
1/26

5 February 2019

Revisiting Hancitor in Depth
0ffset.net/reverse-engineering/malware-analysis/reversing-hancitor-again

0verfl0w_

5th February 2019

4 Comments

As you probably guessed from the title, we are going to be taking a look at Hancitor once

again, except this time, I’ll be focusing on the second stage of Hancitor that is dropped as a

result of a Microsoft Word or Excel document. I was planning to include an analysis of one

of the third stage payloads – ISFB – in this post, however it would have been extremely

long, so I decided to give it it’s own post. This post will replace my original post about

Hancitor (Part 2, not Part 1), as this time I’ve fully analyzed the sample, and therefore do

not need to rely on outside information. Both the packed and unpacked samples are

available on VirusBay. Let’s get into it!

MD5 (Hancitor – Packed): c07661bd4f875b6c6908f2d526958532

 
MD5 (Hancitor – Unpacked, Unmapped): 5fe47865512eb9fa5ef2cccd9c23bcbf

Unpacking Hancitor

As per usual with most malware nowadays, Hancitor’s Second Stage payload is packed, so

before we get to the interesting part, we need to unpack it, which isn’t particularly difficult

to do so. I will be using Immunity Debugger to step through the unpacking, as x32dbg failed

to analyze sections correctly. This will be a quick unpacking, and there won’t be much detail

on the unpacking routine as this isn’t the purpose of the post. Upon opening the file in a

debugger, scroll down until you see a call to EBX and put a breakpoint on that call:

https://www.0ffset.net/reverse-engineering/malware-analysis/reversing-hancitor-again/
https://www.0ffset.net/author/dan489400/
https://beta.virusbay.io/


2/26

Execute the program and once it has hit the breakpoint, step into EBX. From there, you will

see several jumps – follow these jumps and you will notice values being pushed to the stack,

until you see a call to EAX (VirtualProtect).

You can step over this and follow the jumps again. You’ll notice registers being incremented

and compared, until you hit an XOR BYTE PTR. As you probably guessed, this is a loop

that XOR’s values in the main binary. If you keep stepping over, you’ll reach a JB

instruction, and just underneath is a JNO instruction. Put a breakpoint on

the JNO instruction, as shown below, and execute the program.



3/26

Once you’ve hit the breakpoint, simply step over the next few instructions, until you see a

jump to EAX. Upon following this jump, you’ll find a section of un-analyzed code. Right

click and select Analysis->During next analysis, treat selection as->Command,

and then CTRL-A. The section will be re-analyzed and should resemble something similar

to the image below.

From there, scroll down. You’ll notice strings such as “VirtualAlloc” and “_stricmp” – this

section loads different DLLs and imports functions. You can step through this and analyze

it, or you can scroll down until you see the last API being imported, which in this case

is “memcpy“. After a call to GetProcAddress ([EBP-28] here), EAX (memcpy) is moved

into [EBP-30]. Put a breakpoint on this and execute the program.



4/26

Scroll down further and you’ll see another jump to EAX – put a breakpoint on that and run

the program once again.

Following this jump should take you to another region of memory – in this case it is

at 0x000203E4. You’ll see a jump near the bottom of the window, so put a breakpoint on

that and execute the program again.



5/26

Jumping to the address will show the Substitution Box creation and scramble instructions,

which creates the lookup table for RC4 decryption. We can skip over this so keep scrolling

down until you see several IMUL instructions and another function call. Put a breakpoint

on this call and run the program.

Several libraries will be loading upon running the program, but just ignore that. Once the

breakpoint has been tripped, step into the function and follow the jump. From there, there

will be a call to an API, and a call to a function. Make sure you step into this function, and

follow the jump.



6/26

You will see another API call and function call. Step into the function, and there will be a

jump to EAX – take this jump, and it will lead you back to the original memory region of the

binary.

Once you get there, you will need to re-analyze the section, just like we did before. Ignore

the first function call, and step into the second call.



7/26

This function has a few calls, but the important ones are near the bottom –

 GetMessageA, TranslateMessage, and DispatchMessageA. They will be in a loop, so

simply put a breakpoint after the loop, and run the program. This loop will result in the

main Hancitor payload being written to a different region of memory, and run it, so make

sure you disconnect your machine from the network for this. You will have to pause the

execution of the program yourself, as the loop will not exit until the payload thread has.

Make sure you have Process Hacker open as well, as this will allow you to dump the

unpacked payload. Wait for around 30-45 seconds (although it depends), and search

for RWX protected regions of memory in Process Hacker. In this case, there is a 36 Kb

section, which upon viewing, has a valid MZ header, so let’s dump it.



8/26

As we dumped the payload from memory, it is mapped, so we need to unmap it. Open the

dumped file in PE-Bear and go to the Section Headers option, as shown in the image. You

need to change the value of the Raw Addr. so that it matches the value of the Virtual Addr.

You then need to change the Raw size of each of the sections, except for the last section,

which is .reloc here.

Upon doing this, you will notice the imports section starts fixing itself. If you see a similar

import table to the one shown below, congratulations, you have successfully unpacked

Hancitor! We can now start analyzing the unpacked payload!



9/26

Analyzing Hancitor: Unpacked

I will be statically analyzing the unpacked version of Hancitor, using IDA Pro, although you

can use any dissassembler, or even dynamically analyze it.

Upon opening the file, there are three functions, and then a call to ExitProcess. The first two

functions are not important, and simply seem to be used for importing API calls and loading

libraries. The third function contains all of the interesting stuff, so let’s jump into that.

Inside the main section, there are several functions that are called. The first three are calls

to a function that simply allocates a heap, with the sizing based on the argument, so we can

ignore that.



10/26



11/26

Taking a look at the next called function, we can see a lot of stuff happening.



12/26

First, Hancitor calls GetVersion, and then calls 4 additional functions to gather more

system information. The first function of the 4 returns a GUID for the user, based on

gathered volume information and adapter addresses.



13/26

The second function locates both the computer name and the username. To get the

computer name, it simply calls GetComputerName and appends an @ sign on the end. In

order to get the username, rather than calling GetUserName, it enumerates through

running processes searching for explorer.exe, and when found, it opens the process,

opens the process token, and then gathers the token information. This is then used in a call

to LookupAccountSidA, which will return the username and the domain which the

username was found on. This is then formatted together, so it will

read Domain\Username. Then, this is appended to the original computer name.



14/26

The third function is responsible for gathering the external IP address. To do so, it uses

the WININET library to send a GET request to api[.]ipify[.]com, the go-to for Hancitor.

If it fails to connect to the site, it simply sets the IP as 0.0.0.0, and continues on.



15/26

Finally, the fourth function is used to determine the architecture of the system, whether it is

x64 or x32 bit. This will determine which string to wsprintf the data to. It attempts to

import GetNativeSystemInfo, and if it fails, it will just call GetSystemInfo. If the

function returns 1, the system is a 64 bit system. Otherwise, it will be set as 32 bit.

Once the architecture has been determined, the BUILD value and C2 URLs are RC4

decrypted, using native WinCrypt functions rather than a custom implementation of RC4.

The BUILD represents the campaign date of the specific Hancitor sample. In this case, the

build is 17bdp12, which indicates the campaign began on the 17th of December.



16/26

Once the decryption has finished, the values retrieved by the five functions are stored in a

string using wsprintf. The string depends on the architecture, but only the last 5

characters:

GUID=%I64u&BUILD=%s&INFO=%s&IP=%s&TYPE=1&WIN=%d.%d(x32)

This is stored in a buffer, which will be used in a POST request to the recently decrypted

C2s. After the wsprintf call, Hancitor begins to focus on the C2s. First, it checks to see if

the C2s have been decrypted, and if not, it will decrypt them again. Once decrypted, each C2

URL is split with ‘|‘, for easy splitting. Hancitor copies the first URL to a different region of

memory and attempts to connect to it. If it fails to contact the C2, it will try with the next

URL, until it realizes all C2s are down, and then it sleeps for 60000 milliseconds, and

retries. If there is still no response, it will exit. The C2s are contacted using

WININET API’s, with a POST request containing the formatted data. If a C2 server is

online, it will typically return a large string of encrypted data that indicates what the

malware should do next.



17/26



18/26

If the C2 server is online and does return data, a verification function is called, which takes

the returned data as an argument. The first 4 bytes in the response are checked to see if they

are more than or equal to 65, and less than or equal to 90 (basically checking if they are in

the alphabet and are uppercase letters). Then, it checks if the character code of the second

letter (response[1]) minus 90, plus 65 is equal to the character code of the third letter

(response[2]). If it is equal, the function will return 0, otherwise it will run another check to

see if the character code of the fourth letter (response[3]) is equal to 90 minus the character

code of the first letter (response[0]) + 65. The result of this will be returned. If 0 is returned,

the malware will return 0, otherwise it will return 1.



19/26

And that brings a close to the first

function – this will be a long one. Back

to the main payload, if the last function

returned 1, Hancitor will begin to

decrypt the data, otherwise it will sleep

and try again. The next function call

accepts the C2_Response + 4, so it

discards the first 4 bytes, as they are

simply for verification. Taking a look at

the function, we can see a call to a

function that takes the encrypted data

and the address of an empty heap that

was previously allocated. It returns a

value which is stored in a variable. This particular variable is used in a for loop, so we can

assume that this is the size of the data. We can also assume that the empty heap will contain

data, as each character is XOR’ed using the hexadecimal value 0x7A. Once the loop has

ended, it returns. So let’s take a look at sub_3B1000.

If you have ever written a Base64 encoder/decoder in languages such as C/C++ or even

Python, you may recognize this pseudo-code as a Base64 decryption algorithm. Hancitor

simply Base64 decodes the C2 response and XOR’s it using 0x7A, making it quite effortless

to decrypt C2 data.



20/26

Before we move onto the next functions, it is important to know what the C2 data actually

looks like.

As you can see, there are 3 “sections” in this decrypted response, with each section starting

with { and ending with }, and each URL being split with a |. You can also see at the start of

each section there is a letter and then : – this letter indicates what Hancitor should do with



21/26

the specific URL. The next function splits the sections up, by checking for { and then

copying each character to an allocated heap, until the character equals }. This data is then

used in the next function.

The next function takes the section of URLs and checks to see if the second character is :,

and then to see if the first character equals; r, l, e, b, d, c,or n. If it doesn’t equal any of the

characters, it loops. Otherwise, it will continue to the next function, which will carry out the

command.

Whilst Hancitor checks for 8 characters, it only uses 5 of them;  r, l, e, b and n. If the

response is n, the malware does nothing. If it is b, it will download a file from the URL,

decompress it, and inject it into SVCHOST. If it is e, it will download a file, decompress it,

and execute it as a new thread. If it is l, it will download a file, decompress it, and execute it

as a new thread with an argument. Finally, if the command is r, it will download a file,

decompress it, and execute it as it’s own process.



22/26

One particularly interesting thing about the download and decompress routine is how it

checks the first two characters of the decompressed, downloaded file for MZ, to make sure

it is in fact an EXE or DLL. When executing as an own process, it checks whether or not the

file is a DLL or an EXE by looking it up in the file header, and if it is a DLL it uses

RUNDLL32.exe to execute it.



23/26

SVCHOST.exe Injection:



24/26

Execute in New Thread:

Execute as own Process:



25/26

Once the process has been executed,

the function returns back to the main

payload, and now fully annotated, you

can view the flow of the program.

Now that brings an end to this full analysis of Hancitor’s second stage. I am currently

working on writing a Python script that extracts Hancitor communications from PCAP files,

decrypts them, and then attempts to interact with the C2 servers to download the third stage

payload as a file, which will be up on GitHub once it is complete. My ISFB analysis should

be posted soon – I am currently quite busy, but expect it soon!



26/26

IOCs: 
    Build: 17bdp12 
    Hancitor (Packed: MD5): c07661bd4f875b6c6908f2d526958532 
    Hancitor (Unpacked: MD5): 5fe47865512eb9fa5ef2cccd9c23bcbf 

    Second Stage C2s: 
         http://woodlandsprimaryacademy.org/wp-includes/(1|2|3) 
         http://precisionpartners.org/wp-admin/includes/(1|2|3) 
         http://precisionpartners.org/wp-admin/includes/(1|2|3) 
         http://mail.porterranchpetnanny.com/wp-includes/(1|2|3) 
         http://synergify.com/wp-content/themes/ward/(1|2|3) 

     

4 Comments

Comments are closed.

 

 


