:

ol_unpack_shellcode_from_backdoor.py ⇒ ol_shellcode_emulator.py

Finally, this repository also contains the Kaitai structure for the fifth stage of the backdoor
component. It will parse the configuration structure of the decrypted resource. In order to
generate a parser class or visualize it, Kaitai Struct should be installed.

http://kaitai.io/

