JEShell: An OceanLotus (APT32) Backdoor

norfolkinfosec.com/jeshell-an-oceanlotus-apt32-backdoor/

norfolk March 24, 2019

Recently, various industry and media sources have publicly reported that OceanLotus, a
suspected Vietnam state-sponsored adversary, has conducted multiple targeted intrusions
against auto manufacturers. This post examines a second-stage tool, JEShell, used during
one such intrusion.

JEShell contains code-level overlaps with the OceanLotus KerrDown malware first publicly
described in a Medium post and a Palo Alto Unit42 post. At a high level, JEShell is
functionally similar to the KerrDown malware: both families decode and run layers of
shellcode with the intention of downloading or directly installing a Cobalt Strike Beacon
implant. Unlike KerrDown (a Windows DLL), JEShell is written in Java. JEShell is delivered
alongside (rather than instead of) KerrDown and other implants and in some cases shares
the same C2, likely as a measure of redundancy for the attacker.

This post examines one of two identified JEShell hashes:

MD5: dfc78da5202a70066eba124660fd5085

SHA1: 8cad6621901b5512f4ecab7a22f8fcc205d3762b

SHA256: ea854e2e17615c54edbdbee2babb874d957f094f3945992f5ac27b78b023051¢
C2: update.msoffice-templates|.]info

The other known file, not examined in this post, is:

MD5: 74731674920¢c51668c36¢c3c16f30553

SHA1: 668572ba2aff5374a3536075b01854678c392c04

SHA256: 040c1fcec79cd19a6aaedf9cabf3cc21cc6c30e6af4048087995d71fc4571cee
C2: stream.playnetflix[.]Jcom

JEShell contains an encrypted resources with a randomized named and an XOR key
(different between samples) used to decode it. The XOR is performed in a rolling fashion
using a “mod” function: the first byte of the encrypted resource is XORed by the byte
representation of the first character of the key, the second byte by the second character, and
so on. When the end of the key is reached, it returns to the first letter. By doing this, the
authors ensure that the decoded resource is not revealed or detected by a brute force
mechanism.

1/4


https://norfolkinfosec.com/jeshell-an-oceanlotus-apt32-backdoor/
https://risky.biz/RB534/
https://medium.com/@sp1d3rm4n/apt32-oceanlotus-m%E1%BB%99t-chi%E1%BA%BFn-d%E1%BB%8Bch-apt-b%C3%A0i-b%E1%BA%A3n-nh%C6%B0-th%E1%BA%BF-n%C3%A0o-ph%E1%BA%A7n-1-9975574e905
https://unit42.paloaltonetworks.com/tracking-oceanlotus-new-downloader-kerrdown/

Creating Shellcode Layer 1

JEShell resource (top, boxed in red) and key (middle, boxed in red) decoded into shellcode
(bottom left)

The resource is decoded into a byte array and loaded into memory through one of two
workflows. On a 32-bit system, the resource is injected into the memory of the currently
running process (Java.exe). On a 64-bit system a process is randomly selected and created
from a hardcoded list and the array is injected into that process. The process list used on 64-
bit systems in this sample is:

“C:\\Windows\\SysWOWG64\\ARP.exe”, “C:\\Windows\\SysWOW&64\\at.exe”,
“C:\\Windows\\SysWOW&64\\auditpol.exe”, “C:\\Windows\\SysWOWG64\\bitsadmin.exe”,
“C:\\Windows\\SysWOW&64\\bootcfg.exe”,
“C:\\Windows\\SysWOW64\\ByteCodeGenerator.exe”,
“C:\\Windows\\SysWOW&64\\cacls.exe”, “C:\\Windows\\SysWOWG64\\chcp.com”,
“C:\\Windows\\SysWOW&64\\CheckNetlsolation.exe”,
“C:\\Windows\\SysWOW&64\\chkdsk.exe”, “C:\\Windows\\SysWOW&64\\choice.exe”,
“C:\\Windows\\SysWOW&64\\cmdkey.exe”, “C:\\Windows\\SysWOWG64\\comp.exe”,
“C:\\Windows\\SysWOW64\\diskcomp.com”, “C:\\Windows\\SysWOW64\\Dism.exe”,
“C:\\Windows\\SysWOW®64\\esentutl.exe”, “C:\\Windows\\SysWOW64\\expand.exe”,
“C:\\Windows\\SysWOWG64\\fc.exe”, “C:\\Windows\\SysWOW®64\\find.exe”,
“C:\\Windows\\SysWOW64\\gpresult.exe”

2/4



aferenca) ;

32-bit check and process injection routines for both 32 and 64-bit systems.
The injected shellcode contains multiple layers. The first layer dynamically resolves APIs and
decodes a second layer (a previous post contains suggestions on analyzing shellcode),
writing this to a section of virtual memory and executing it with the Kernel32.CreateThread
Windows API call:

The first-stage shellcode (top left) calling Kernel32.ResumeThread on the second layer of
shellcode written to an executable section of memory.

The second layer of shellcode behaves similarly: it decrypts (via CryptDecrypt) a copy of the
Cobalt Strike Beacon implant into memory that is configured with a modified version of a
malleable C2 profile.

3/4


https://norfolkinfosec.com/how-to-analyzing-a-malicious-hangul-word-processor-document-from-a-dprk-threat-actor-group/
https://github.com/rsmudge/Malleable-C2-Profiles/tree/master/normal

1

Second layer of shellcode decoding a Cobalt Strike Beacon implant into memory

4/4



