
1/15

November 5, 2018

Recent Posts
bromium.com/second-stage-attack-analysis/

HP Threat Research Blog • Data Talks: Deeper Down the Rabbit Hole: Second-Stage Attack
and a Fileless Finale

Data Talks: Deeper Down the Rabbit Hole: Second-Stage Attack and
a Fileless Finale

In our last blog, “Following a Trail of Confusion: PowerShell in Malicious Office Documents”,
we systematically unraveled multiple layers of obfuscation initiated by a weaponized first-
stage Microsoft Word document to reveal a surreptitious download script and a malicious
second-stage binary file dropped onto the victim PC. For those who wish to follow the
analysis through to its conclusion, the sample MD5 is 6c8e800f14f927de051a3788083635e5
and a VirusTotal report is here.

Picking Up Where Word Drops Off

Suppose the weaponized Word document was successful, bypassing all existing layered
defenses, and now the next stage begins. This is the native code program that is now
running in memory, and with it come additional capabilities to compromise the host computer.
As with our previous analysis, we have to figure out what type of code obfuscation we’re
dealing with it. With native code programs—portable executable (PE) files in the case of
Microsoft Windows—the first layer is usually packing. Packing is a well-known technique that

https://www.bromium.com/second-stage-attack-analysis/
https://www.bromium.com/blog/
https://www.bromium.com/powershell-malicious-office-documents/
https://www.virustotal.com/#/file/ee32c4e0a4b345029d8b0f5c6534fa9fc41e795cc937d3f3fd743dcb0a1cea35/detection


2/15

essentially takes the malicious program and wraps it inside another program. You can think
of it like a zip or another archive, where if we analyze the zip file, we won’t get any
information about the content it contains.

Bromium Secure Platform shows the original malicious document, the request to retrieve this
sample, and the process it invoked.

Signs of Packing

Before jumping right into IDA Pro and tackling the disassembly, it’s often worthwhile to
perform initial static analysis of the PE file to get some ideas on packing and other potential
code obfuscation techniques. PE parsing utilities can be valuable for getting an initial look at
the characteristics of the file. Strings are a good first indicator, and the presence or lack of
strings can provide critical insight into the program. Strings are an important part of any
program as they are routinely needed for such functionality as making HTTP requests,
writing files to disk, looking for processes, and creating files in the file system. Malware
authors will often attempt to obfuscate these strings, and an added benefit of packing is that
the strings are compressed and encrypted inside, obscuring their discovery. This sample
presents some strings, but most of these come from the functions that it is importing. Outside
of that, there are no further indicators such as command and control (C2) URLs or IPs,
indications of file or process activity, or evidence of intended behavior such as a ransom
note.

https://www.bromium.com/wp-content/uploads/2018/11/5-1.png


3/15

Sample of strings output using strings utility

Sections of the PE file are also worth investigating. Sections provide structure to the PE file
for such items as the executable code and hard-coded data. In addition, they may provide
evidence of malware that is packed. There are usually two strong indicators: the name of the
section and the entropy of the section. Section names are arbitrary, but some packers use
consistent naming and allow for easier detection. Entropy is a measure of the randomness in
a sequence of bytes, which make up the content of the sections. This is usually measured on
a scale from zero to eight, with eight being the highest measure of entropy. Programs that
contain sections with high entropy are more suspect for packing and other obfuscation
techniques, since this garbled code tends to be more random and less deliberate.

Dumpbin output of PE file sections

While there are other indicators to consider, it appears this program is packed and will
require deeper investigation.

PACKING ANALYSIS AND CODE OBFUSCATION

Now we can turn to IDA Pro to start analyzing the code of this program. Upon loading the
file, IDA provides further indications that the sample is packed.

https://www.bromium.com/wp-content/uploads/2018/11/5-2.png
https://www.bromium.com/wp-content/uploads/2018/11/5-3.png


4/15

IDA Pro dialog indicating potential packing

This program begins with a lot of instructions, most of them unnecessary. One way to try to
filter through this code is to see how the registers, variables, and functions are being used. In
this first code block, there are several function calls where the return value (in EAX) is being
used in a compare/conditional jump combination. The conditional jump goes to loc_407257.

If we navigate to that location, we end up in an infinite loop. This is helpful, as we can now
start to visually filter out this noise and attempt to find the true purpose of this code. Since we
suspect that we are looking at purely packing code, we don’t want to spend a lot of time
analyzing how this code works but find the point at which it’s done. This will allow us to focus
on whatever is unpacked. With unpacking code, I’ve often found that you can concentrate on
the end of the functions and look for abnormal returns or control transfers. This function ends
with a function call, which is far from a normal epilogue.

Tracing into function sub_407027, we can investigate the code at the end. It appears there
are two possible paths for it to go, both with unconventional methods of going there.

https://www.bromium.com/wp-content/uploads/2018/11/5-4.png
https://www.bromium.com/wp-content/uploads/2018/11/5-5.png
https://www.bromium.com/wp-content/uploads/2018/11/5-6.png


5/15

This function uses a technique of pushing a DWORD value onto the stack and then jumping
to ESP. What is pushed onto the stack is actually an address: 0x4071B1. This technique has
actually prevented IDA from identifying the correct location and continuing with disassembly.
If we go to that location manually, however, we can tell IDA to disassemble this code.

Unanalyzed JMP target

Disassembled location 0x4071B1

Once the data at this location is disassembled, we reveal a call instruction with a call target
of dword_40A34C. The value of this DWORD is not hard-coded, which means it is populated
during runtime. Instead of continuing with static-analysis, we can now turn to WinDbg for
dynamic analysis to see where this call goes.

Switching to Dynamic Analysis

Setting a breakpoint on that call instruction reveals that the call target is to location
0x4071c4.

https://www.bromium.com/wp-content/uploads/2018/11/5-7.png
https://www.bromium.com/wp-content/uploads/2018/11/5-8.png
https://www.bromium.com/wp-content/uploads/2018/11/5-9.png
https://www.bromium.com/wp-content/uploads/2018/11/5-10.png


6/15

Since IDA was unable to find this location during static analysis, it initially shows up as data
instead of instructions.

Invoking IDA’s analysis reveals the disassembled instructions:

It’s easy to get lost in the assembly here and important to keep the big picture in mind. This
code is all likely unpacking code, so let’s analyze it a little further down to see how it ends.
There is a strange indirect call to ESI at 0x407244.

https://www.bromium.com/wp-content/uploads/2018/11/5-11.png
https://www.bromium.com/wp-content/uploads/2018/11/5-12.png


7/15

If we continue execution to this point, we can see where it intends to lead. In this case, it’s to
an address not in the original image – 0x57000 for this run. This address will change, as it’s
a region of read-write-execute memory that is allocated during runtime.

This tells us that the previous code was responsible for not only allocating this memory, but
also for staging shellcode for execution. Using a tool like Process Hacker, we can extract this
shellcode from memory and disassemble it.

Tracing the Shellcode

Fortunately, we know the entry point is at the beginning of the binary content from our
dynamic analysis. Once this shellcode is disassembled, there will be a considerable amount
of code to analyze. Let’s stick with the same approach we used to get here in the first place
and analyze instructions toward the end of the shellcode. This shellcode ends with a
PUSH/RET technique. The location the author wants to return to is pushed on the stack just
before the return instruction.

https://www.bromium.com/wp-content/uploads/2018/11/5-13.png
https://www.bromium.com/wp-content/uploads/2018/11/5-14.png


8/15

This goes further into the shellcode. However, if we trace to the end of this code, there is a
jmp esi. ESI contains an address of 0x406FC0. This is a good sign, as it is taking execution
back to an address in the original address space of the program. But is it the same code? By
comparing the original data at the location to what is now in memory, a different result means
that unpacking could be complete.

Original:

In memory:

The Plot Thickens

Unfortunately, the malware is not yet ready to reveal what it is up to. Prior to performing a
deep technical analysis, automated dynamic analysis was used to understand as much of
this program’s behavior as possible. This malware makes a request to hxxps://real-estate-
advisors[.win] and starts another process. This is likely the point at which the malware
receives code for its true intended purpose. However, if we let the program run from this
point, the request isn’t made and no additional processes are created. Not only do we now
know that it’s not done unpacking/deobfuscating, it is also exhibiting anti-analysis techniques
not observed in our manual sandbox environment.

https://www.bromium.com/wp-content/uploads/2018/11/5-15.png
https://www.bromium.com/wp-content/uploads/2018/11/5-16.png
https://www.bromium.com/wp-content/uploads/2018/11/5-17.bmp


9/15

Looking at the cross-reference graph from sub_406FC0, there is a considerable amount of
code. How do we overcome this mess? One method is to start by setting breakpoints on
expected. For example, CreateProcessA or InternetOpenURLA. Letting this code run ends in
a call to TerminateProcess, and in this case none of these breakpoints were hit. This could
indicate a few things, including anti-analysis techniques. Instead of trying to analyze this
function from the top-down, focusing on the call instructions towards the end of the function
may speed up analysis. Especially if this involves more unpacking, then the earlier function
calls will likely be for memory allocation and more unpacking, and the later function calls for
executing the unpacked code. This function ends with three function calls and after
inspecting them, the call to sub_5200 appears to be the most promising.

Again, we’re faced with a significant amount of code and a limited amount of time for
analysis, so let’s focus on the end of the function. Toward the end of this function is another
indirect function call. These are usually interesting as they may indicate a dynamically-
generated address.

Indirect function call at offset 0x5D65

As it turns out, this is the call to ExitProcess, so somewhere before this call is not only any
anti-analysis, but also the next stage of functionality.

After spending some time analyzing this function, another promising location presents itself:

https://www.bromium.com/wp-content/uploads/2018/11/5-18.png
https://www.bromium.com/wp-content/uploads/2018/11/5-19.png


10/15

Call instruction to offset 0x51B0 at location 0x5C00

This function is limited in functionality, but it ultimately proves to be the location responsible
for the next stage of this malware.

The call $+5 is a common shell code technique to get the address of the stack, as the call
instruction will push the address of the next instruction (add [esp+10h+var_10], 5) onto the
stack and then add 5 to it. The push instruction will push the address 0x51D5 onto the stack,
once 5 is added to it the address that this function will return to is 0x51D6. This takes
execution to the first instruction after the return. Since IDA was not able to follow this logic,
we need to disassemble the code at this location.

https://www.bromium.com/wp-content/uploads/2018/11/5-20.png
https://www.bromium.com/wp-content/uploads/2018/11/5-21.png


11/15

There’s a call to DWORD_0, which actually represents the beginning of this section of code
(.TEXT section). We can resume our dynamic analysis to continue to trace this code.

Setting the appropriate breakpoints, I stopped at the RETF to ensure that my analysis of
where this code was going to return to was correct.

And the value on top of the stack is:

However, if you trace into this RETF the program doesn’t go to the address we expect:

What happened? Turns out, RETF takes two values off of the stack: one value for the
segment and a second value for the return address. Notice the PUSH 33h before the RETF,
this will force the CPU into 64-bit mode instead of 32-bit! Since I was using a 32-bit instance
of WinDbg, I was getting unexpected results. Switching to a 64-bit instance of WinDbg allows
us to trace into this RETF.

It’s a call to 0x401000. We have to go back to our original shellcode. IDA wasn’t able to find
a reference to this location, so the code was never disassembled. Keep in mind that I
extracted this as shellcode from the .text section, so an offset of 0 is equivalent to a virtual

https://www.bromium.com/wp-content/uploads/2018/11/5-22.png
https://www.bromium.com/wp-content/uploads/2018/11/5-23.png
https://www.bromium.com/wp-content/uploads/2018/11/5-24.png
https://www.bromium.com/wp-content/uploads/2018/11/5-25.png
https://www.bromium.com/wp-content/uploads/2018/11/5-26.png


12/15

address of 0x401000. We also know something else that is very important–this is 64-bit
code. Opening this code with the 64-bit version of IDA gives us an accurate disassembly
listing.

Disassembled 64-bit shellcode, function graph, and call graph 

One of the first things to determine is if we can find any API calls. This code doesn’t have an
extensive call graph, but one function, Sub_F90, stands out simply due to the number of
times it is called.

https://www.bromium.com/wp-content/uploads/2018/11/5-27.png


13/15

Sub_F90 may be responsible for resolving APIs. Setting a breakpoint on this function allows
us to investigate the return value in the EAX register. Sure enough, they’re function pointers!
Some of the more relevant ones are: NtAllocateVirtualMemory, NtWirteVirtualMemory, and
RtlCreateUserThread. Following these API calls, it eventually becomes clear that the code is
attempting to load a DLL via the CreateUserThread method. During execution, the DLL is
copied directly into memory and never touches disk! It’s unpacked purely in memory and
then loaded into the current process by the createthread call. As this is a “fileless” stage of
the attack, extracting this DLL from memory provides the opportunity to continue our
analysis.

Closer to the End

This DLL has only one export, which is DllEntryPoint (or DLLMain). This is called by the
thread created in the previous stage, and it reveals yet another round of complicated code.

https://www.bromium.com/wp-content/uploads/2018/11/5-28.png
https://www.bromium.com/wp-content/uploads/2018/11/5-29.png


14/15

Similar to the last stage, I was able to identify the function responsible for resolving APIs. In
this code, sub_180011820 returns a function pointer in the RAX register.

Tracing this allows visibility into the different APIs being called, and that is where the majority
of the anti-analysis is employed. For example, there is a call to CreateToolhelpSnapshot32,
which is then used to look for evidence of sandbox/analysis processes. Each process name
is converted to a multibyte string, changed to upper-case, and then used to create a CRC32
checksum. The checksum value is compared to a list of pre-computed values to avoid using
any strings in the sample, a deliberate obfuscation technique used to avoid clear-text strings
which are easily discovered.

Array of DWORD pre-computed checksum values

R8 contains a pointer to pre-computed checksum and compared with dynamically computed
checksum from process name in EBX

This code also looks for manufacturer information through a call to
GetSystemFirmwareTable. Bypassing these checks allows the program to finally deliver its
intended payload—to make a request for another stage to hxxps://real-estate-
advisors[.win]/vwrdhrbisero/sqyeqten3/niejln3i/tag1h/luyb/45014rvw/4w5unn5vx4di.jpg!

https://www.bromium.com/wp-content/uploads/2018/11/5-30.png
https://www.bromium.com/wp-content/uploads/2018/11/5-31.png
https://www.bromium.com/wp-content/uploads/2018/11/5-32.png
https://www.bromium.com/wp-content/uploads/2018/11/5-33.jpg


15/15

This resource is retrieved from a command and control node and then is used to create yet
another process. However, this server has now gone offline, but not before its ultimate
payload was categorized as a malicious banking trojan by the anti-malware community.

https://www.virustotal.com/#/file/ee32c4e0a4b345029d8b0f5c6534fa9fc41e795cc937d3f3fd7
43dcb0a1cea35/detection

Despite all of the obfuscation and anti-analysis we have examined together—and the fact
that we utilized multiple tools to reveal the complete picture—every stage of this malware
would have been safely contained within the Bromium Secure Platform in an isolated micro-
virtual machine. Detection failed to stop the initial stages of the attack, which gave the
attacker complete freedom to place secondary payloads onto the victim’s PC. This one was a
banking trojan, but next time it could be something entirely different or completely new.
Attackers never stop innovating—and they are always a step or two ahead of detection-
focused defenders—so consider application isolation and control using virtualization-based
security to protect your endpoints against whatever they come up with next.

Tags

About the Author

Dr Josh Stroschein
Categories

https://www.virustotal.com/#/file/ee32c4e0a4b345029d8b0f5c6534fa9fc41e795cc937d3f3fd743dcb0a1cea35/detection
https://www.bromium.com/our-tech/bromium-secure-platform/

