
1/17

Trickbot’s Tricks
labs.vipre.com/trickbots-tricks/

This November, we monitored a rise in Trickbot campaign activities. Based on Threat
Analyzer results, the new variants still have almost the same payload behavior which were
previously discussed in https://labs.vipre.com/trickbot-aka-banking-
malware/ and https://labs.vipre.com/trickbot-and-its-modules/.

A quick glance at the physical structure of a particular Trickbot variant, the malware file’s
features contain heavily obfuscated code. In this post, we’lll show what we found out
focusing on the properties and initial activities that this particular Trickbot variant does before
reaching its payload (info stealing) activities. Our aim is to identify what were in it’s bag of
tricks.

This Trickbot variant file

Below are information we found about this malware file and its URL source which were
related from ThreatIQ (https://www.vipre.com/products/business-protection/iq/)

MD5: 8e1b02cb628eded5387b3c1f5dbf8069

SHA256: 836e47eff2a2264ab0b5577df3c556ceb494057398af689b88f3a2ac121841bd

File name: MSWVC.exe

Probable download source: http://51.68.170.59/radiance.png

317,952 bytes

https://labs.vipre.com/trickbots-tricks/
https://labs.vipre.com/trickbot-aka-banking-malware/
https://labs.vipre.com/trickbot-and-its-modules/
https://www.vipre.com/products/business-protection/iq/

2/17

Compiled with Microsoft Visual C++ 8 according using CFF Explorer.

Icon:

Initially, the import table shows that this malware will be using cryptography
APIs:

CryptReleaseContext
CryptDestroyKey

CryptEncrypt
CryptImportKey
CryptAcquireContextA

It starts with a new image

The code jumps right away to decrypting data from the data section.

The data size is 0x3e200 (254,464) bytes
 The key is hard coded. The following code shows the that it uses RSA/RC4 decryption

algorithm.

3/17

Decrypted data results in a 32-bit PE file and gets mapped in a virtually allocated memory
space.

Code execution is passed to the image’s entry point.

4/17

A heavily obfuscated image

The new image contains heavily obfuscated code and data.

5/17

This PE image itself is not recognized as a known compiled program nor a known packed
executable. Almost every routine code that Trickbot executes requires to be decrypted,
executed, then encrypted back using the following function:

6/17

The same algorithm is used when decrypting and encrypting. This apparently slows down
the analysis during reverse engineering. So far, the algorithm uses single-byte encryption.
Calling this function only requires a command ID. For example, the command ID 0x2C
would return a given string ID while the command ID 0x22 is tasked to terminate a running
service process.

The command ID is actually a value used to calculate for the offset of the function it will be
running.

This code execution behavior aims to prevent analysts from easily analyzing the dumped
process. Usually, an obfuscated malware decrypts its code and data in the process memory
space and leaves it as is. An analyst can easily dump the process and reconstruct the dump
file for easier analysis using disassemblers and decompilers. The Trickbot authors were
clever enough to implement this technique against reverse engineering.

APIs it will be using

Before it proceeds, Trickbot would need to dynamically import a list of APIs it will be using.
These are shown below:

kernel32.dll:kernel32_ExitProcess

7/17

kernel32.dll:kernel32_Sleep

kernel32.dll:kernel32_GetTickCount

kernel32.dll:kernel32_GetProcessHeap

kernel32.dll:kernel32_GetCommandLineW

kernel32.dll:kernel32_FindResourceW

kernel32.dll:kernel32_LoadResource

kernel32.dll:kernel32_CreateProcessW

kernel32.dll:kernel32_GetCurrentProcess

kernel32.dll:kernel32_VirtualFree

kernel32.dll:kernel32_SizeofResource

kernel32.dll:kernel32_GetStartupInfoW

kernel32.dll:kernel32_GetProcAddress

kernel32.dll:kernel32_VirtualAlloc

kernel32.dll:kernel32_LoadLibraryA

kernel32.dll:kernel32_LockResource

kernel32.dll:kernel32_VirtualProtect

kernel32.dll:kernel32_CloseHandle

kernel32.dll:kernel32_GetNativeSystemInfo

kernel32.dll:kernel32_Wow64DisableWow64FsRedirection

kernel32.dll:kernel32_Wow64RevertWow64FsRedirection

kernel32.dll:kernel32_CopyFileW

kernel32.dll:kernel32_GetModuleFileNameW

kernel32.dll:kernel32_lstrcmpiW

kernel32.dll:kernel32_lstrcpyW

kernel32.dll:kernel32_lstrcatW

kernel32.dll:kernel32_lstrlenW

8/17

kernel32.dll:kernel32_CreateDirectoryW

kernel32.dll:kernel32_GetModuleHandleW

kernel32.dll:kernel32_GetComputerNameW

kernel32.dll:kernel32_GetWindowsDirectoryW

kernel32.dll:kernel32_GetTickCount64

kernel32.dll:kernel32_GetSystemDirectoryW

kernel32.dll:kernel32_CreateFileW

kernel32.dll:kernel32_WriteFile

kernel32.dll:kernel32_GetVersionExW

kernel32.dll:kernel32_GetFileAttributesW

kernel32.dll:kernel32_MoveFileW

kernel32.dll:kernel32_DeleteFileW

kernel32.dll:kernel32_TerminateProcess

kernel32.dll:kernel32_Process32FirstW

kernel32.dll:kernel32_Process32NextW

kernel32.dll:kernel32_CreateToolhelp32Snapshot

kernel32.dll:kernel32_OpenProcess

shell32.dll:shell32_CommandLineToArgvW

shell32.dll:shell32_SHGetFolderPathW

shell32.dll:shell32_ShellExecuteW

ntdll.dll:ntdll_NtQueryInformationProcess

ntdll.dll:ntdll_RtlAllocateHeap

ntdll.dll:ntdll_RtlReAllocateHeap

ntdll.dll:ntdll_RtlFreeHeap

ntdll.dll:ntdll_RtlInitUnicodeString

ntdll.dll:ntdll_RtlEnterCriticalSection

9/17

ntdll.dll:ntdll_RtlLeaveCriticalSection

ntdll.dll:ntdll_NtQueryInformationToken

ntdll.dll:ntdll_LdrEnumerateLoadedModules

ntdll.dll:ntdll_NtAllocateVirtualMemory

ntdll.dll:ntdll__swprintf

shlwapi.dll:shlwapi_PathCombineW

advapi32.dll:advapi32_RegOpenKeyExW

advapi32.dll:advapi32_RegQueryValueExW

advapi32.dll:advapi32_RegCloseKey

advapi32.dll:advapi32_GetUserNameW

advapi32.dll:advapi32_FreeSid

advapi32.dll:advapi32_LookupPrivilegeValueW

advapi32.dll:advapi32_AdjustTokenPrivileges

advapi32.dll:advapi32_RevertToSelf

advapi32.dll:advapi32_DuplicateTokenEx

advapi32.dll:advapi32_OpenProcessToken

advapi32.dll:advapi32_GetTokenInformation

advapi32.dll:advapi32_AllocateAndInitializeSid

advapi32.dll:advapi32_EqualSid

advapi32.dll:advapi32_RegSetValueExW

advapi32.dll:advapi32_CloseServiceHandle

advapi32.dll:advapi32_OpenSCManagerW

advapi32.dll:advapi32_OpenServiceW

advapi32.dll:advapi32_QueryServiceStatusEx

advapi32.dll:advapi32_RegCreateKeyExW

advapi32.dll:advapi32_ControlService

10/17

ole32.dll:ole32_CoInitialize

ole32.dll:ole32_IIDFromString

ole32.dll:ole32_CLSIDFromString

ole32.dll:ole32_CoGetObject

Notice that it will be using two Wow64 functions. This means that it is aware of running in
either 32-bit or 64-bit environment.

Malware execution flow of the new PE image

Decrypt some code and data to an allocated memory.
Run the rest of the code from the allocated memory.

1. Retrieve API imports to be used.
1. Decrypt DLL file names
2. Retrieve API addresses

2. Identify if the malware is running in a 32-bit or 64-bit. Result is stored in a variable.
3. End the execution if it is running under a sandbox or analysis environment. Uses

module chain from PEB block to match list of loaded DLLs
1. The module names searched are:

pstorec.dll
vmcheck.dll
dbghelp.dll
wpespy.dll
api_log.dll
Sbiedll.dll
SxIn.dll
dir_watch.dll
Sf2.dll
cmdvrt32.dll
snxhk.dll

4. Kill a list of security services. (from Windows Defender, Malware Bytes and Sophos)
1. .Disable Windows Defender.

11/17

1.
1.

1. Close service named “WinDefend”
2. Stop Windows Defender service by running the following command:

1. “C:\Windows\system32\cmd.exe /c sc stop WinDefend”.
3. Delete Windows Defender service with this command:

1. “C:\Windows\system32\cmd.exe”,”/c sc delete WinDefend”
4. Terminate processes used by Windows Defender.

1. MsMpEng.exe
2. MSASCuiL.exe
3. MSASCui.exe.

5. Disable Windows Defender’s real-time monitoring by running this command:
1. “C:\Windows\system32\cmd.exe /c powershell Set-MpPreference -

DisableRealtimeMonitoring $true”.
6. Disable Windows Defender by setting the following registry entry:

HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows
Defender
DisableAntiSpyware = 1

7. Disable Windows Defender notification by setting this registry entry:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows Defender
Security Center\Notification
DisableNotifications = 1

2. Disable Malwarebytes Anti Malware.
1. Close service named “MBAMService”
2. Pass a SERVICE_CONTROL_STOP status to the MBAMService to request

the service to stop.

12/17

3. Disable Sophos Antivirus.
1. Close serivce named “SAVService”
2. Terminate processes used by Sophos AV.

1. SavService.exe
2. ALMon.exe

3. Stop Sophos AV service using the following command:
1. “C:\Windows\system32\cmd.exe /c sc stop SAVService”

4. Delete Sophos AV service using the following command:
1. “C:\Windows\system32\cmd.exe /c sc delete SAVService”

5. Disables a list of programs using the Image File Execution Options (IFEO)
and setting the Debugger value to kjkghuguffykjhkj. Setting the Debugger
to a path that doesn’t exist results to failure from running the program. More
information about IEFO can be found
at https://blogs.msdn.microsoft.com/greggm/2005/02/21/inside-image-file-
execution-options-debugging/.

1. For example, the following registry entry is made to disable
SavService.exe from running.
HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\Current
Version\Image File Execution Options\SavService.exe
Debugger = “kjkghuguffykjhkj”

2. This malware disables this list of names used by Sophos and
Malwarebytes.

MBAMService
SAVService
SavService.exe
ALMon.exe
SophosFS.exe
ALsvc.exe
Clean.exe
SAVAdminService.exe

13/17

2. Deploy routine. Creates and runs a file copy of itself.
1. Attempt to Identify if the malware is running under LOCAL SYSTEM account
2. If it is running as LOCAL SYSTEM, generate a token from the current session.

However, this fails because of an API import bug.
3. Use the token to locate the AppData folder.
4. Exit this deploying routine if the currently running malware is found in the

AppData folder. This prevents the malware from overwriting and re-running its
own copy.

5. Exit this deploying routine if the path of the currently running malware has the
word “system” in it. The malware will not deploy a copy of itself if it were running
in C:\Windows\System32 folder.

6. Exit this deploying routine if both FAQ and README.md files are found in the
folder where the malware is running.

7. Creates a folder named “WSIGE” in the AppData folder.
8. A new file name is produced from the old file name by adding 1 to each character

value falling in these range of characters: (i.e. If the filename were
“8BaLLs.exe”, it becomes “9CaMMt.exe”. The file name MSWVC becomes
MSWVD.)

1.
1.

‘5’ to ‘8’
‘B’ to ‘L’
‘q’ to ‘s’

2. Creates a file copy of itself in the WSIGE folder. Example path:
%appdata%\WSIGE\MSWVD.exe.

3. If the file copy fails, the malware assumes that it failed because of being a 32-bit
program running in a 64-bit Windows. It uses
Wow64DisableWow64FsRedirection to have access to specific 64-bit native
folders and re-do copying. The Wow64 file system redirection is restored using
the Wow64RevertWow64FsRedirection API.

4. Identifiy if UAC is enabled by checking if the process’ token has a type
TokenElevationTypeLimited.

5. If UAC is not enabled, it directly runs %appdata%\WSIGE\MSWVD.exe.
6. If UAC is enabled, does these steps:

14/17

1.
1.

1. Allocates 0x1000 bytes of memory space in and writes
%windows%\explorer.exe where %windows% is the Windows directory.

2. Writes this decrypted string “bloody booty bla de bludy botty bla lhe
capitaine bloode!” that later gets overwritten with “explorer.exe”. The
“explorer.exe” is used during enumeration of loaded modules.

3. Executes %Appdata%\WSIGE\MSWVD.exe while using a bypass UAC trick
with CMSTPLUA COM interface. (This trick may have recycled from the
code found
at: https://gist.github.com/hfiref0x/196af729106b780db1c73428b5a5d68d)

15/17

2. This routine runs the core payload of Trickbot. If the copy of the malware was not
executed in the deploy routine, the following steps are made:

1. Decrypt a raw PE image to a newly allocated memory space. This routine was
probably done using the followoing steps to prevent showing the PE image from a
memory process dumper.

1. Decrypt data
2. Allocate memory space
3. Copy decrypted data to a allocated space
4. Encrypt back data

2. For a 32-bit Windows:
1. Read the PE image’s import table then load the DLLs and retrieve

respective APIs. The PE image is compiled for 32-bit Windows.
2. The image is mapped to another allocated memory space.
3. The PEB information is modified to point to the new PE image
4. Pass code execution directly to the entry point address of the new PE

image
3. For a 64-bit Windows

1. Decrypts another PE image. This image is the 64-bit version of the payload
image.

2. The image is mapped to another allocated memory space.
1. While mapping the file sections, it decrypts a string “.log” but wasn’t

used.
3. Creates a suspended process for svchost.exe in the System directory. The

system directory is usually C:\Windows\System32.
1. Disables Wow64 file system redirection. This enables the malware to

directly access the system32 directory instead of the SysWOW64
directory.

2. Create a suspended process for svchost.exe.
3. Restore Wow64 file system redirection.

4. Pass code execution to a heaven’s gate code placed in a small chunk of
allocated memory.
Shown below is how the byte codes were moved to the memory.

Use heaven’s gate code to pass execution control to the 64-bit image’s entry point.
Heaven’s gate is the term for the technique used to directly pass code execution from 32-bit
to 64-bit. This involves a low-level understanding of how Wow64 is able to run 32-bit

16/17

programs in 64-bit Windows. More explanation about the Heaven’s gate can be found
at http://rce.co/knockin-on-heavens-gate-dynamic-processor-mode-switching/.

1. The snip below shows low-level code for changing addressing mode from 32- to 64-bit
via segment 0x33 dubbed Heaven gate.

Further, the following code passes code execution to the entry point of the 64-bit PE image
at address 10001a20.

1.
1. Finally sleeps for half a second then a graceful ExitProcess.

Essentially, the job of routine e is to run this program in an escalated privilege bypassing
even the UAC. Routine f expects that it is already running in an escalated privilege giving
either the 32-bit or 64-bit greater access for compromising the system.

Summary of tricks encountered

Anti-dumping by re-encrypting decrypted code
Anti-analysis by checking modules used by sandboxes and analysis frameworks
Various ways to disable Windows Defender, MBAM, and Sophos AV

Process kill
Service termination
Registry settings
Invalid IFEO Debugger path

UAC bypass
Heaven gate

IOCs based on this analysis

Registry entries

http://rce.co/knockin-on-heavens-gate-dynamic-processor-mode-switching/

17/17

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT\Current Version\Image File
Execution Options\[*]
Debugger = “kjkghuguffykjhkj”

Folder existence

%appdata%\WSIGE

File Hash

MD5: 8e1b02cb628eded5387b3c1f5dbf8069
SHA256: 836e47eff2a2264ab0b5577df3c556ceb494057398af689b88f3a2ac121841bd

File Icon

VIPRE Security protects customers from Trickbot across all builds of VIPRE.
VIPRE uses advanced process protection and machine learning to protect
against the latest threats trying to penetrate corporations worldwide. Using the
latest state of the art technology, VIPREs Engine protects customers 24×7, no

matter where they reside.

For an efficient analysis, we used Threat Analyzer (https://www.vipre.com/products/business-
protection/analyzer/) to list down program behaviors along with risk assessments.

https://www.vipre.com/products/business-protection/analyzer/

