Analyzing COMmunication in Malware

’-\ Offset.net/reverse-engineering/analyzing-com-mechanisms-in-malware

15 January 2019

 overflow
e 15th January 2019
e 4 Comments

If you follow me on Twitter (@overflow_), you may have noticed a while back that I was
analyzing a sample of Ursnif/Gozi/ISFB (which I will refer to as ISFB) and was confused as
to how it was able to communicate with its C2 servers through a separate process, without
injected DLL’s or process hollowing. I managed to locate a great article by Mandiant (here)
from 2010 about how COM can be used to control a process, such as Internet Explorer, into
performing certain actions.

In this post, I will be exploring the COM mechanisms that the latest versions of ISFB utilize
in order to contact the command and control servers stealthily. I do have quite a long post
going up (hopefully) in the next couple of weeks that goes into detail about this specific
strain of ISFB, and the multiple unpacking stages it goes through before the final stage, so
stay tuned for that!

What is exactly is COM?

According to Microsoft, “The Microsoft Component Object Model (COM) is a platform-
independent, distributed, object-orientated system for creating binary software
components.” To sum it up, COM allows programs to interact with each other through COM
objects. This interaction can occur

“within a single process, in other processes, and can even be on remote computers®, and
the language that the program was written in does not matter — as long as it is able to create
structures of pointers and call functions through those pointers, it is COM Compatible —
meaning languages like Visual Basic and Java can use COM. If you want to learn more about
COM, you can check out Microsoft’s own description and tutorials on it here.

As a result of the progression of technology, COM isn’t used as frequently anymore, and
therefore when an analyst comes across a piece of malware utilizing this unfamiliar
communication method, it may be difficult to pinpoint what is happening, and how. Static
analysis is even more complex, unless you know what you are looking for — which is what
this article is about.

COM Mechanisms and its use in the ISFB Loader

Second Stage Loader MD5: 5019f31005dba2bg10b21c4743ef4e98

1/6

https://www.0ffset.net/reverse-engineering/analyzing-com-mechanisms-in-malware/
https://www.0ffset.net/author/dan489400/
https://twitter.com/0verfl0w_
https://www.fireeye.com/blog/threat-research/2010/08/reversing-malware-command-control-sockets.html
https://docs.microsoft.com/en-us/windows/desktop/com/the-component-object-model

I have uploaded the first stage and dumped second stage loader to VirusBay, so that you
can follow the steps if you want to. I will be focusing on the second stage loader, as that is
where the communication with the C2 occurs. I will be analyzing it statically using IDA,
although you can do it dynamically as well.

The first giveaway that malware could be using COM functionality for communicating with
it’s C2 server is a call to CoInitializeEx. Calling this function will initialize the COM library
so that the calling thread can utilize it’s functionality. Taking a look at the flow of this
sample, it is clear that if initializing the library fails, it will exit — hinting that it heavily relies
on the COM library being loaded successfully.

Ll i 55
Init_COM_Library:
push esi
push 2 ; dwCoInit
push 8 ; pvReserved
call CoInitializeEx ; Initialize COM Library
test eax, eax
mowv [ebp+var_4], eax
jz short loc_2C1F18@
i 4
Ll el =]
cmp eax, 1
jz short loc_2C1F1e
i Y
I
cmp eax, S0818186h
jnz loc_2C1FED ; Jump to exit if failed to init
YvYy

Once we have discovered it is initializing the COM library, we can search for calls to
CoCreateInstance, as this spawns an uninitialized object of the class associated with a
specific CLSID, meaning you will notice a new process being spawned after you step over
this call. Whilst there are many cross references to CoCreatelnstance in this sample, we are
able to determine which one calls Internet Explorer based on the CLSID pushed before the
function call. IDA will show you the CLSID based on how it looks in memory, and as a
result, we can find the corresponding object that is called. But how?

2/6

https://beta.virusbay.io/

push ebp
mov ebp, esp
push ecx
push esi

push @ch ; dwBytes
call Allocate_Hean
mov es?. eax | 'IDA View-D
esi, esi
loc_2456F
A J
push esi i ppv
push offset IE_riid ; riid
push 4 ; dwClsContext
push @ 3 pUnkOuter
push offset IE_CLSID ; rclsid
call CoCreatelnstance
test eax, eax
mov [ebptvar_4], eax
jl short loc_2456F4

db eDgh
db 1
db 1%h

dd 2DF@lh

(DI
IE_CLSID
dw @

dw @

db eceh, &
db 85h
db @F4h
db 58h
db 3@h
db eBsh
db 98h

unk_24C038

dup(@), 46h

The CLSIDs of different objects are stored in the registry, and so whenever
CoCreatelnstance is called, the system checks the registry for the passed CLSID. From the
image above, we can tell that the CLSID being utilized is {0002DF01-0000-0000-
C000-000000000046}, which we can lookup in the registry. You can find a list of all the
available CSLIDs at HKEY__CLASSES_ROOT\CLSID. Once the CLSID has been located,
it should reveal what process is being created, and in this case it is Internet Explorer
(Ver 1). Moreover, the IE_ riid that is being passed to the function informs us of the
interface being used — in this case the riid being used is {EAB22AC1-30C1-11CF-A7EB-

0000C05BAEOBE}, which when looked up in the registry reveals that it is the

Microsoft Web Browser Version 1. When we google this riid, it comes up with results
for the IWebBrowser interface.

ﬁ) Registry Editor
File Edit View Favorites Help

> - | {00021400-0000-0000-C000-000000000046} =~
- | {00021401-0000-0000-C000-000000000046}
>~ |, {00022601-0000-0000-C000-000000000046}
> - | {00022602-0000-0000-C000-000000000046} | |
- | {00022603-0000-0000-C000-000000000046}
- |, {00024500-0000-0000-C000-000000000046}
5~ | {00024502-0000-0000-C000-000000000046)
>+ 1 {00024505-0016-0000-C000-000000000046}
» | 1| {0002DF01-0000-0000- CO00-000000000046}
- |, {0002E005-0000-0000-C000-000000000046)
- |, {0002E006-0000-0000-C000-000000000046}
>~ |, {0002E101-0000-0000-C000-000000000046}
- |, {0002E119-0000-0000-C000-000000000046)
- |, {0002E132-0000-0000-C000-000000000046}
5~ 1) {0002E169-0000-0000-C000-000000000046
>~ |, {0002E170-0000-0000-C000-000000000046}
»- 1 {0002E174-0000-0000-C000-000000000046}
5~ 1) {0002E178-0000-0000-C000-000000000046
>~ |, {0002E17C-0000-0000-C000-000000000046}
- |, {0002E185-0000-0000-C000-000000000046}
.>
“

- L, {DO02E187-0000-0000-C000-000000000046}
| [} | b

MName

ab] (Default)

Type
REG_SZ

Data
Internet Explorer(Ver 1.0)

Computer\HKEY_CLASSES_ROOT\CLSIDY{0002DF01-0000-0000-C000-000000000046}

Now that we know for sure what instance is being created, we can look at what functions are
being called. IDA Pro has a plugin called COM helper which will detect CLSIDs and alter the
names to resemble what they point to, however this isn’t possible in the free version, so you
would have to look it up in the registry. When looking at calls to COM functions in IDA, all

you would see is call dword ptr [ecx+2Ch], which doesn’t tell you much unless you know
the functions inside out. That is why we have to create a structure in IDA that allows us to
assign understandable functions to these pointers. Simply click on the Structures tab and
press the INSERT Key to add a new structure. Then click Add Standard Structure. In

this case, we know Internet Explorer is being called, and a quick google search for

“Controlling Internet Explorer using COM C” will show code on several pages referring to
IWebBrowserz2, and so the Standard Structure we want to create is called

IWebBrowser2Vtbl, which is possible to create using the free version of IDA Pro.
Furthermore, we know that IWebBrowser was being used as well, so we should also
create a Standard Struct for that as well.

One way you can determine other interfaces that are being utilized is to simply look for calls
to QuerylInterface, as this retrieves pointers to all calls available in that Interface. This

will allow you to create the correct standard structures, and resolve the calls to these

functions.

il k-1 IR AP

B e finction B instruction B

=] Please choose a structure

lo o]«

Type name
TWCWizardCallback
E] wewizardCalbadvinl

“ Create structure/union

Structure name struc_1

Create before current structure
Don't indude in the list

| Create union

w

fers, please wait...ok

TWEExtendContextMenulthl

= | IWEExtendPropertySheetvibl
TWEExtendWizard
TWEExtendWizardVitbl

TWEInvokeCommandyibl
TWPObj

TWPOB{VER
TWaitMultiple
IwaitMultioleVthl
TwebBrowser
IWiebBrowser2
TWebBrowser 2vthl
IWebBrowserApp
TwebBrowser AppVthl

IR

IWinlnetHttpInfovthl
IWinlnetinfo
TWinInetInfovthl
IWindowForBindingUL
WindowForBindingLIvibl
TwiriteCookie
TWiriteCookievthl
IXAConfig

IXAConfigvthl
TXAOhtanRMinfn

1
=

Line 5479 of 10677

Declaration

struct {struct IWCWizardCallbackvtbl *jpVibl;}

struct HRESULT [__stdcall *QueryInterface)(IWCWizardCalback *This, const
struct {struct IWEExtendContextMenuvtbl =pvibl;}

struct {HRESULT (_stdcall *Querylnterfac Contex This, c..

struct {struct IWEExtendPropertySheetvtbl pvtbl;}
struct HRESULT [__stdcall *QueryInterface)(IWEExtendPropertySheet *This,
struct {struct IWEExtendWizardVtbl *ipvibl;}

struct {HRESULT (_stdcall *QueryInterface){IWEExtendWizard *This, const II..

struct {struct IWEInvokeCommandVtbl =pvibl;}
struct HRESULT (__stdcall *Querylnterface)(IWEInvokeCommand *This, cons
struct {struct IWPObjVEbl "ip¥tbi;}

struct {HRESULT (_stdcall *QueryInterface){IWPObj *This, const IID *constr...

struct {struct IWaitMultipleVibl Sip¥ibl;}

struct {HRESULT (__stdeall *QueryInterface)(IWaltMultiple *This, const IID ®c.
struct {struct IWebBrowservitbl “pvibi;}

struct {struct IWebBrowses 2vthl <pvibl;}

struct {HRESULT (__stdcall *Querylnterface){IWebBrowser 2 *This, const IID *..

struct {struct IWebBrowser AppVitbl *Ipvibd;}

struct {HRESULT (__stdcall "Querylnterface)(IWebBrowserApp *This, const II...
struct {HRESULT (__stdcall *QueryInterface){IWebBrowser =This, const IID *c...

struct {struct IWinlnetHtipInfoVthl Spvibl;}
struct {HRESULT (__stdcall *Queryinterface){IWininetHttpInfo *Ths, const I1
struct {struct IWininetinfovtbl *ipvibl;}

struct {HRESULT (_stdcall *Querylnterface){IWinInetinfo This, const IID *c...

struct {struct IWindowForBindingUIVibl Spvibd;}
struct {HRESULT (__stdeall *QueryInterface){(IWindowForBindingUl *This, con.
struct {struct IWriteCookieVthl ipvibl;}

struct {HRESULT (_stdcall *QueryInterface){IWriteCookie *This, const IID *c...

struct {struct INAConfigtbl SpVitbl;}
struct HRESULT (__stdcall *QueryInterface)(IXAConfig *This, const IID *cons
struct fetruct TUADRtanRMInfnithl Snithl:

(oc J[conel J[sewch J[reo |

Type library
Visual C++ v6
Visual C++vé
Visual C++v6
Visual C++ v6
Visual C++ v6
Visual C++v6
Visual C++v6
Visual C++ v6
Visual C++ v6
Visual C++v6
Visual C++v6
Visual C++ v6
Visual C++ v6
Visual C++vE
Visual C++v6
Visual C++ v6

. Visual C4+ v

Visual C++v6
Visual C++v6
Visual C++ v6
Visual C++ v6
Visual C++v6
Visual C++v6
Visual C++ v6
Visual C++ v6
Visual C++vé
Visual C++v6
Visual C++ v6
Visual C++ v6
Visual C++ v
\isiial C 4+ uhi

This standard structure will contain a list of functions exported by IWebBrowserz2, and so

we can simply resolve any pointers to those functions, such as dword ptr [ecx+2Ch],

which can be resolved to IWebBrowser2Vtbl.Navigate(). Dynamic analysis becomes
quite important here, as you can then start matching up functions correctly, rather than
assuming a pointer is pointing to a function in that struct.

4/6

— ows TElp Choose a structure for offset '?l@
< ‘"E Eﬂl‘ 'ﬂ. o - =§? (e X Operand representation Structure size i
_ IShellFolderviewDualvtbl, get_FocusedItem 0040

IshellwindowsVtbl.RegisterPending 0048
e e IShellBrowserytbl BrowseObject 0048
x| | |:Q-| Hex View-2 [| Poe IShellViewVthl, GetCurrentInfo 0040
|mov dword ptr [ebpd IHTMLElementVtbl.get_dassMame 0178
IWebBrowserAppVibl. Mavigate 0oDo
IWebBrowservthl Navigate 0080
E ﬁ IHTMLDocument2vtbl.get_images 0100
[1webBrowser2vthl. Navigate 011cC
loc 245524: |&| IDispatchvibl.GetTypelnfa+1Ch 001c
mov eax, [ebx] _OBIECT ATTRIBUTES. SecurityQualityOfService +18h 0018
mov ecx, [eax] _SHELLEXECUTEINFOW. hkeyClass 003C E
lea edx, [ebp+Headers] _WIN32_FIND_DATAA.cFilName 0140
push edx 5 Heag _CLIENT_ID.UniqueThread+28h 0008
;E:h :jz’ [EbNPDStDafagost _SCOPETABLE_ENTRY.HandlerFunc+24h 000c
lea edx, [ebp+TargetFramel CPPEH_RECORD.registration,ExceptionHandler +20h 0018
push edx 5 Targ _EH3_EXCEFTION_REGISTRATION.TryLevel+20h 0010
lea edx, [ebpt+Flags] _SECURITY_ATTRIBUTES.bInheritHandle+24h 0o0c
push edx ; Flag _FILETIME. dwHighDateTime +28h 0008
push [ebp+URL] 5 URL LARGE_INTEGER.anonymous_0. HighPart+28h 0008
push eax 5 This LARGE_INTEGER.u.HighPart+28h 0008
call dword ptr [ecx+2Ch] ; LARGE_INTEGER +2Ch 0008
mov edi, eax
fest cdi. edi CLSID.Data4+24h 0010 8
i1 loc 245629 IID.Data4+24h 0010

If you were debugging this program, these functions would show up as
ObjectStublessClient, and sometimes you will have to rely on the pushed values to
determine what the function was doing. Once we have fully resolved most of the calls, we
can get an idea of what is happening:

e Instance of Internet Explorer is created using CoCreatelnstance

e IWebBrowser2->Navigate() is called, passing the C2 URL and gathered data as
arguments. This will cause IE to navigate to that URL

e IWebBrowser2->get_ReadyState() is called, comparing the return value with 4
(READYSTATE_COMPLETE) — if it is 4, the function will continue, otherwise it
will sleep for 500 milliseconds and retry the call.

e IWebBrowser2->get_ Document() is called, which physically loads in the page that has
been navigated to.

e IUnknown->QueryInterface() is called, passing the CLSID for IHTMLDocument2 to
it.

e IUnknown->QueryInterface() is called, passing the CLSID for IHTMLElement to it.

e THTMLDocument2->get_Body() is called, which returns a pointer to the website
body.

e THTMLElement->get_OuterText() is called, which returns the raw data from the C2
server

e The data is then decrypted and parsed by the malware

5/6

COM usage currently seems quite popular among malware authors, possibly due to the fact
that it is often undetected by several anti malware programs, as well as being able to remain
under the radar from unsuspecting researchers, such as myself — such as this post by
Nocturnus Research Team, which details how the banking trojan Ramnit utilizes COM API
to create scheduled tasks, in an attempt to remain persistent.

So that brings an end to this brief post — but make sure to stay tuned for a much longer post
on reversing ISFB, sometime this month!

4 Comments

Comments are closed.

6/6

https://www.cybereason.com/blog/banking-trojan-delivered-by-lolbins-ramnit-trojan

