Recent Posts

&.-Ej bromium.com/second-stage-attack-analysis/

November 5, 2018

HP Threat Research Blog * Data Talks: Deeper Down the Rabbit Hole: Second-Stage Attack
and a Fileless Finale

FOLLOWING A TRAIL

OF CONFUSION

Data Talks: Deeper Down the Rabbit Hole: Second-Stage Attack and
a Fileless Finale

In our last blog, “Following_a Trail of Confusion: PowerShell in Malicious Office Documents”,
we systematically unraveled multiple layers of obfuscation initiated by a weaponized first-
stage Microsoft Word document to reveal a surreptitious download script and a malicious
second-stage binary file dropped onto the victim PC. For those who wish to follow the
analysis through to its conclusion, the sample MD5 is 6¢c8e800f14f927de051a3788083635e5
and a VirusTotal report is here.

Picking Up Where Word Drops Off

Suppose the weaponized Word document was successful, bypassing all existing layered
defenses, and now the next stage begins. This is the native code program that is now
running in memory, and with it come additional capabilities to compromise the host computer.
As with our previous analysis, we have to figure out what type of code obfuscation we’re
dealing with it. With native code programs—portable executable (PE) files in the case of
Microsoft Windows—the first layer is usually packing. Packing is a well-known technique that

1/15

https://www.bromium.com/second-stage-attack-analysis/
https://www.bromium.com/blog/
https://www.bromium.com/powershell-malicious-office-documents/
https://www.virustotal.com/#/file/ee32c4e0a4b345029d8b0f5c6534fa9fc41e795cc937d3f3fd743dcb0a1cea35/detection

essentially takes the malicious program and wraps it inside another program. You can think
of it like a zip or another archive, where if we analyze the zip file, we won’t get any
information about the content it contains.

PRE LT .

Bromium Secure Platform shows the original malicious document, the request to retrieve this
sample, and the process it invoked.

Signs of Packing

Before jumping right into IDA Pro and tackling the disassembly, it's often worthwhile to
perform initial static analysis of the PE file to get some ideas on packing and other potential
code obfuscation techniques. PE parsing utilities can be valuable for getting an initial look at
the characteristics of the file. Strings are a good first indicator, and the presence or lack of
strings can provide critical insight into the program. Strings are an important part of any
program as they are routinely needed for such functionality as making HTTP requests,
writing files to disk, looking for processes, and creating files in the file system. Malware
authors will often attempt to obfuscate these strings, and an added benefit of packing is that
the strings are compressed and encrypted inside, obscuring their discovery. This sample
presents some strings, but most of these come from the functions that it is importing. Outside
of that, there are no further indicators such as command and control (C2) URLs or IPs,
indications of file or process activity, or evidence of intended behavior such as a ransom
note.

2/15

https://www.bromium.com/wp-content/uploads/2018/11/5-1.png

wsprintfw

GetD] gltemTexTA
DialogBoxPar amw
user3i2.dl|

&01{)9

LIM]
100
xXqvu
KQ,/0

Sample of strings output using strings utility

Sections of the PE file are also worth investigating. Sections provide structure to the PE file
for such items as the executable code and hard-coded data. In addition, they may provide
evidence of malware that is packed. There are usually two strong indicators: the name of the
section and the entropy of the section. Section names are arbitrary, but some packers use
consistent naming and allow for easier detection. Entropy is a measure of the randomness in
a sequence of bytes, which make up the content of the sections. This is usually measured on
a scale from zero to eight, with eight being the highest measure of entropy. Programs that
contain sections with high entropy are more suspect for packing and other obfuscation
techniques, since this garbled code tends to be more random and less deliberate.

Summay y

2088 . jdata

1808 . jdata
2EA800 .ysyc
00080 .text

Dumpbin output of PE file sections

While there are other indicators to consider, it appears this program is packed and will
require deeper investigation.

PACKING ANALYSIS AND CODE OBFUSCATION

Now we can turn to IDA Pro to start analyzing the code of this program. Upon loading the
file, IDA provides further indications that the sample is packed.

3/15

https://www.bromium.com/wp-content/uploads/2018/11/5-2.png
https://www.bromium.com/wp-content/uploads/2018/11/5-3.png

-'“ Waming

|

L.

The imparts segrent seems to be destroyed. This MAY mean that
thie file was packed or otherwise modified in order to make it
rmore difficull io analype. B you want to see the smports

segment in the oniginal form, please reboad it with the

‘miake imiports section’ checkbox cleared.

Don't display this meszage again

IDA Pro dialog indicating potential packing

This program begins with a lot of instructions, most of them unnecessary. One way to try to
filter through this code is to see how the registers, variables, and functions are being used. In
this first code block, there are several function calls where the return value (in EAX) is being
used in a compare/conditional jump combination. The conditional jump goes to loc_407257.

:dnEA13aa push oFFset Hame :
:0nsA133R push 1

:0Bsa13an dec dword ptr [esp]
:0Rsa13an push 108881h

- 0BEA13N2 dec dword ptr [esp]

: 08H 01345 call ds:0penMutexi
;00013 4B cmp eax, @

: 0BNE13LE jnz loc_wa7257

If we navigate to that location, we end up in an infinite loop. This is helpful, as we can now
start to visually filter out this noise and attempt to find the true purpose of this code. Since we
suspect that we are looking at purely packing code, we don’t want to spend a lot of time
analyzing how this code works but find the point at which it's done. This will allow us to focus
on whatever is unpacked. With unpacking code, I've often found that you can concentrate on
the end of the functions and look for abnormal returns or control transfers. This function ends
with a function call, which is far from a normal epilogue.

:BALBTNAA call ds :0penHutexi

s0aLE G0 test FaX, Pax
=zl BGE jnz loc LNF2SF

BB 1LTY call sub_4B7a27

Tracing into function sub_407027, we can investigate the code at the end. It appears there
are two possible paths for it to go, both with unconventional methods of going there.

4/15

https://www.bromium.com/wp-content/uploads/2018/11/5-4.png
https://www.bromium.com/wp-content/uploads/2018/11/5-5.png
https://www.bromium.com/wp-content/uploads/2018/11/5-6.png

ﬁg v v

loc 487177 : loc H@TF194:

lea eax, ds:hSATFDEZFh lea eax, dsihSABSHETh
push ds sdword ABAZHC push ds rdword ABASNE
add [espeh+var_ &), eax| |add [esp+h+var &), eax
pop ds :dword 4BA3LE pop ds :dword 4BA3LE
push offset byte &B7181| |push offset byte 4O7181
1mip [esprhsuar] 1 mip [espehsuar A]

This function uses a technique of pushing a DWORD value onto the stack and then jumping
to ESP. What is pushed onto the stack is actually an address: 0x4071B1. This technique has
actually prevented IDA from identifying the correct location and continuing with disassembly.
If we go to that location manually, however, we can tell IDA to disassemble this code.

T ER R m*jihh db @Ik, 1%h : DATE ERIT: sub SEF@FF=04%Ta
nEarigt r sub RBEFEFFEABEN

Unanalyzed JMP target

FIDERTIEY lmc 4@TIRA; : BATH XREF:; =ubk &BFRFT+1&5Tno
P ARERT1E9 ayh BRTEFT=ARENq
rnET 1T call LA L T R

Disassembled location 0x4071B1
Once the data at this location is disassembled, we reveal a call instruction with a call target
of dword_40A34C. The value of this DWORD is not hard-coded, which means it is populated

during runtime. Instead of continuing with static-analysis, we can now turn to WinDbg for
dynamic analysis to see where this call goes.

Switching to Dynamic Analysis

Setting a breakpoint on that call instruction reveals that the call target is to location
0x4071c4.

Offset: @S=copaip

o prior disassemnbl o==lble

004071ce &f pop =1

004071=7 Ble?cht2=455 and mdl, 55E452Chh
004071=d 31db ¥Oor ebhx , =bhx

00407 1=f BafE pu=h OFFFFFFFFh
004071d1 Ea pop =

5/15

https://www.bromium.com/wp-content/uploads/2018/11/5-7.png
https://www.bromium.com/wp-content/uploads/2018/11/5-8.png
https://www.bromium.com/wp-content/uploads/2018/11/5-9.png
https://www.bromium.com/wp-content/uploads/2018/11/5-10.png

Since IDA was unable to find this location during static analysis, it initially shows up as data
instead of instructions.

"[ETFRT w3 e 0

REETICE g BISFIFidih, EOWCITAETH, ARDEIILSER, HIE1TEITh

BN IOE i BFFEET nE_EEEETA

(B AT DR dunrd _hd7 1A fd FakRlTYFh, SRV Ch, FOCaKIlEh, E/FebiFFa, AW [CFahah
:BEREFIDE B JONgNENsh, ECIFICCRh, ZRkRC TN, SRONE Dh , W CCAEISINH
inaaring i ARiCFAR, BCERSSEREN, SESialEvEn, REFERISER Tuiaidies

o [2] FR il] dd SEFFEANSR, ECMFETEh, AIDF T, AIFEOACER, BAF9EI0ER
gisusInE B SPEFFFETR, BRIESEYLCh, IEFESFLELS

o Ll rgsL] ga BFCh, bdh

Invoking IDA’s analysis reveals the disassembled instructions:

D OT7ACF push WFFFFFFFFh

Sl Tl pop edx

D702 and edx, oFfset unk_ LBEBR16
BB BTIDA push ex

0007109 i [esp+Bevar C], 48%h
D BTAE add esp, OFFFFFFFCh

S AFIEL der [esp+BChevar)

DD BTAET P [esprOChevar_ 18], GB%h
AN BFIEF afd Pesp, AFFFFFFELR

07 IF2 dec [esp+iBhevar_1@]

B ETES A [esp+ifihrvar_ 4], NODROR

It's easy to get lost in the assembly here and important to keep the big picture in mind. This
code is all likely unpacking code, so let’s analyze it a little further down to see how it ends.
There is a strange indirect call to ESI at 0x407244.

6/15

https://www.bromium.com/wp-content/uploads/2018/11/5-11.png
https://www.bromium.com/wp-content/uploads/2018/11/5-12.png

SHMATIBD loc RETEID: ; COBE EALY - sub MEFIEEF=311))

SN Rl : DRFA EMI sub MITIDT=2@ [0
LR R C g Fax, aEEh

SRENATI N jx shorl lec &EFFI0
S 1IT RS i push WFFFFFFF I
ST F T[] (]]

CHONETITE and B, | i

1T R 4 B, &

AT INE not Eall

AT IAF aie Edi ; BFFFFFFDAn
FADNEETIRE clc

FRRATIEE =hil EaE, 1

tADNETIT R EA1L] Fax, Pl
CABAATITE ® pdd , mdl

LT EfT dec pedd

-AETIZE and rdi, man

H S E Erded o [- [®#=1], ®ax

1L Bl aub Fl, BIPFITFICA

S 1 IT B bk aub #hx, BIOFITFICH

5 I i phursh effeatl Lac S97200
ST R Filn

CRRNETIAE |

CHONEFIAR

CHDEETIAE 1oL EOFRIA! | CIE SREF: sub_ &0F IR F=1EET |
CHOEETIAR pog (=4 |

o 1T ERETE 13 Bl Loadl Bmeas i
L LT B R push gwnrd pitr [®di]
rAnRET AL call =4

=lifikd@lTIAR -

If we continue execution to this point, we can see where it intends to lead. In this case, it’s to
an address not in the original image — 0x57000 for this run. This address will change, as it’s
a region of read-write-execute memory that is allocated during runtime.

00407242 ££37 aush dword ptr [edi]
0407244 ffd6 =all a1 {00570000°
00407246 0000 add bvte ptr [eax] _:

This tells us that the previous code was responsible for not only allocating this memory, but
also for staging shellcode for execution. Using a tool like Process Hacker, we can extract this
shellcode from memory and disassembile it.

Tracing the Shellcode

Fortunately, we know the entry point is at the beginning of the binary content from our
dynamic analysis. Once this shellcode is disassembled, there will be a considerable amount
of code to analyze. Let’s stick with the same approach we used to get here in the first place
and analyze instructions toward the end of the shellcode. This shellcode ends with a
PUSH/RET technique. The location the author wants to return to is pushed on the stack just
before the return instruction.

7/15

https://www.bromium.com/wp-content/uploads/2018/11/5-13.png
https://www.bromium.com/wp-content/uploads/2018/11/5-14.png

ODOET00ES LESSLO call duayrd pir [ebpslik]

DOS7F006E Shf ™o mdil . =ax

Db TllEs O Tanouon =dd A, FER
OOSTO0EE S0 ush HAE

OOEF0OP0 BdbBERfafefd - =51, [sbp—608h]
ODO5T0D7e B9ZSBOEOO00 e &cx , EiEh

ORETOO7E fisd E movs byte pir es:[=di].byte ptr [e=si)

This goes further into the shellcode. However, if we trace to the end of this code, there is a
Jmp esi. ESI contains an address of 0x406FCO. This is a good sign, as it is taking execution
back to an address in the original address space of the program. But is it the same code? By
comparing the original data at the location to what is now in memory, a different result means
that unpacking could be complete.

Original:
ext:00406FCH db BCh
ext:004B86FC1 db 24h ; 3
ext:O04B6FC2 dbh 68h ; h
ext:004B06FC3 db 1
ext:004086FCh db a
ext:004B6FCS dh 18h
ext:004B06FCG db a
ext:004B6FCT db B6FFh
ext: 00486 CE dh BCh
ext:004B06FCY db 24%h ; 3
ext:004B6FCA db B6FFh
ext: 00486 B dbh 15h
In memory:
00406fc0 =8f7150000 image004000004+0x85be (004085bc)
00406fc5 e978feffff Jmp image00400000+0=6e42 (00406242)
0D0406fca BbEf mowv edi,edi
00406fcs 55 pu=sh ebp

The Plot Thickens

Unfortunately, the malware is not yet ready to reveal what it is up to. Prior to performing a
deep technical analysis, automated dynamic analysis was used to understand as much of
this program’s behavior as possible. This malware makes a request to hxxps.:/real-estate-
aadvisors[.win] and starts another process. This is likely the point at which the malware
receives code for its true intended purpose. However, if we let the program run from this
point, the request isn't made and no additional processes are created. Not only do we now
know that it's not done unpacking/deobfuscating, it is also exhibiting anti-analysis techniques
not observed in our manual sandbox environment.

8/15

https://www.bromium.com/wp-content/uploads/2018/11/5-15.png
https://www.bromium.com/wp-content/uploads/2018/11/5-16.png
https://www.bromium.com/wp-content/uploads/2018/11/5-17.bmp

Looking at the cross-reference graph from sub_406FC0, there is a considerable amount of
code. How do we overcome this mess? One method is to start by setting breakpoints on
expected. For example, CreateProcessA or InternetOpenURLA. Letting this code run ends in
a call to TerminateProcess, and in this case none of these breakpoints were hit. This could
indicate a few things, including anti-analysis techniques. Instead of trying to analyze this
function from the top-down, focusing on the call instructions towards the end of the function
may speed up analysis. Especially if this involves more unpacking, then the earlier function
calls will likely be for memory allocation and more unpacking, and the later function calls for
executing the unpacked code. This function ends with three function calls and after
inspecting them, the call to sub_5200 appears to be the most promising.

Again, we're faced with a significant amount of code and a limited amount of time for
analysis, so let’s focus on the end of the function. Toward the end of this function is another
indirect function call. These are usually interesting as they may indicate a dynamically-
generated address.

ABBB5D5A movzx edx, [esp+ilhh+var 35]
agaesDs5F add eax, edx

Ha8e5b61 and eax, 1
A8Bes5D64 push eax

adeesD6S call eCHy

ABBeSD67 pop edi
A0BesD68 pop esi

Indirect function call at offset 0x5D65

As it turns out, this is the call to ExitProcess, so somewhere before this call is not only any
anti-analysis, but also the next stage of functionality.

JScc7als 8bel mowv EaX . 2aX
kernel 312 |ExitProcessStub:

J5cciala 55 qu=sh b
78ccialb 8bec [Tmys aebp.asp
75cc7ald baff push OFFFFFFEFh

After spending some time analyzing this function, another promising location presents itself:

9/15

https://www.bromium.com/wp-content/uploads/2018/11/5-18.png
https://www.bromium.com/wp-content/uploads/2018/11/5-19.png

s

00005BFB lea
088O5BFF push
aoeescoee call
080805CA5 add
00005CA8 jmp

eax, [esp+ibh+var_10]

eadx

near ptr sub 5188
esp, 4

loc S5CA2

Call instruction to offset 0x51B0 at location 0x5C00

This function is limited in functionality, but it ultimately proves to be the location responsible

for the next stage of this malware.

80005188 sub_51B8 proc far

aeees-1B8

00805188 var 18= dword ptr -18h

00pps1B0 var 8=
00pes1BA var 4=
aanas1B0
AABAS1B0 push
A86ee51681 mov
88005183 sub
A88AS1BG6 mov
A0Be5 189 mou
B08051BC mou
B0BA51C3 mou
a8ees1Ce and
aaens1CA push
AARAs1CE call
aaaes1D01 add
Beaes1D05 retf

HAHAS1DS sub 51BB endp ; sp-analysis Failed

Beaas1D%

The call $+5 is a common shell code technique to get the address of the stack, as the call
instruction will push the address of the next instruction (add [esp+10h+var_10], 5) onto the
stack and then add 5 to it. The push instruction will push the address 0x51D5 onto the stack,
once 5 is added to it the address that this function will return to is 0x51D6. This takes
execution to the first instruction after the return. Since IDA was not able to follow this logic,

dword ptr -8B
dword ptr -4

ebp

ebp, esp

esp, 8

eax, [Ehp*l]
[ebptuvar 8], eax
[ebp+var_ &], @
[ebp+H], esp

sp, BFFF8h

J33h o

¥+5
[esp+18h+var_18], 5

we need to disassemble the code at this location.

10/15

https://www.bromium.com/wp-content/uploads/2018/11/5-20.png
https://www.bromium.com/wp-content/uploads/2018/11/5-21.png

HERS1RG

BROS1DE push dword ptr [ebp-8]

BERs1D%9 pop rCx

BRes1PA sub esp, 20h

PRS00 call near ptr deord_@

BOBS1ER call %5

BROS1ET noy dword ptr [esp+&], 23Jh ; "B°
BEBS1EF add dward ptr [esp], @b0h

BBBS1F 3 retf

There’s a call to DWORD _0, which actually represents the beginning of this section of code
(.TEXT section). We can resume our dynamic analysis to continue to trace this code.

Setting the appropriate breakpoints, | stopped at the RETF to ensure that my analysis of
where this code was going to return to was correct.

D0O4DElca &=33 push 33h

104061lee aB00000000 call imagel0400000+0=61d1
N04061d1 83042405 ackd deord ptr [esp].5
j04061dS ch re=t £

And the value on top of the stack is:

0:000> dd e=sp

0015f=98 004061d6
NN18f==R NNNNNANN

However, if you trace into this RETF the program doesn’t go to the address we expect:

J7alfsfb 64f£15<0000000 call dword ptr f=:[0C0k)
Jialibl? Bicdld4 [—E 1=

77alfb05 21800 Tt 18h

What happened? Turns out, RETF takes two values off of the stack: one value for the
segment and a second value for the return address. Notice the PUSH 33h before the RETF,
this will force the CPU into 64-bit mode instead of 32-bit! Since | was using a 32-bit instance
of WinDbg, | was getting unexpected results. Switching to a 64-bit instance of WinDbg allows
us to trace into this RETF.

call imagel0000000_00400000+0x1000
call 1magel0000000 DO0O40000040=x61a?
I's a call to 0x407000. We have to go back to our original shellcode. IDA wasn'’t able to find

a reference to this location, so the code was never disassembled. Keep in mind that |
extracted this as shellcode from the .text section, so an offset of 0 is equivalent to a virtual

11/15

https://www.bromium.com/wp-content/uploads/2018/11/5-22.png
https://www.bromium.com/wp-content/uploads/2018/11/5-23.png
https://www.bromium.com/wp-content/uploads/2018/11/5-24.png
https://www.bromium.com/wp-content/uploads/2018/11/5-25.png
https://www.bromium.com/wp-content/uploads/2018/11/5-26.png

address of 0x401000. We also know something else that is very important—this is 64-bit
code. Opening this code with the 64-bit version of IDA gives us an accurate disassembly

listing.

TN EIan
INR 10N
FLISE]
FLIEE]
MARadn

=

tgard B

mEEas
LTIy
NI E]
RE S
10 F el
DA &
i
EEDE!
EEIE
mEEia

'Y U

1 = L ¥
1
'-'1|‘I'II| Imifé gakl i "EEEE - irllF I
i [-.rll|l-

dktynr pRoapihiEg . ShoEalhirg. HoRdDhineg. fEiRalELRg. b i DEIR)

dd ZRhLETREL ¢ EDOL SWLF @ wog B0 BOSREL 100 Lp
1 1

[| #hE J. =1
[T 5
[FaE
Lail =, T3
LLLE an
i g

e, widr

Fup

Fug

R e e
i Tl [e By
| g LA ET+ [Fosss ™

>
-3

£,
.

L L

mr

der

FEI g FdN, PLCE
oeL

]

Disassembled 64-bit shellcode, function graph, and call graph

One of the first things to determine is if we can find any API calls. This code doesn’t have an
extensive call graph, but one function, Sub_F90, stands out simply due to the number of
times it is called.

12/15

https://www.bromium.com/wp-content/uploads/2018/11/5-27.png

[et ek VD i

[S S Tl
T il i 1
= e @ R D il i
[T i P
G @k Gl il i
B g sk EvllE raill i M |
= @ ek G ool i P
= o @ bk A ol i P i
B O @ il L il P
|

[| e | e [e

lmal B

[l
Weli, JEhE
b, SEAT R T

i F

FETERIREE R Pl
WP RARARARE add

R R RIS Calk
Sub_F90 may be responsible for resolving APIs. Setting a breakpoint on this function allows
us to investigate the return value in the EAX register. Sure enough, they’re function pointers!
Some of the more relevant ones are: NtAllocate VirtualMemory, NtWirteVirtualMemory, and
RtICreateUserThread. Following these API calls, it eventually becomes clear that the code is
attempting to load a DLL via the CreateUserThread method. During execution, the DLL is
copied directly into memory and never touches disk! It's unpacked purely in memory and
then loaded into the current process by the createthread call. As this is a “fileless” stage of
the attack, extracting this DLL from memory provides the opportunity to continue our
analysis.

Closer to the End

This DLL has only one export, which is DIIEntryPoint (or DLLMain). This is called by the
thread created in the previous stage, and it reveals yet another round of complicated code.

=,
Gelenea | Bad BN RN LR

[— m!
| ,“- |——=
g AT
i e umGi T e Ry piErEL . PR o e P i
[A W] e el el el
i N N el e e T
TR
BT Y e W el e -
L I . B W A DR
TP R e P R R
ﬁ 1 i] e e gy e i
= | [T R R e]
i TR e I Rt]
9 q R EY e S e e PR
T [Ty R=— T |
T L S AW T
f e e] m o ey e G
e - e R
T T 1
gt Lo] . HS
=] T — | g, B,
- T T A P, | FRpEEEREET) E]
— R . i
i e [s o i], e
T OO s P, | R T]
T T . | rerebimepey)
1 i " el B [
. T O - T T
e Y. T jropoime ey b, =
== T p— i |opie ey]
- T | I e S | RfEREEE.a E]
TR Em. AL b
el | Gl e e b
S - T T T

13/15

https://www.bromium.com/wp-content/uploads/2018/11/5-28.png
https://www.bromium.com/wp-content/uploads/2018/11/5-29.png

Similar to the last stage, | was able to identify the function responsible for resolving APlIs. In
this code, sub_180011820 returns a function pointer in the RAX register.

T
[=

AAOBABATRABRDZ2SE mov ecx, [rsp+GBh+var 48]
AOBODR1RAABD2SSE and ecx, HBh
AOARRDR1BAAAD2SA sub ecx, G978B36FBh
AOARARR1BAAAD2Z6R call sub_ 180811828
BOOROAR1BAORD2GS mow r13, rax
AOARROR1BAAAD2ZEE jmp loc_18008DZED

Tracing this allows visibility into the different APIs being called, and that is where the majority
of the anti-analysis is employed. For example, there is a call to Create ToolhelpSnapshot32,
which is then used to look for evidence of sandbox/analysis processes. Each process name
is converted to a multibyte string, changed to upper-case, and then used to create a CRC32
checksum. The checksum value is compared to a list of pre-computed values to avoid using
any strings in the sample, a deliberate obfuscation technique used to avoid clear-text strings
which are easily discovered.

7£5332bd faBlc230 6dSl7aci 7477ac3d
Baf05ed2 Oc3a7651 1147829d 73cd 7500
4aad/253 869bf99%a ffo362fd fdOb791f
1273b05e Sb7b62cal 485b2021 80472436
ela32ded 24972637 20998fc3 21chbY%aa3l

Array of DWORD pre-computed checksum values

R8 contains a pointer to pre-computed checksum and compared with dynamically computed
checksum from process name in EBX

This code also looks for manufacturer information through a call to
GetSystemFirmware Table. Bypassing these checks allows the program to finally deliver its
intended payload—to make a request for another stage to hxxps://real-estate-

advisors[.win]/vwrdhrbisero/sqyeqten3/niejin3i/tag1h/luyb/45014rvw/4w5unn5vx4di.jpg!

0:005> da 2B8215f

Qo0o00o00 " 002821548 " :hitps. A real-sstate—advisors wi”
00O00oOD0 " DOz282178 “nsvwrdbhrbizsro/sgqyegteni niejlni”
00DO0DODD " DO0282198 “i-taglh luyb 4501ldrvx-dwbunnSexl”

aoQooano Doz82lbf “di.jpg”

14/15

https://www.bromium.com/wp-content/uploads/2018/11/5-30.png
https://www.bromium.com/wp-content/uploads/2018/11/5-31.png
https://www.bromium.com/wp-content/uploads/2018/11/5-32.png
https://www.bromium.com/wp-content/uploads/2018/11/5-33.jpg

This resource is retrieved from a command and control node and then is used to create yet
another process. However, this server has now gone offline, but not before its ultimate
payload was categorized as a malicious banking trojan by the anti-malware community.

https://www.virustotal.com/#/file/ee32c4e0a4b345029d8b0f5c6534fa9fc41e795cc937d3f3fd7
43dcb0alcealdb/detection

Despite all of the obfuscation and anti-analysis we have examined together—and the fact
that we utilized multiple tools to reveal the complete picture—every stage of this malware
would have been safely contained within the Bromium Secure Platform in an isolated micro-
virtual machine. Detection failed to stop the initial stages of the attack, which gave the
attacker complete freedom to place secondary payloads onto the victim’s PC. This one was a
banking trojan, but next time it could be something entirely different or completely new.
Attackers never stop innovating—and they are always a step or two ahead of detection-
focused defenders—so consider application isolation and control using virtualization-based
security to protect your endpoints against whatever they come up with next.

Tags

About the Author

Dr Josh Stroschein
Categories

15/15

https://www.virustotal.com/#/file/ee32c4e0a4b345029d8b0f5c6534fa9fc41e795cc937d3f3fd743dcb0a1cea35/detection
https://www.bromium.com/our-tech/bromium-secure-platform/

