
1/20

February 19, 2019

North Korea Turns Against New Targets?!
research.checkpoint.com/north-korea-turns-against-russian-targets/

February 19, 2019
Introduction

Over the past few weeks, we have been monitoring suspicious activity directed against
Russian-based companies that exposed a predator-prey relationship that we had not seen
before. For the first time we were observing what seemed to be a coordinated North Korean
attack against Russian entities. While attributing attacks to a certain threat group or another
is problematic, the analysis below reveals intrinsic connections to the tactics, techniques and
tools used by the North Korean APT group – Lazarus.

This discovery came about as we were tracking multiple malicious Office documents that
were designed and crafted specifically for Russian victims. Upon closer examination of these
documents, we were able to discern that they belonged to the early stages of an infection
chain which ultimately led to an updated variant of a versatile Lazarus backdoor, dubbed
KEYMARBLE by the US-CERT.

Sometimes referred to as Hidden Cobra, Lazarus is one of the most prevalent and active
APT groups in the world today. The infamous group, which is known to be a North Korean
sponsored threat actor, is believed to be behind some of the largest security breaches of the

https://research.checkpoint.com/north-korea-turns-against-russian-targets/
https://www.us-cert.gov/ncas/analysis-reports/AR18-221A

2/20

last decade.

This includes the Sony Pictures Entertainment hack, the Bangladesh bank heist, and
numerous other high stakes operations, such as the theft of millions of dollars worth in
cryptocurrencies from at least five different cryptocurrency exchange services worldwide.

While our campaign’s timeline seems to overlap with last week’s ESTsecurity report on the
“Operation Extreme Job” campaign targeting South Korean security companies, we have
observed different tactics, techniques and procedures (TTPs) employed in the two
operations.

It is long believed among the security community that Lazarus is divided into at least two
subdivisions: the first named Andariel which focuses primarily on attacking the South Korean
government and organizations, and the second, Bluenoroff, whose main focus is
monetization and global espionage campaigns.

The differences between the two campaigns, which were conducted at the same time,
provides wind once again to the theory that multiple divisions are at work here.

This incident, however, represents an unusual choice of victim by the North Korean threat
actor. Usually, these attacks reflect the geopolitical tensions between the DPRK and nations
such as the U.S, Japan and South Korea. In this case, though, it is probably Russian
organizations who are the targets.

Infection Chain

During our analysis we encountered two different infection flows.

The main infection flow consists of the following three main steps:

1. A ZIP file which contains two documents: a benign decoy PDF document and a
malicious Word document with macros.

2. The malicious macro downloads a VBS script from a Dropbox URL, followed by the
VBS script execution.

3. The VBS script downloads a CAB file from the dropzone sever, extracts the embedded
EXE file (backdoor) using Windows’ “expand.exe” utility, and finally executes it.

At first, the infection chain consisted of all the above stages, but at a certain point, the
attackers decided to skip on the second stage of the infection chain and the malicious Word
macros were modified to directly “download and execute” the Lazarus Backdoor in stage
three.

https://en.wikipedia.org/wiki/Sony_Pictures_hack
https://www.wired.com/2016/05/insane-81m-bangladesh-bank-heist-heres-know/
https://www.coindesk.com/north-korean-hacking-group-lazarus-stole-571-million-in-cryptos-report
https://blog.alyac.co.kr/2105

3/20

Fig 1: The Infection Flow

Lure Office Documents

All documents related to this campaign were uploaded to VirusTotal from different sources in
Russia during the week of 26-31/01/19, with what looks like their original file names.

All the documents also included similar metadata, with “home” as the author name, and a
Korean code page.

During the campaign, the attackers utilized multiple lure images in order to convince the
victims to click the “Enable Content” button and trigger the malicious macro code.

“2018.11.2~2019.1.26_ErrorDetail.doc”

First Submission: 2019-01-31 13:45:04
 Code Page: Korean

 Author: home

Notes: Cyrillic looking characters in the image

SHA-1: 088c6157d2bb4238f92ef6818b9b1ffe44109347

https://research.checkpoint.com/wp-content/uploads/2019/02/fig1-1.png

4/20

“Serial_Numbers.xls”

First Submission: 2019-01-31 06:56:00
 Code Page: Korean

 Author: home

SHA-1: 4cd5a4782dbed5b8e337ee402f1ef748b5035709

https://research.checkpoint.com/wp-content/uploads/2019/02/img1.png
https://research.checkpoint.com/wp-content/uploads/2019/02/img2.png

5/20

“LosAngeles_Court_report.doc”

First Submission: 2019-01-26 09:59:50
 Code Page: Korean

 Author: home

SHA-1: e89458183cb855118539373177c6737f80e6ba3f

Malicious Macros

The campaign exhibits very similar macro code in both the XLS and DOC variants of the
dropper.

The macros themselves are very simple and straightforward, but in this case, keeping the
macros simple and without any advanced obfuscation tricks, resulted in malicious documents
that were able to pass undetected by many reputable security vendors on Virus Total.

An interesting part of the download stage in one of the documents, is the unexplained usage
of a Dropbox “Host” field in the HTTP request header.

https://research.checkpoint.com/wp-content/uploads/2019/02/img3.png

6/20

Fig 2: A dropbox “Host” field in the HTTP request header

The mystery was solved, however, once we located another related sample, which actually
downloaded the next stage of the infection chain from Dropbox itself, making it pretty clear
that Dropbox was the original source for the second stage of the infection, during this
campaign.

Fig 3: The code responsible for downloading the second stage of the infection from DropBox

Decoy Document

During this campaign, at least one of the malicious Office documents was originally
distributed via a ZIP file, along with another PDF decoy document named NDA_USA.pdf.

Fig 4: The decoy and malicious files contained within the distributed ZIP file

The benign document tries to make the files look legitimate, and contains an NDA for
StarForce technologies – a Russian based company which provides software copy-
protection solutions.

https://research.checkpoint.com/wp-content/uploads/2019/02/fig2-1.png
https://research.checkpoint.com/wp-content/uploads/2019/02/fig3-1.png
https://research.checkpoint.com/wp-content/uploads/2019/02/fig4-1.png

7/20

Fig 5: The benign document sent to decoy victims

The Dropzone

https://research.checkpoint.com/wp-content/uploads/2019/02/fig5-1.png

8/20

The Lazarus Group is known to utilize an array of compromised servers for its operations,
and this time is no different.

The final payload in this campaign is downloaded from a compromised server in the form of
a CAB file, which is later expanded into the KEYMARBLE backdoor. It is important to note
the CAB file is disguised as a JPEG image on the compromised host
(https://37.238.135[.]70/img/anan.jpg).

A closer look at the compromised server shows an unconvincing website for the “Information
Department” of the “South Oil Company”. The server is located in Iraq and hosted by
EarthLink Ltd. Communications&Internet Services.

Fig 6: The Iraqi compromised server

The KEYMARBLE Backdoor

KEYMARBLE is as a general purpose backdoor that was described in a report by NCCIC
last August. The malware is a remote administration tool (RAT) that provides its operators
with basic functionality to retrieve information from the victim’s machine. Once executed, it
conducts several initializations, contacts a C&C server and waits indefinitely for new

https://research.checkpoint.com/wp-content/uploads/2019/02/fig6.jpg
https://www.us-cert.gov/ncas/analysis-reports/AR18-221A

9/20

commands from it. Each received command is processed by the backdoor and handled
within an appropriate function, which in turn collects a piece of information or conducts an
action on the target machine.

AV Detection

As part of the infection flow we previously described, all of the malicious documents
mentioned downloaded KEYMARBLE, compressed inside a CAB file.

It is interesting to note, that by encapsulating the backdoor in a CAB file, the attackers were
able to lower the detection rate of this sample from five vendors to a mere two vendors, who
detected this file as malicious on VirusTotal:

Fig 7: vendor detection results in Virus Total

Version Comparison

This instance of the malware resembles its predecessor from last year in flow and
functionality. Both operate in two main stages – an initialization phase that sets up necessary
data structures and contacts the C&C server, and the main command dispatch loop that
receives commands from the server and passes them on to their corresponding handlers.
Particular mechanisms within these stages also appear in other pieces of malware that
originate from North Korea, a lot of which are attributed to the infamous Lazarus Group.

https://research.checkpoint.com/wp-content/uploads/2019/02/fig7.jpg

10/20

Having said that, there are particular differences in this variant from the previously reported
sample of the same family. For one, the authors used wolfSSL, an open source code
repository used to authenticate the client’s identity to the C2 server and encrypt
communication. This is not the first time this library is used in North Korean malware. Intezer
described a different RAT that leveraged it in an attack against cryptocurrency exchanges
last year. Additionally, while most of the command codes handled by the backdoor overlap in
both the new and old version, some of the codes were omitted from the recent sample and
several others were modified, so as the functionality of their handlers.

In the upcoming paragraphs we will outline the key features of KEYMARBLE, focusing on
both correlations and distinctions from the previous sample reported by the US-CERT.

Initialization

Both backdoor variants start with an action of dynamic Win32 API functions resolution. This
is a very typical initial stage that appears across multiple North Korean malwares, whereby a
list of function names is decrypted during runtime and then resolved to a global table in
memory. The addresses from that table will be used subsequently to invoke any calls to the
desired API functions. One of the features in this mechanism that distinguishes this malware
family from others is perhaps the usage of the open source McbDES2 code to implement
function name decryption with the DES algorithm.

Figure 8: Comparison of API resolution logic in both versions of KEYMARBLE

https://github.com/wolfSSL/wolfssl
https://www.intezer.com/lazarus-group-targets-more-cryptocurrency-exchanges-and-fintech-companies/
https://read.pudn.com/downloads198/sourcecode/crypt/ca/930917/McbDES2.hpp__.htm
https://research.checkpoint.com/wp-content/uploads/2019/02/fig8-1.png

11/20

Figure 9: API function name decryption using the open source McbDoDES template library

Following this, KEYMARBLE will start preparing the data structures required for
communicating with the C&C server. This will include both initiation of WolfSSL related
structures as well as initial contact with the server. For the former, the malware will drop a
hardcoded PEM certificate to the disk under %TEMP% with the file name “Thumbss.db”,
which will have its data read and passed to an internal WolfSSL function called ProcessFile.
This will in turn parse it and assign data derived from the certificate to a global context
structure used for communication. The used certificate in this sample can be found in the
IOC section below.

https://research.checkpoint.com/wp-content/uploads/2019/02/fig9-1.png

12/20

Figure 10: Initialization of communication using wolfSSL, and outline of a proprietary
structure that comprises some of the key structures required for the malware’s
communication.

As for initiating contact with the C2 server, the malware will create a socket, set it to be non-
blocking by invoking ioctlsocket with the command argument set to 0x8004667E, and
attempt to connect to the hardcoded IP address 194\.45\.8\.41 over port 443. This will
happen indefinitely with 30 minute intervals between each connection attempt until success,
at which point the malware will break from the loop and continue its execution.

Communication Protocol

Each message exchanged between the malware and the server will have a predefined
structure (as outlined in figure 4) which resembles a TLS application record. As mentioned
before, the malware leverages SSL for communication, hence each such message will be
encrypted with a key exchanged during the SSL handshake between client and server, and
the action of sending or receiving data will be handled by wolfSSL functions designated for
this purpose (SendData and ReceiveData accordingly).

https://research.checkpoint.com/wp-content/uploads/2019/02/fig10.jpg

13/20

Figure 11: Custom protocol message structure. Resembles a TLS record.

After initiating the first connection with the C2 server, KEYMARBLE will issue a beacon
message. This message is meant to carry the machine’s UID, which is a result of the
operation:
MD5(ProductID|MAC), where the first field is obtained by querying the
SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProductId registry key, and the second is
the MAC address obtained by invoking the function GetAdaptersInfo. However, this UID will
be retrieved only after an explicit request from the server, and until that’s done the data field
in the beacon will be left blank.

Figure 12: calculation of UUID as a result of MD5 on ProductID and MAC address.

After the initial beacon the malware will enter an infinite loop where it will anticipate to get
command codes from the server. These will be passed on to a dispatcher function, where
each command will be handled by an appropriate handler. The command is received in two

https://research.checkpoint.com/wp-content/uploads/2019/02/fig11-1.png
https://research.checkpoint.com/wp-content/uploads/2019/02/fig12.jpg

14/20

parts – first the server will send a message carrying the command’s data length, and only
then it will issue the actual command code.

Figure 13: beacon and main message loop

Backdoor Commands

The command dispatcher is a very basic mechanism that uses a switch case in order to pass
control to the corresponding function. The command codes range from 0x1234556 to
0x1234578 and most overlap with commands that appeared in the older version of the
backdoor. However, this version carries a smaller number of commands (18 vs. 22) and few
of them differ in code and functionality from the older version. Also, much like with receiving
the command code, each command argument sent (if such is required) will be preceded with
a length message to indicate what buffer size should be allocated for the sent argument.

https://research.checkpoint.com/wp-content/uploads/2019/02/fig13.jpg
https://research.checkpoint.com/wp-content/uploads/2019/02/fig14-1.png

15/20

Figure 14: command dispatch function comparison between the old and new version of
KEYMARBLE

All of the commands, their logic and response are summarized in the table below:

Command
code

Meaning Response data

0x1234556 Receives a message with arbitrary data, ignores it and
just sends a blank message back. Probably used to test
the backdoor.

Sends a response
with the data field se
to 0.

0x1234558 Receives a path to a directory, enumerates it and builds
an array of data structures that conveys various
information fields on each file in it (e.g. file size, last
write time etc.). Once all data from the directory is
retrieved, the array will be sent to the server. See
appendix for more details.

If succeeds, respond
with the command
code after sending a
the data, otherwise i
the path wasn’t foun
it will send back a
message with a blan
data field.

0x1234559 Receives a command to execute on Windows and runs
it with the following command line:
cmd.exe /c “[received_cmd_line] >
%TEMP%\PM[GetTempFileNameW_generated_name]”
>2&1. The output of the execution, which will be written
to the %TEMP% directory and prefixed with “PM” will
be sent in chunks of 16KB to the server. A maximum of
60 chunks can be sent while the command is still
executing. Subsequently, the generated temporary file
we be deleted and the cmd.exe process terminated.
The residual data that was not sent yet after termination
will be forwarded on to the server.

Sends a response
with the data field se
to 0.

0x123455A Retrieves information on running processes in the
system, gathers it into a buffer and issues it to the
server.

–

0x123455B Gets a name of a process as an argument and
terminates it.

If succeeds, respond
with the command
code.

0x123455C Receives a file name and number of iterations as an
argument, overwrites the file’s content, renames and
deletes it. The overwrite happens with a stream
generated by the libc rand function (with the current
tick count as seed), and the new file name is generated
as a 3-10 character name that is also a result of a
similar stream. The process of data garbling and
renaming takes places for the amount of iterations
specified by the server, after which the file is deleted.

Sends the result of
GetLastError as data
after the DeleteFileW
operation.

16/20

0x123455D Collects various pieces of information on the system
and network of the attacked machine (e.g. MAC
address, free space on disk, OS build info etc.), builds
them into a single buffer and sends it as response. See
appendix for more details.

If succeeds, respond
with the command
code after sending t
buffer.

0x123455E Scans all drive letters and checks for the existence of
fixed, non-root or removable drives. For each found
drive a buffer is created and initialized with the drive’s
numeric type, the drive’s letter and the underlying
volume’s name. for the last parameter, if the drive has
no name and it’s fixed or non-root the name will be
assigned as “Local Disk”, otherwise if it’s removable it
will be assigned as “CD Drive”. All such buffers are
appended together and sent to the C2..

 –

0x123455F Gets a file path and length of data, after which data is
sent from the server in chunks of 16KB and written to
that path.

If succeeds, respond
with the command
code, otherwise
sends back the last
error.

0x1234560 Gets a file path and attempts to get a handle to it. If
succeeds, retrieves file size and sends the file content
to the server in chunks of 16KB.

If succeeds, respond
with the command
code, otherwise
sends back the last
error.

0x1234565 Sends an uninitialized global buffer of size 448 to the
server.

–

0x123456E Sends the current directory (result of
GetCurrentDirectoryW) to the server.

–

0x123456F Receives a directory path as argument and sets it to be
the current one (using SetCurrentDirectoryW).

Sends the result of
GetCurrentDirectory
as a response to the
server.

0x1234574 Receives a path to a directory as an argument, iterates
over all files in it and zips them using the open source
TZip library. The archive is located at %TEMP% and its
name is prefixed with ‘DWS00’. Upon successful zip,
the archive will be sent to the server, otherwise any
created file will be deleted.

If succeeds, respond
with the command
code.

0x1234575 Receives 2 arguments – an application path and a
wShowWindow parameter (determines if the process
window is visible or not) and creates a new process for
it.

If succeeds, respond
with the command
code.

https://graphics.stanford.edu/~mdfisher/Code/WebPagePreprocessor/zip.cpp

17/20

0x1234576 Receives 2 paths – a source path and a destination
path. The malware will move the file from the source to
destination path.

If succeeds, respond
with the command
code.

0x1234577 Receives 2 file names – a source and destination. The
malware will get the file time of the source and set the
destination file’s time to be the same.

Sends the last error
one of the operation
fails, otherwise send
0.

0x1234578 Retrieves the current file name and sends it to the
server.

–

Check Point protects against this attack through its SandBlast threat prevention solutions.

IOCs

2b4fb64c13c55aa549815ec6b2d066a75ccd248e (New KEYMARBLE sample)
d1410d073a6df8979712dd1b6122983f66d5bef8 (Old KEYMARBLE sample)
088c6157d2bb4238f92ef6818b9b1ffe44109347 (Maldoc)
4cd5a4782dbed5b8e337ee402f1ef748b5035709 (Maldoc)
e89458183cb855118539373177c6737f80e6ba3f (Maldoc)
a5b2c704c5cff550e6c47454b75393add46f156f (ZIP file containing decoy PDF)
194\.45\.8\.41:443 (KEYMARBLE C2)
hxxp://37\.238\.135\.70/img/anan.jpg (Dropzone server)
PEM Certificate:

—–BEGIN CERTIFICATE—–
MIIDYjCCAkqgAwIBAgIIAZAXmK+UHF4wDQYJKoZIhvcNAQELBQAwZjELMAkGA1UE
BhMCVVMxGTAXBgNVBAoMEEdsb2JhbFNpZ24gbnYtc2ExPDA6BgNVBAMMM0dsb2Jh
bFNpZ24gT3JnYW5pemF0aW9uIFZhbGlkYXRpb24gQ0EgLSBTSEEyNTYgLSBHMjAi
GA8yMDE4MDkwMjE0NDgwOVoYDzIwMjAwMTE2MTQ0ODA5WjBmMQswCQYDVQQGEwJV
UzEZMBcGA1UECgwQR2xvYmFsU2lnbiBudi1zYTE8MDoGA1UEAwwzR2xvYmFsU2ln
biBPcmdhbml6YXRpb24gVmFsaWRhdGlvbiBDQSAtIFNIQTI1NiAtIEcyMIIBIjAN
BgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAvwzKLRSyHoRCW804H0ryTXUQ8bY1
n9/KfQOY06zeA2buKvHYsH1uB1QLEJghTYDLEiDnzE/eRX3Jcncy6sqQu2lSEAMv
qPOVxfGLYlYb72dvpBBBla0Km+OlwLDScHZQMFuo6AgsfO2nonqNOCkcrMft8nyV
sJWCfUlcOM13Je+9gHVTlDw9ymNbnxW10x0TLxnRPNt2Osy4fcnlwtfaQG/YIdxz
G0ItU5z+Gvx9q3o2P5jehHwFZ85qFDiHqfGMtWjLaH9xICv1oGP1Vi+jJtK3b7Fa
F9c4mQj+k1hv/sMTSQgWC6dNZwBSMWcjTpjtUUUduQTZC+zYKLNLve02eQIDAQAB
oxAwDjAMBgNVHRMEBTADAQH/MA0GCSqGSIb3DQEBCwUAA4IBAQBRe7BnZbn005fj
P5in0Pv6FMWy9x7kzjI2e6JcxXr+LuEisfxACkw2g2yFrQAzZguTSGYiSIDtwURE
A+ALRoZFa9gVwtqKQFOQOBcDYINZIqI8Ma7eprcF/O+tAOzHIRoifyYYpv0Is89x
6xI8og9hRzVTyov5eYK0tqjdMZwRWSQz2hmghhqXx43YlRw0f69iKjJ7MpHtv/Ru
uMPlbwo/VRXY8kywL/GkFG3nPxWKXm7T4nBFp5/sYCvfakPpZDuzEN7igXhOWaqL

18/20

TwkCOWQf3m6oX56DDpzeHJmLYEukX7QNjVBF3mTW7LIuPT5rR3nJFYJA9Tf0umvd
B30JttH5
—–END CERTIFICATE—–

References

NCCIC KEYMARBLE report from August 2018: https://www.us-cert.gov/ncas/analysis-
reports/AR18-221A
Intezer report on cryptocurrency exchange attacks by Lazarus group from March 2018:
https://www.intezer.com/lazarus-group-targets-more-cryptocurrency-exchanges-and-
fintech-companies/
WolfSSL on Github: https://github.com/wolfSSL/wolfssl
McbDes2 project code:
https://read.pudn.com/downloads198/sourcecode/crypt/ca/930917/McbDES2.hpp__.ht
m
TZip library:
https://graphics.stanford.edu/~mdfisher/Code/WebPagePreprocessor/zip.cpp

Appendix:

Structure used for each file and directory enumerated during execution of handler for
code 0x1234558:

The buffer used for collection system and network info in the handler for code 0x123455D
will have the following outline:

https://www.us-cert.gov/ncas/analysis-reports/AR18-221A
https://www.intezer.com/lazarus-group-targets-more-cryptocurrency-exchanges-and-fintech-companies/
https://github.com/wolfSSL/wolfssl
https://read.pudn.com/downloads198/sourcecode/crypt/ca/930917/McbDES2.hpp__.htm
https://graphics.stanford.edu/~mdfisher/Code/WebPagePreprocessor/zip.cpp
https://research.checkpoint.com/wp-content/uploads/2019/02/img4.png

19/20

where info_item is a FAM of the following structure:

and system_info has the following structure:

https://research.checkpoint.com/wp-content/uploads/2019/02/img7.png

20/20

