
1/26

Shaun Hurley and James Scalise January 3, 2019

Digging into BokBot’s Core Module
crowdstrike.com/blog/digging-into-bokbots-core-module/

Introduction

BokBot, developed and operated by the actor named LUNAR SPIDER, was first observed in
2017 and the CrowdStrike’s Falcon Overwatch™ and Falcon Intelligence™ teams have
analyzed these infections to ensure customers are both protected and informed. Recently,
BokBot infections have become more prevalent due to distribution campaigns through the
Emotet malware, which is associated with MUMMY SPIDER.

The BokBot malware provides robust functionality, such as:

Command and control of a system
Process execution
Registry editing
Write to the file system
Logging
Polymorphism and other obfuscations
TamperProofing

Modular
Credential theft
Intercepting proxy
Remote control via VNC

®

https://www.crowdstrike.com/blog/digging-into-bokbots-core-module/

2/26

In addition, BokBot has been seen downloading and executing binary code from other
malware families: for example, the Azorult infostealer.

This blog post will dig into the technical details of BokBot’s main module. Subsequent blog
posts will cover the additional downloaded modules.

BokBot Container Execution

BokBot comes packed inside a crypter. The crypter goes through several stages before
finally unpacking the BokBot binary and injecting it into svchost.exe. Here is a quick rundown
of the different stages:

Stage 1 (crypter)
Decode stage 2 and execute

Stage 2 (crypter)
Decodes shellcode and execute

Stage 3 (shellcode)
Hollows out the base process image
Decodes the core process injection PE
Overwrites the base process image with the core process injection PE

Stage 4 (process injection)
Executes the process injection code
Launches svchost.exe child process
Injects BokBot as a headless PE image into the child process

All of the behaviors relevant to the CrowdStrike® Falcon platform occur in stage 4. The
primary focus for the following section is the unique method in which BokBot is injected into
the child process.

Process Injection

In order to bypass antivirus (AV) detections for process hollowing, BokBot hooks several
Windows API functions, executes the hooking code, and then removes the hook.

Simulating Process Hollowing

In order to simulate process hollowing, the ZwCreateUserProcess routine is hooked.
BokBot calls ZwProtectVirtualMemory to modify the permissions of the routine to
PAGE_READWRITE . Next, the first five opcodes (bytes) are replaced with the opcodes for a

 JMP <address of hooking code> instruction. Permissions are restored, and then
CreateProcessA is called.

3/26

Figure 1: Hooking ZwCreateUserProcess

Once CreateProcessA is called, a function call chain leads to calling
ZwCreateUserProcess and then the hooking code, as shown in Figure 1. At this point, no

process has been created.

The hooking code will complete the creation of the child process by removing the hook from
the ZwCreateUserprocess routine, and then the non-hooked ZwCreateUserProcess
procedure is called. This will create the child process, but execution doesn’t begin until
CreateProcessInternal returns. The rest of the hook routine will decode and inject the

embedded BokBot binary into the child svchost.exe process

Code Injection

Prior to injecting the code, the BokBot PE is decompressed and loaded into the local process
memory. Once loaded, the following Windows procedures are used to allocate and write to
the svchost child process:

After the main BokBot module has been written to the child process, the steps to execute the
BokBot code will begin.

Code Execution

4/26

BokBot uses a novel technique to get the code to execute inside of the child process. Using
the same APIs as earlier, the dropper hooks RtlExitUserProcess in the child process.
Since svchost.exe is launched without arguments, it will terminate immediately. As the
process attempts to exit, it will call the hooked RtlExitUserProcess , thus executing the
BokBot payload.

Figure 2: Executing BokBot with RtlExitUserProcess Hook
There is one more task for the hooking routine to complete before
CreateProcessInternalW resumes execution.

Injecting a Context Data Structure

After the BokBot payload is injected into the child process, a context data structure is written
to the child process. This context contains all of the data necessary to ensure that BokBot’s
main module is able to execute without issue:

5/26

Windows Procedure Addresses
ntdll.ZwAllocateVirtualMemory
ntdll.ZwWriteVirtualMemory
ntdll.ZwProtectVirtualMemory
ntdll.ZwWaitForSingleObject
ntdll.LdrLoadDll
ntdll.LdrGetProcedureAddress
ntdll.RtlExitUserProcess
ntdll.ZwCreateUserProcess
ntdll.RtlDecompressBuffer
ntdll.ZwFlushInstructionCache

Load address for payload
Path to the dropper binary
C2 URLs
Project ID

This data is collected throughout the lifetime of the dropper process. In addition, a similar
structure will be written to the child processes of BokBot as it downloads and execute
modules.

After injection, CreateProcessInternalW resumes, and the dropper process exits.
BokBot’s main module starts the initialization phase.

BokBot Initialization

Prior to executing the primary loop to communicate with the C2, BokBot goes through
several initialization steps to prepare itself for C2 communication. Initialization occurs in the
following steps:

Remove the RtlExitUserProcess hook
Create a memory-mapped file to store logging data
Execute BokBot as the logged-on user (if the current process is running as System)
Suppress error windows
Collect System information

Windows version information
User SID
Member of a domain

Unique ID generation
Prevent multiple executions
Install BokBot on the host
Inject existing downloaded modules into into child processes

Some of these steps are covered in more details inside the following sections.

6/26

Silence Errors

To prevent error windows from informing the victim of an issue, BokBot sets the error mode
of the process to 0x8007, which corresponds to the following:

This will disable most error notices that are generated when a process crashes.

Generating Unique IDs

BokBot uses several unique IDS that are generated earlier on during process execution.
These values are passed to the C2 (command and control), used as a key for RC4, and
passed to child processes.

Project ID

In addition to injecting the main BokBot module into svchost, the dropper also injects a chunk
of binary data that provides context for BokBot to execute, including the Project ID. These
unique Project ID values appear to be used to identify infections that correspond to
distribution campaigns. The Project ID is a four-byte value.

Bot ID

Bot IDs are unique to specific instances for a user on an infected host. The value is used as
an encryption key and as a seed in the generation of the unique values that BokBot needs
for a variety of purposes, such as the generation of pseudo-random strings for file and event
names. This will be discussed further in subsequent sections.

The Bot ID is generated in one of the two following ways:

Security ID (SID) of the account name
System time in a file time format

Since both values are 64-bit, no matter which method is used, the value is split into two 32-
bit chunks and XORed.

ID Hash

In addition to this Bot ID, a simple hash is generated that can be used to verify the validity of
both the Bot ID and the Project ID. This hash is generated using the Bot ID and the Project
ID, in the following manner:

7/26

This value will be passed along with the Project ID and the Bot ID as part of the C2 URL
parameters. If this request is invalid, infected hosts will not receive any instructions from the
C2.

C2 Hostname Initialization

Bokbot contains an encoded list of C2 hostnames that were provided as part of the context
data structure that was injected by the dropper. The C2 list within that structure is decoded
using a key that was also provided by the context, and then re-encoded using a new key that
was generated using an rdtsc instruction, and stored as an array of pointers.

Prevent Multiple Executions

A unique global named event is generated using the Bot ID. A successful call to
CreateEvent is proceeded with a call to GetLastError . If the malware is already

executing, the last error is ERROR_ALREADY_EXISTS , and the process exits.

Installation

During installation, the BokBot dropper binary is written to an installation directory, and a
scheduled task is created for persistence.

The installation directory is created in the following root directory:

c:\ProgramData

The installation directory name is unique and generated using the Bot ID. Once the directory
is created, the original dropper file is renamed (also using the Bot ID as a seed) and written
to the directory. Because the Bot ID is based on system information, using it as a seed
ensures that the malware will always generate the same installation path and filename on a
particular host.

After generating the installation directory name, BokBot needs to generate a filename for the
BokBot binary that is going to be written to that directory. The following Python code
reproduces the algorithm that BokBot uses to generate the filename, and various other
strings.

8/26

The str_id value in the script is a hard-coded integer that is used with the Bot ID to
generate consistent strings. For instance, using a Bot ID of 0x2C6205B3 and str_id of 2
always results in ayxhmenpqgof , but switching to a str_id of 6 results in bwjncm.

The following is an example of the installation path:

C:\ProgramData\{P6A23L1G-A21G-2389-90A1-95812L5X9AB8}\ruizlfjkex.exe

A scheduled task is created to execute at windows logon. The task name is generated in the
same manner as the installation directory:

Task Name: {Q6B23L1U-A32L-2389-90A1-95812L5X9AB8}
Trigger: Logon
Action: Start a program
Details: BokBot dropper path

C2 Communication

BokBot communicates with C2 servers via HTTPS requests, passing various values to the
server through URL parameters and via POST data. The URL request data is not encrypted
or obfuscated beyond the SSL/TLS used by the server.

The following sections detail parameters required by all requests, some additional optional
parameters, and the bot registration process.

Required C2 Request/Response Parameters

9/26

Table 1: Required URI Parameters

Every request/response will have these parameters sent to the server. These will provide the
C2 with information that identifies the request/response type and to uniquely identify the
infected machine:

Table 1 describes these parameters in greater detail.

The URL path often changes between versions: For instance, version 100-102 used
/data100.php instead of /in.php.

Additional C2 Request Parameters

BokBot contains a communication thread that loops continuously until the process exits,
retrieving instructions from the C2 server. These requests include several additional
parameters, detailed in Table 2, in addition to those already described. These parameters
are not sent when a machine sends the result of a command issued by the C2, such as
when uploading a screenshot.

The following URL parameters showcase an example of the initial connection to the C2:

10/26

Table 2: Additional BokBot C2 Request URI Parameters

In this example, there are no web injects, no C2 URLs, and no modules have been
downloaded, therefore the highlighted parameters are either zero or empty. An initial
timestamp has been generated, and the version number is static.

Initial Bot Registration

A registration request is combined with the standard C2 URL parameters that are sent to the
C2 with each request. After the initial request, the C2 server will send commands back to the
victim, signaling it to download web injects, updated C2 hostnames, executable modules, or
to perform other tasks.

The initial registration URL contains parameters related to system information. The following
string is an example:

11/26

Table 3: Registration Request URI Parameters

Table 3 describes the registration URI parameters.

The following is an example of a registration request (in red) and a response from the C2 (in
blue) containing commands for the infected host:

12/26

C2 Commands

This section will cover the command requests made by the C2. Each command from the C2
takes the following format:

The following commands are available in the current version of BokBot:

13/26

Note that these command ID values may change between versions. As this list
demonstrates, BokBot provides operators with a wide variety of options to interact with an
infected machine.

URL Download Command Handler

A lot of commands trigger a command handler function that requires communication with
either a C2 URL or another URL specified in the server request arguments. If specified by
the request, the data downloaded from the target URL will be written to a DAT. Whether or
not the downloaded data is written to a DAT file, it will always be processed by a callback
function for one of the following C2 commands:

Start a new executable module, restart current executable module
Update web injects (either command)
Update config
Update BokBot
Write to a file
Download and execute a binary

The commands that use the C2 URL hostnames send a d URL parameter, such as the
following example:

14/26

This value is typically set to 0; the file to download is specified by the g parameters.

Modules and DAT Files

All data received from the C2 that needs to persist between reboots is written out as a DAT
file on the infected machine. These files include:

Web inject configuration
C2 configuration
External modules

Each file is encrypted and decrypted as needed by either the main module or the child
module, using the Bot ID as the key. Each module is given a unique tag.

Unique Tag Generation

BokBot assigns unique tag values for injected processes, downloaded modules, and the
downloaded DAT files. These tags are a convenient method for the executing BokBot
process to identify external process resources. Tag generation is simple:

18 – Web injects configuration file, statically defined in the binary
19 – Reporting configuration file, statically defined in the binary
20 – C2 configuration file, statically defined in the binary
33-46 – Downloaded modules to be injected into child processes

Assigned as needed in an incremental fashion
Not necessarily a unique tag for what the module does

During analysis of BokBot, these values will come up on a regular basis, including values to
generate a unique filename, as described later.

Downloading DAT Files

As previously mentioned, DAT files are downloaded based on commands sent from the C2.
Once the command is received from the C2, a command handler specific to this command is
called to process the request. In response, the infected machine notifies the C2 with the
command that it is ready to receive an RC4-encrypted blob from the C2. Figure 3 illustrates
the process of commands that download configuration files and modules.

15/26

Figure 3: C2 Command to Trigger DAT File Download
An eight-byte RC4 key is prepended to the data buffer. Prior to writing the BLOB to a file,
BokBot decrypts the file, and then re-encrypts it using a new RC4 key based on the Bot ID.

Write to a File

BokBot creates a new directory under C:\ProgramData to store the DAT files. The
directory name is generated using the string generation algorithm described previously. DAT
file names are generated using the unique tag value. This value is run through a string
generation algorithm (also dependent on the Bot ID), which returns a unique filename for the
DAT file.

Table 4: Example of BokBot DAT Files Written During Analysis
Table 4 references all of the DAT files that were written during the testing process used for
writing this blog. In this case, the installation directory is C:\ProgramData\yyyyyyyyiu\.

These DAT files are further handled based on the specified type, depending on whether it is
an executable module or a data file.

16/26

Executable Module

BokBot has several executable modules that can be downloaded and injected into a
svchost.exe child process. Once the relevant DAT file is decoded using RC4, no additional
decoding or decompression is necessary for the executable module DAT files. The
executable module header contains information necessary to ID the module:

The rest of the file contains data necessary to load and execute the module, including the
various portions of a PE file along with a custom PE header.

Module Injection and Execution

Executable modules are injected with a technique similar to the dropper, minus the hook of
ZwCreateUserProcess , and the child process start is suspended (CREATE_SUSPENDED).

It’s a little closer to traditional process migration with the addition of the
RtlExitUserProcess hook.

PE Image Loading

Because there is no standard PE header, the DAT file has to contain all of the relevant
information (virtual sizes, relocations, etc.) to properly map this binary into the child process.
This data is part of the header of the DAT file. BokBot builds the binary in local process
memory prior to injecting it into the child process.

Injection

Injection uses the same APIs as the dropper: ZwAllocateVirtualMemory,
ZwWriteVirtualMemory, ZwProtectVirtualMemory. After injection the process is resumed
using ResumeThread.

Execution Context Injection

Once again, an execution context structure is written to the child process, prior to execution.
Some of the information contained in this context includes:

Bot ID
Project ID
C2 hostnames

17/26

A URL path format string

This keeps everything consistent between the parent and child process. No new unique
identifiers need to be generated, all of the encryption keys are going to be the same: same
hostnames, and even the same URL path. Consistency between parent and child is
necessary for the messages sent between the two, using inter-process communication (IPC).

After a module is injected into a child process, the first four bytes of the decrypted DAT file
are added to an array, used by BokBot to identify which modules are currently executing.

Data Files

The other DAT files contain data necessary to either communicate with a C2, or related to
web injection. Essentially, these files provide whatever additional data the main BokBot
process and the executable modules require to accomplish their job.

Config File

The config file contains all of the data necessary for the BokBot main module to maintain
communication with the C2. Once the file is decrypted using the process-specific RC4 key,
no additional decompression or decryption is necessary.

Signature Verification

Each config file comes with a digital signature block, used to verify the integrity of the C2
hostname data. The signature is verified based on the signature verification method outlined
in the obfuscations section. The following is an example C2 configuration, with the signature
block in red:

18/26

Web Inject Files

There are multiple web inject files. One contains all of the target URL and hostname data,
and the second contains regex patterns, as well as the code to inject. These files are both
RC4-encrypted and compressed.

These files are not parsed by the main BokBot binary, but rather by the intercepting proxy
module. The zeus file magic is verified, a buffer is allocated, and then the files are
decompressed.

A forthcoming blog post on the proxy module will cover decompression and usage of the web
injection configuration files.

Communication with Child Processes

19/26

Memory-mapped files and events are used by BokBot to communicate with all child
processes that contain an injected module. Through the process of leveraging named events
with CreateEvent, OpenEvent , and OpenFileMapping , the BokBot main module is
able to provide additional information to these child processes.

Shared Module Log

Modules write to the same shared memory-mapped file. The memory-mapped file is created
using a shared name between the parent and child processes. Each process that can
generate this name can use it to open the memory-mapped file, and to write data to the
shared modules log. Further details are covered in the next section, and specific data written
will be covered in the separate module descriptions below. The main module is responsible
for clearing the log and sending the data to the C2.

Module-Specific Communication

BokBot’s main module often needs to issue commands to the child processes that contain
injected module code. The commands can trigger an update of module-specific data, or
instruct the module to perform a specific function, such as harvest data from Outlook. Figure
4 outlines this process, although it will be further explained in the subsequent sections.

20/26

Figure 4: BokBot Communication Between Parent and Child Processes

Event Name Generation

In order for the BokBot main modules and the child process to communicate with events,
unique names need to be generated and must consistent across all of the processes. Table 5
illustrates BokBot’s approach.

These events will be used by the parent and child processes to exchange data.

21/26

Table 5: Event Name Structure

BokBot Main Module

This process has the ability to communicate with all of the children of the injected modules.
These communication all revolve around commands generated by the C2. Once a command
that requires notification of an executable module child process is initiated, a named Q
event is opened to ensure that the child process is ready to receive the data. If this Q event
does not exist, then the child process has not been started. BokBot injects the target module
into a child process, and loops a check to see if the event can be opened.

Once the Q event has been successfully opened, BokBot creates a new named R event,
creates a memory-mapped file (named M event), writes data to the file, signals the open Q
event, and waits for a response from the child process. After the child clears the R event,
the memory-mapped file is unmapped, and all handles are closed.

BokBot Executable Module

After initialization, the child process will create a named Q event and wait until it is signaled
by the parent process. Once signaled, the named R event is opened, and the data in the
memory-mapped file is processed.

Data from the BokBot Parent

BokBot’s main module writes some contextual information to the injected module, telling it to
perform specific actions. These actions change based on the module receiving the data. The
following commands are consistent between modules, but the actions performed may vary:

0xFF00: Process exit with a 0x1122 code
0xFF01: Check web injects or no operation
0xFF02: Update C2 hostnames

22/26

In addition to a command, relevant data associated with a command is also processed
based on whatever instruction the command tells the injected module to accomplish.

After the task assigned by the parent process has completed, the memory mapped file is
unmapped, the R event is signaled, and all other open events are closed.

Obfuscations and TamperProofing

Bokbot uses several methods to obfuscate analysis:

String obfuscation
Encrypted DAT files from the server
Signature verification
Polymorphism

String Obfuscation

To make analysis more difficult, significant strings have been XOR encoded using a shifting
key algorithm. All encoded strings have the following structure:

Here is the algorithm to decode the string (Python):

23/26

Signature Verification

Signature verification occurs under two circumstances: updated C2 urls, and updated BokBot
binary. In both cases, the process is the same. The verification function receives two things:
a 128-byte signature to verify, and the data to verify.

First, BokBot creates an MD5 hash of the data requiring verification. Next, an RSA public key
embedded in the executing binary is importing via CryptImportKey . Once the hash is
generated and the key imported, CryptVerifySignature is used to verify the signature.
This may be an attempt to prevent some third party from taking over or otherwise disrupting
the botnet.

Polymorphism

Everytime BokBot is installed, prior to it being written to the install directory, the .text section
of the binary is modified with junk data and the virtual size is updated. A new checksum is
generated to replace the current checksum.

How CrowdStrike Falcon Prevent™ Stops BokBot

Bokbot spawns a svchost child process, injects the main module, and that svchost process
spawns and injects into multiple child processes. The process tree in Figure 5 is an example
of what BokBot looks like when process blocking is disabled in Falcon Prevent. As can be
seen, several malicious child processes were launched by BokBot’s main module located
inside of the first svchost process.

Figure 5: BokBot Process Tree Without Process Blocking Enabled

24/26

Figure 6: BokBot Process Tree with Process Blocking Enabled

Without preventions enabled the customer will still be notified of the malicious activity, but no
action will be taken to prevent the behavior.

Suspicious Process Blocking

Falcon has the capability to prevent the execution of BokBot’s main module and all of the
child modules. Turning on process blocking in Falcon Prevent kills the BokBot infection at the
parent svchost process. Looking at the process tree in the Falcon UI with process blocking
enabled, shows an analyst that the svchost process was prevented. The block message (see
Figure 7) that occurs with this preventative action explains why this process was terminated.

Figure 7: BokBot Process Block Message
Suspicious process blocking is an example of malware prevention based on behavior. If the
malware uses behavior that has not been caught by Falcon’s indicators of activity, then
Falcon can also prevent malware execution by leveraging either next-generation AV machine
learning ,or intelligence collected by Crowdstrike’s Falcon Intelligence team.

25/26

In Summary

BokBot is a powerful banking trojan that provides attackers with a robust feature set. One of
the more unique features of BokBot is the method in which it uses to communicate with it’s
child modules. Additional blog posts for BokBot are coming that will contain more information
for the downloaded modules.

BokBot Hashes

The following hashes were used in creation of this blog post.

MITRE ATT&CK Framework Mapping

26/26

Additional Resources

Read a Security Intelligence article: “New Banking Trojan IcedID Discovered by IBM X-
Force Research.”
Read a Talos Blog: “IcedID Banking Trojan Teams up with Ursnif/Dreambot for
Distribution.”
Visit Vitali Kremez | Ethical Hacker | Reverse Engineer and read: “Let’s Learn: Deeper
Dive into ‘IcedID’/’BokBot’ Banking Malware: Part 1.”
Download the 2018 CrowdStrike Services Cyber Intrusion Casebook and read up on
real-world IR investigations, with details on attacks and recommendations that can help
your organizations get better prepared.
Learn more about CrowdStrike’s next-gen endpoint protection by visiting the Falcon
platform product page.
Test CrowdStrike next-gen AV for yourself: Start your free trial of Falcon Prevent™
today.

https://securityintelligence.com/new-banking-trojan-icedid-discovered-by-ibm-x-force-research/
https://blog.talosintelligence.com/2018/04/icedid-banking-trojan.html
https://www.vkremez.com/2018/09/lets-learn-deeper-dive-into.html
https://www.crowdstrike.com/resources/reports/cyber-intrusion-services-casebook-2018/?ctm_source=Digital&ctm_medium=blog&ctm_campaign=WC_Casebook2018_Report
https://www.crowdstrike.com/products/
https://www.crowdstrike.com/resources/free-trials/try-falcon-prevent/

