
1/13

Rietspoof Malware Family Increases Activity
blog.avast.com/rietspoof-malware-increases-activity

 Threat Intelligence Team 16 Feb 2019

We’re tracking a new cyberthreat that combines file formats to create a more versatile
malware.

Authored by: Luigino Camastra, Jan Širmer, Adolf Středa and Lukáš Obrdlík

Since August 2018, we have been monitoring a new malware family we’re calling
Rietspoof. Rietspoof is a new multi-stage malware that exhibits some very striking features
and capabilities. When we began tracking Rietspoof, it was updated about once a month.
However, in January 2019, we noticed the update cadence change to daily.

Rietspoof utilizes several stages, combining various file formats, to deliver a potentially more
versatile malware. Our data suggests that the first stage was delivered through instant
messaging clients, such as Skype or Live Messenger. It delivers a highly obfuscated Visual
Basic Script with a hard-coded and encrypted second stage — a CAB file. The CAB file is
expanded into an executable that is digitally signed with a valid signature, mostly using
Comodo CA. The .exe installs a downloader in Stage 4.

https://blog.avast.com/rietspoof-malware-increases-activity
https://blog.avast.com/author/threat-intelligence-team
https://blog.avast.com/author/threat-intelligence-team

2/13

What’s interesting to note, is that the third stage uses a simple TCP protocol to communicate
with its C&C, whose IP address is hardcoded in the binary. The protocol is encrypted by AES
in CBC mode. In one version we observed the key being derived from the initial handshake,
and in a second version it was derived from a hard-coded string. In version two, the protocol
not only supports its own protocol running over TCP, but it also tries to leverage
HTTP/HTTPS requests. It is uncommon to see a C&C communication protocol being
modified to such an extent, given the level of effort required to change the communication
protocol. While it is common to change obfuscation methods, C&C communication usually
remains relatively constant in most malware.

This downloader uses a homegrown protocol to retrieve another stage (Stage 4) from a hard-
coded address. While Stage 3 protocol includes bot capabilities, Stage 4 acts as a
designated downloader only.

Additionally, the C&C server communicates only with IP addresses set to USA which leads us
to the hypothesis that we are working with a specifically targeted attack or the attackers are
using the USA IP range only for testing reasons. And, it is possible that there are more
stages that haven’t been revealed yet. Here are the results of our full analysis to date.

VBS deobfuscate & drop embedded file

The first part of the Visual Basic script is a function for reading and deobfuscating embedded
binaries.

From this snippet, it is immediately obvious that the script starts reading code at a specific
offset deobfuscating the CAB file and readying it for the next stage. The code is, character by
character, converted to its ANSI value and added to the counter variable. At every step, the
counter is XORed with val_01 (hard-coded to 15) and appended to already decoded bytes.
Interestingly, at every step, the string var_str_01 is also appended to var_str_02.

After this step,

the var_str_02 is used as a parameter for a new function. The second parameter is
TempPath with the following filename:

3/13

In this stage, the CAB file is saved to the machine’s Temp folder under the name
“JSWdhndk.sjk.” The following stage needs to be extracted from it, which is accomplished by
using expand.exe:

Executing PE and covering tracks

The script first checks if the logged user is an Admin by simply reading the registry key
"HKEY_USERS\S-1-5-19\Environment\TEMP". In case of success it set func_read_Registry
to True

When this flag is set to True, the VBS changes the date to 01-01-2109, deletes the CAB file
from %TEMP%, runs the expanded executable file, and deletes the original script to cover its
tracks. And, then, it change the date back to the actual date. This interim date with the year
2109 is not used in the script not dropped files. At the beginning, we thought this was just a
typo and the intended interim date was 01-01-2019 but this hypothesis was not confirmed.

An interesting move from the malware authors is to use cmd /c to run commands from the
command line. Look at the description of this command:

4/13

 This is most likely an attempt to break behavior detections by spawning more command lines
with carried out commands.
Even if the previous step is skipped, if the current user is not the admin, the next step is to
run the expanded PE file. At first, the script deletes a scheduled task Microsoft Windows
DOM object helper. This is done by the malware authors to be sure that they can create a
new value in schedule tasks pointing to the expanded PE file which was expanded from the
previous stage; it is set to execute after one minute. Then the CAB file is deleted from
%TEMP% directory.

Adding persistence

In the new version of the VBS, , the malware authors added a new function for persistence
starting on January 22, 2019. The script creates a new LNK file in startup with the name
WindowsUpdate.lnk. This lnk file runs an expanded PE file after startup to ensure the
executable will run if the machine is rebooted.

Signature

Almost every version of the VBS file contains a new certificate, for example:

When we simply transform this block of code from base64 to hex, and then parse this ASN.1
hex string, we obtain the serial number of this certificate:

5/13

Most certificates are issued by COMODO or Sectigo

Stage 3 - Dropped bot

So far, we have seen two versions of the third stage of Rietspoof, observing they differ mostly
in terms of communication protocol. This stage has the capabilities of a simple bot: it can
download/upload files, start processes, or initiate a self-destruct function. The C&C server

6/13

also seems to have implemented basic geofencing based on IP address. We didn’t receive
any “interesting” commands when we tried to communicate with it from our lab network;
however, when we virtually moved our fake client to the USA, we received a command
containing the next stage.

We noticed that development of this third stage is rapidly evolving, sometimes running two
different branches at once. During our analysis, the communication protocol was modified
several times and new features were added. For example, string obfuscation was supported
in earlier versions, implemented several days later, and then on the 23rd of January, we saw
samples that rolled back some of these changes. Newer versions also support the command
line switch “/s,” used to install themselves as a service named “windmhlp”.

Timeline

15.1. Obfuscation placeholders, communication protocol v1

18.1. Implemented obfuscation, service installation, communication protocol v2

22.1. Obfuscation scrapped, communication protocol v1

23.1. Obfuscation scrapped, communication protocol v1, service installation

The bot is either blocked by geofencing or there’s currently no ongoing distribution. The
communication has a simple structure:

Req: client_hello (Deprecated in version 2)
Res: client_hello (Deprecated in version 2)

Req: ID

Res: OK or HARDWARE

Req: HW (if previous response was HARDWARE)

Res: OK

The command “HARDWARE” is sent only if the sent client ID is seen for the first time. The
command “OK” always results in communication termination. This simple protocol is executed
periodically every several minutes.

Communication protocol v1

The first version of the third-stage communication uses a rather simplistic protocol. At first, a
key and initialization vector is generated by a handshake that consists of a message and a
response, both 32 random bytes and a 4-byte CRC32 checksum. Afterwards, the random

7/13

bytes are xor-ed together, and applying SHA256 on the result yields the key. Similarly,
applying MD5 on the SHA256 digest yields the initialization vector. From now on, these
parameters are used to encrypt messages by AES-CBC. Note that the padding function is
strangely designed: the last block is padded to 16 bytes, if necessary, and another 16 zero-
bytes are always appended after the last block.

Initial handshake and the subsequent key generation: there’s a
check for port array, which is not shown, overflow in-between these two blocks.

8/13

String “HELLO\n” that is obfuscated and subsequently
deobfuscated - obfuscation placeholder

The communication starts with client_hello, a message simply containing “HELLO\n” that
expects “HELLO\n” as a reply (actually “HELLO\n\n\n\n\n\n…” was always the reply). Then,
the client sends a command “ID:<MD5 of adapter MAC address>2.10\n”. Either a response
“OK”, “HARDWARE”, or a more powerful command is received. In the former, the
communication ends and the communication loop sleeps for two to five minutes. The
response “HARDWARE” induces a request “HW:<OS info> CPU<CPU info> RAM: <RAM
info> USER: <process privileges>”, process privileges being either “admin” (the process has
administrator privileges) or “user” (otherwise). Again, after this message a response “OK” is
received, similarly ending the communication.

One of six alternative commands may follow instead of OK:

9/13

DEL:
<filename>

Delete file, the filename is prefixed by the location of %TEMP%

RUN:
<filename>

Create process with the file as lpCommandLine, the filename is prefixed by
the location of %TEMP%

DWN:
<filename>

Download a file, if the filename has suffix .upgrade then dump VBS update
script which replaces the malware with a newer version.

UPL:
<filename>

Upload file from %TEMP%

DAR:
<filename>

Download, save to %TEMP%/<filename> and execute

DSF:\n Delete itself

Communication protocol v2

The second version of the third stage of Rietspoof also uses a rather similar protocol with a
few new additions. The second version tries to communicate over HTTP/HTTPS, unless a
proxy is set up, in which case it resorts to raw TCP. This new version also eschews the initial
handshake, as it uses a hardcoded string “M9h5an8f8zTjnyTwQVh6hYBdYsMqHiAz” instead
of XORing two random strings. Again, this string is put through SHA256, yielding a key, and
SHA256 composed with MD5, yielding an initialization vector. These parameters are used to
encrypt messages by AES-CBC.

Obfuscated “HELLO\n” string

10/13

The HTTP GET requests, generated by the malware, are more or less ordinary with the
exception of three headers that may be present. An example of the HTTP request is below.
Note that Content-MD5 header is not mandatory; moreover, the Content-MD5 header is used
in a custom and standard non-compliant way. Also, the User-agent string is hard-coded in the
binary.

GET /<path>?<GET data> HTTP/1.1
Host:<domain>
Connection:close
Content-MD5:<base64 encoded message>
User-agent:Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.1) Gecko/20061204
Firefox/2.0.0.1
Fortunately for us, the old protocol is still present for cases when an HTTP proxy is used. We
believe that this may serve as a protection against trivial man-in-the-middle attacks that could
be utilized during analysis of the malware. However, in our case, it allows us to deploy a new
tracking script with very few modifications, as only the key agreement protocol has been
changed.

Stage 4 - Downloader

This stage tries to establish an authenticated channel through NTLM protocol over TCP with
its C&C whose IP address is hardcoded.

Initiate NTLM authentication

11/13

Main loop of authentication and receiving data from C&C server

Afterwards it starts communicating with the C&C over the aforementioned channel with the
intent of recovering either another stage or possibly the final payload.

Conclusion

As you have read above, this new malware, Rietspoof, has had a significant increase in its
activity during January 2019. During this time, the developer has used several valid
certificates to sign related files. Also, the payloads went through development, namely
changing the implementation of the Stage 3 communication protocol several times. While the
data on Rietspoof is extensive, motives and modus operandi are still unknown, as are the
intended targets. And, to date, the malware-infected files are rarely being detected by most
antivirus software.

Our research still cannot confirm if we’ve uncovered the entire infection chain. While the
malware has bot capabilities, it seems to have been primarily designed as a dropper.
Additionally, the low prevalence and use of geofencing signifies other possible unknowns. For
instance, we may have missed other samples that are distributed only to a specific IP
address range.

12/13

We are not sharing IoCs publicly, but, if you are able to prove to Avast that you are an anti-
malware analyst or researcher, we will make the IoCs available to you. In this case feel free
to contact @n3ph8t3r, @StredaAdolf and @sirmer_jan on Twitter.

Update 2/20/19:

Thanks to the Malware Hunter Team, we received information about the first stage of
Rietspoof. It seems that Rietspoof was spread using a Microsoft Word document with
macros. The document acts as a dropper and a runner for the aforementioned VBS. Upon
initial inspection the document shows an almost traditional image that is used to persuade
users to enable macros, as can be seen below:

Once macros are enabled, the information regarding the protected document is deleted and a
title “Emergency exit map” is shown.

https://twitter.com/n3ph8t3r
https://twitter.com/StredaAdolf
https://twitter.com/sirmer_jan
https://twitter.com/malwrhunterteam/status/1097568650507284483

13/13

Afterwards, this part of the script deobfuscates the VBS and saves it onto the machine,
executing wscript.exe with a parameter

c:\users\NAME\appdata\roaming\microsoft\word\startup\.\.\\Windows\Cookies\wordTemplate.vbs,
that is a path leading to the dropped VBS, to execute the payload.

The Visual Basic script, that we described earlier, is embedded in the document as a base64
string encoded in hex.

