Predator The Thief: In-depth analysis (v2.3.5)

! fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/

fumko October 15, 2018

Well, it's been a long time without some fresh new contents on my blog. | had some
unexpected problems that kept me away from here and a lot of work (like my tracker) that
explain this. But it's time to come back (slowly) with some stuff.

So today, this is an In-Depth analysis of one stealer: “Predator the thief’, written in C/C++.
Like dozen others malware, it's a ready to sell malware delivered as a builder & C2 panel
package.

The goal is to explain step by step how this malware is working with a lot of extra
explanations for some parts. This post is mainly addressed for junior reverse engineers or
malware analysts who want for future purposes to understand and defeat some
techniquesi/tricks easily.

So here we go!

Classical life cycle

1/38

https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/

The execution order is almost the same, for most of the stealers nowadays. Changes are
mostly varying between evading techniques and how they interact with the C2. For example,

with Predator, the set up is quite simple but could vary if the attacker set up a loader on his
C2.

Execution

Cleaning Load Configuration

Second Interaction With C2 Stealing stuff

First Interaction With C2

The life cycle of Predator the thief

Preparing the field

Before stealing sensitive data, Predator starts by setting up some basics stuff to be able to
work correctly. AlImost all the configuration is loaded into memory step by step.

2/38

So let’s put a breakpoint at “0x00472866” and inspect the code...

3/38

dword
dword ptr
dword

dword

dword ptr

call dword ptr
211 dword ptr

. EBX is set to be the length of our loop (in our case here, it will be 0x0F)
. ESI have all functions addresses stored

4/38

3. EAX, will grab one address from ESI and moves it into EBP-8

4. EBP is called, so at this point, a config function will unpack some data and saved it into

the stack)
5. ESI position is now advanced by 4
. EDI is incremented until reaching the same value as stored EBX

(o}

7. When the EDI == EBX, it means that all required configuration values are stored into

the stack. The main part of the malware could start
So, for example, let’'s see what we have inside 00407101D at 0x00488278

So with x32dbg, let’'s see what we have... with a simple command

Command: go 0x0040101D

As you can see, this is where the C2 is stored, uncovered and saved into the stack.

xmmword ptr ds: [430A70

So what values are stored with this technique?

e C2 Domain

* %APPDATA% Folder

e Predator Folder

o temporary name of the archive predator file and position
 also, the name of the archive when it will send to the C2
e efc...

With the help of the %APPDATA%/Roaming path, the Predator folder is created (\ptst).
Something notable with this is that it's hardcoded behind a Xor string and not generated
randomly. By pure speculation, It could be a shortcut for “Predator The STealer”.

This is also the same constatation for the name of the temporary archive file during the
stealing process: “zpar.zip”.

The welcome message...

5/38

When you are positioned at the main module of the stealer, a lovely text looped over
0x06400000 times is addressed for people who want to reverse it.

sub_4693E0

dword ptr ss:

dword ptr ss:

Breakpaint St

Obfuscation Techniques

The thief who loves XOR (a little bit too much...)

Almost all the strings from this stealer sample are XORed, even if this obfuscation technique
is really easy to understand and one of the easier to decrypt. Here, its used at multiple forms
just to slow down the analysis.

6/38

mov cl, 44h
mov [ebp-64h], cl

mov byte ptr [ebp-63h], 14h
mov byte ptr [ebp-62h], 25h
mov byte ptr [ebp-61h], 37h
mov byte ptr [ebp-&68h], 37h
mov byte ptr [ebp-5Fh], 33h
mov byte ptr [ebp-5Eh], 2Bh
mov byte ptr [ebp-5Dh], 36h
mov byte ptr [ebp-5Ch], 28h
mov byte ptr [ebp-5Bh], 7Eh
mov word ptr [ebp-5Ah], &4h
mov eax, ebx
[ebp-BCh], eax

vy

loc_4823A4;

movaps wmed, ds:xmmword_49DEER

movups wmmeord ptr [ebp-208h], wome® ; .cooki=s.sgqlite
o ecx, ebx

B [=bp-8BCh], =cx
cmp ecK, @ER
jab short loc_4823CF
I 1
L 4

™
loc_4@82750: |

movaps xmmd, ds:ommecrd_4900A8

mo ey, edx

oy byte ptr [esp+3sehsvar_2a441], dl

movups [esptiS@htvar 28C], onmd

moy [esps+35@hsvar_27C], 3DEATTELh

mo [esp+iSBhtvar 278], MITFh ; \General\passwords. log

vy

loc 4827EE:

may al, byte ptr [esp+3s@hevar_28(]

Bty byte ptr [esprecw+3SOhsvar 28C+1], al
inc 1=

cmg ecx, 16h

jb short loc_482758

I.]

GetProcAddress Alternatives

For avoiding to call directly modules from different libraries, it uses some classic stuff to
search step by step a specific API request and stores it into a register. It permits to hide the
direct call of the module into a simple register call.

7/38

https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/xor_variant_01/
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/xor_variant_02/
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/xor_case_01/

So firstly, a XORed string (a DLL) is decrypted. So for this case, the kernel32.dll is required
for the specific module that the malware wants to call.

‘ Yy
il e 5
loc_4815AE:
mav cl, 74h
mov dword ptr [ebptLibFileName], 6112F74h
mowv [ebptvar_Al, 47181114h
xor eax, eax
mov [ebp+var_&], 18185A46h
mov [ebptvar_2], 18h ; kernel32.d1l
Ll s =]
loc_4815CD:
xor [ebpteax+LibFileName+1], cl
inc eax
cmp eax, BCh
jnb short loc_4815DC

i Y
M
mov cl, [ebpt+LibFileName]
jmp short loc_4@815CD

When the decryption is done, this library is loaded with the help of “LoadLibraryA". Then, a
clear text is pushed into EDX: “CreateDirectoryA®... This will be the module that the stealer
wants to use.

The only thing that it needs now, its to retrieve the address of an exported function
“CreateDirectoryA” from kernel32.dll. Usually, this is done with the help of

GetProcAddress but this function is in fact not called and another trick is used to get the right
value.

8/38

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684175(v=vs.85).aspx
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createdirectorya
https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-createdirectorya
https://msdn.microsoft.com/fr-fr/library/windows/desktop/ms683212(v=vs.85).aspx

il s 5

loc_4815DC:

lea eax, [ebp+LibFileName+1]

mowv byte ptr [ebp+var_2+1], @

push eax ; 1pLibFileName

call ds:LoadlLibrarys

test eax, eax

jz short loc_4815FA

i L 4

Ll el 55
mow edx, offset aCreatedirector ; "CreateDirectoryA”
mav ecx, eax

call func_GetProcAddress @

So this string and the IMAGE_DOS_HEADER of kernel32.dll are sent into
“func_GetProcesAddress_0". The idea is to get manually the pointer of the function address
that we want with the help of the Export Table. So let's see what we have in the in it...

struct IMAGE_

long
long

EXPORT_DIRECTORY {
Characteristics;
TimeDateStamp;

short MajorVersion;
short MinorVersion;

long
long
long
long
long
long
long
}

Name;

Base;
NumberOfFunctions;
NumberOfNames;
*AddressOfFunctions;
*AddressOfNames;

<= This good boy
<= This good boy

*AddressOfNameOrdinals; <= This good boy

After inspecting the structure de IMAGE_EXPORT_DIRECTORY, three fields are mandatory

e AddressOfFunctions — An Array who contains the relative value address (RVA) of the
functions of the module.
o AddressOfNames — An array who stores with the ascending order of all functions from
this module.
e AddressOfNamesOrdinals — An 16 bits array who contains all the associated ordinals
of functions names based on the AddressOfNames.

source

So after saving the absolute position of these 3 arrays, the loop is simple

9/38

https://en.wikibooks.org/wiki/X86_Disassembly/Windows_Executable_Files

dword ptr ds: e

[EDX]
= Function Mame :)

byte ptr ds:
byte ptr ds:
byte ptr ss:
word

1. Grab the RVA of one function
2. Get the name of this function
3. Compare the string with the desired one.

So let’s see in details to understand everything :

If we dig into ds:[eax+edx*4], this where is stored all relative value address of the
kernel32.dll export table functions.

T gk Do w D

1
E
E

0=l M3 e

With the next instruction add eax,ecx. This remains to go at the exact position of the string
value in the “AddressOfNames” array.

10/38

DLLBaseAddress + AddressOfNameRVA[i] = Function Name
CreateDirectoryA

751F0000 + 0C41D4

The comparison is matching, now it needs to store the “procAddress. So First the Ordinal
Number of the function is saved. Then with the help of this value, the Function Address
position is grabbed and saved into ESI.

ADD ESI, ECX
ProcAddress = Function Address + DLLBaseAddress

In disassembly, it looks like this :

|nz short loc_aulaaa)
Y

+14h]f |mowv eax, [ebptvar C] ; EAX set to @

+1lah]f |mowv ebx, [ebptvar_18] ; Kernel32.dll DLL base address

movzx eax, word ptr [eaxtedx*2] ; Get Ordinal value of the desired function

E mov esi, [ebx+eax*4] ; Function Address
add esi, ecx 3 ProcAddress of the desired function
|
vV
| [l e |

Let’s inspect the code at the specific procAddress...

So everything is done, the address of the function is now stored into EAX and it only needs
now to be called.

11/38

Ll s =]

loc_4815FA:

push]

push esi

call eax ; CreateDirectoryA call
pap esi

leave

retn 4

func_CreateDirectoryA endp

Anti-VM Technique

Here is used a simple Anti-VM Technique to check if this stealer is launched on a virtual

machine. This is also the only Anti-Detection trick used on Predator.

mov [ebp+var_1E3], lAsh
mowv cl, 51h
mov dword ptr [ebp+LibFileName], 34228451h
xor eax, eax
mov [ebp+var 8], 7F636223h
mow [ebp+var_4], 3D3D35h ; User32.dll
Lol e [-=]
loc_481A3E:
xor [ebpt+eax+LibFileName+1], cl
inc eax
cmp eax, @Ah
jnb short loc_4@81A4D

lall e = Lol e =

mov cl, [ebpt+LibFileName]
loc_481A4D: jmp short loc_481A3E
lea eax, [ebp+LibFileName+1]

mowv byte ptr [ebpt+var 4+3], @
push eax 3 lpLibFileName
call ds:LoadLibrarya
test 2ax, eax
jz short loc_481AGE
i Y
M
mow edx, offset aEnumdisplaydev ; "EnumDisplayDevicesh"
mowv BCX, eax
call sub_481398
)

First, User32.dll (Xored) is dynamically loaded with the help of “LoadLibraryA®, Then
“‘EnumDisplayDevicesA” module is requested with the help of User32.dIl. The idea here is to

get the value of the “Device Description” of the current display used.

When it's done, the result is checked with some values (obviously xored too) :

12/38

https://docs.microsoft.com/fr-fr/windows/desktop/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://docs.microsoft.com/en-us/windows/desktop/api/winuser/nf-winuser-enumdisplaydevicesa

e Hyper-V

e VMware
 VirtualBox
mov €1, Lsn
mav dword ptr [ebpt+LibFileMame+3], 63615818h ; Hyper-V
may [ebptvar_8+3], 4E356ATDh
Xor eax, eax
mov byte ptr [ebp+var_44+3], @
loc_41AA1:
Xor byte ptr [ebpteaxt+var_8], cl
inc eax
cmp eax, 7
jnb short loc 481ABG
FEE TP
mov cl, [ebp+LibFileName+3]
loc_481AB8: jmp short loc_481A41
push eCx
lea eax, [ebptvar 8]
Moy byte ptr [ebptvar_443], @
push eax
lea ecx, [ebptvar_24]
call func_VmDetectedGoodBye
cmp eax, @FFFFFFFFh
jnz loc_481BAC
Ll s 55
maw cl, 54h
mowv [ebp+var_8], 23198254h
mow [ebptvar_4], 312635h ; VMware
xor eax, eax

If the string matches, you are redirected to a function renamed here
“func_VmDetectedGoodBye.

How to By-Pass this Anti-VM technique?

For avoiding this simple trick, the goal is to modify the REG_SZ value of “DriverDesc” into

{4d36e968-e325-11ce-bfc1-08002be 10318} to something else.

13/38

https://docs.microsoft.com/en-us/windows-hardware/drivers/install/system-defined-device-setup-classes-available-to-vendors

i Registry Editor

File Edit View Favomtes Help

Mame Type Data

abiDriverDesc | REG_SZ Fumild_ Legit Graphical Display

F] {4D36E96E-E225-11 CE-BFC1-08002BE10318])
a 0000
Settings
Properties

-l 4 n b

Computet\HKEY_LOCAL_MACHINE\SYSTEM\ControlSetD\Control Class\{4 D36ES68-E325-11 CE-BFC1-08002 BE10318 P0000

And voila!

dword ptr ds:

dword ptr ss:

Stealing Part

Let’s talk about the main subject... How this stealer is organized... As far | disassemble the
code, this is all the folders that the malware is setting on the “ptst” repository before sending
it as an archive on the C2.

e Folder

o

(o]

(o]

Files: Contains all classical text/documents files at specifics paths
FileZilla: Grab one or two files from this FTP

WinFTP: Grab one file from this FTP

Cookies: Saved stolen cookies from different browsers

General: Generic Data

Steam: Steal login account data

Discord: Steal login account data

14/38

o Files
o Information.log
o Screenshot.jpeg <= Screenshot of the current screen

Telegram

For checking if Telegram is installed on the machine, the malware is checking if the KeyPath
“Software\Microsoft\Windows\CurrentVersion\Uninstall\{53F49750-6209-4FBF-9CAS8-
7A333C87D1ED} is1” exists on the machine.

So let’s inspect what we have inside this “KeyPath”? After digging into the code, the stealer
will request the value of “InstallLocation” because of this where Telegram is installed
currently on the machine.

il] =
loc_45E25D:
cmp ecx, 3
jnb short loc_45E278
] ?] ?
FIEE bl e =
mov al, [ebptec
loc_45E278: XOr al, dl
mov byte ptr [ebp-15h], @ mov [ebptecx-18
lea eax, [ebp-18h] inc ecx
push eax mov [ebp-BEBh],
lea ecx, [ebp-8B4h] mov dl, [ebp-19
call func_init jmp short loc_4
movaps xmm@, ds:xmmword 490968
movups xmmword ptr [ebp-139h], xmm@ ; Installlocation
mov byte ptr [ebp-129h], @
®or eCH, BCX

‘ X’
il e =
loc_45E2A2:

Step by step, the path is recreated (also always, all strings are xored) :

%TELEGRAM_PATH%
\Telegram Desktop
\tdata
\D877F783D5D3EF8C

15/38

Xmm, 05 :XMWord_S9UbLe
xmmword ptr [ebp-8Fh], xmme@
word ptr [ebp-7Fh], 6318h

byte ptr [ebp-7Dh], @ ; .\D877F783DSD3EFSC

eCM, EBCX

]

K E—

loc 45E5E4:

mov [ebp-188h], ecx
cmp ecx, llh
jnb short loc 45E606
i — y
FEEE
mov al, [ebptecx-8Eh]
xor al, [ebp-8Fh] loc 45E6@6:
mov [ebp+ecx-BEh], al mov byte ptr [ebp-7Dh], @
inc ecx lea eax, [ebp-8Eh]
Jjmp short loc 45ESE4 push eax
lea ecx, [ebp-@B4h]
call func_init
push eax
lea ecx, [ebp-128h]
call sub_483A4B
lea ecx, [ebp-8B84h]
call func_runtime stuff
mov dl, 24h
mov dword ptr [ebp-2Bh], 54454924h
mov word ptr [ebp-27h], @Eh ; .map*
xor ecx, ecx
mov [ebp-18Ch], ecx

loc ASEG4A:

cmp
jnb

ecx, 4
short loc_45E665

J 1

r

The folder “D877F783D5D3EF8C” is where all Telegram cache is stored. This is the sensitive
data that the stealer wants to grab. Also during the process, the file map* (i.e: map1) is also
checked and this file is, in fact, the encryption key. So if someone grabs everything for this

folder, this leads the attacker to have an access (login without prompt) into the victim

account.

Steam

The technique used by the stealer to get information for one software will remain the same
for the next events (for most of the cases). This greatly facilitates the understanding of this

malware.

16/38

So first, it's checking the “SteamPath” key value at “HKCU\Software\Valve\Steam” to grab the
correct Steam repository. This value is after concatenating with a bunch of files that are
necessary to compromise a Steam Account.

et L ST R SO

Mo esi, ecx

mow [ebp-8DBh], esi
or ebx, ebx

Mo [ebp-4], =bx

movaps wmmd, dsixmeword 490986
movups xmmword ptr [ebp-96h], xmmé

Mo dword ptr [ebp-86h], 11158423h
mow word ptr [ebp-82h], 1Dh ; .Software\Valve\Steam
Mo ecx, ebx

J
mow cl, 1Fh
mowv dword ptr [ebp-37h], 7AGB4C1Fh
mow dword ptr [ebp-33h], 7E4F727Eh
mow word ptr [ebp-2Fh], 776Bh
mow [ebp-2Dh], bl ; .SteamPath
mow eax, ebx
mowv [ebp-@F8h], eax

1

So it will check first if ssfn files are present on the machine with the help of “func_FindFiles”,
if it matches, they are duplicated into the temporary malware folder stored on
%APPDATA%/XXXX. Then do the same things with config.vdf

17/38

https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/xor_1/
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/xor_2/

FEE
loc_45DCD5:
mow cl, 20h
mov dword ptr [ebp-22h], 4BSESE2Dh
mov word ptr [ebp-1Eh], 743h ; .ssfn*
mov [ebp-1Ch], bl
mow eax, ehbx
mov [ebp-l84h], eax
% m—
" PIs
loc 45DCEF:
cmp ean, 5
jnb short loc_450D84

_ Y
M=
loc_45DD84:
mov [ebp-1Ch], bl
lea eax, [ebp-21h]
push eax
lea ecx, [ebp-98h]
call func_init @81
push ebx
push 1
push dword ptr [ebp+a]
lea eax, [ebp-28h]
push eax
lea eax, [ebp-BEZh]
push eax
maw ecx, esi
call func_FindFiles
lea ecx, [ebp-98h]
call func_runtime_stuff
maow cl, 54h
mov dword ptr [ebp-BATh], 3B378854h
mov dword ptr [ebp-BA3h], 333D323Ah
mow dword ptr [ebp-9Fh], 227A7E@Sh
mow word ptr [ebp-9Bh], 3238h ; config.wdf
mov [ebp-99h], bl
maow eax, ebx
mov [ebp-1@8h], eax

So what the point with these files? First, after some research, a post on Reddit was quite

interesting. it explained that ssfn files permit to by-pass SteamGuard during the user log-on.

18/38

& 1 point - 3 yearsago

¥ Ifyou still have the whole drive, copy the steam client folder to your new pc and launch steam from there, it should
launch without asking you for a steam guard code. Same for your firefox or chrome profile, if you want to avoid steam
guard there.

It's the reason why I have installed steam and moved my firefox profile in another drive.

Share Report Save

& 31 1point - 3 vyears ago
V' Steamguard would detect new hardware and ask for a code.

Share Report Save

a 2 points - 3 years ago
¥ Steamguard is hardware agnostic, why do you think there are so many scams where they ask to upload your SSFN file or
trojans that grab it, do you think they emulate the associated pc hardware?

Anyway to be 100% sure I copied the steam client folder from my 2nd pc and logged in a steam account that had never
logged in before in my 1st pc and no steam guard prompt popped up.

Share Report Save

Now what the point of the second file? this is where you could know some information about
the user account and all the applications that are installed on the machine. Also, if the
ConnectCache field is found on this one, it is possible to log into the stolen account without
steam authentication prompt. if you are curious, this pattern is represented just like this :

"ConnectCache"

{
"STEAM_USERNAME_IN_CRC32_FORMAT" "SOME_HEX_STUFF"

The last file, that the stealer wants to grab is “loginusers.vdf’. This one could be used for
multiple purposes but mainly for setting the account in offline mode manually.

|_|L12l|l caa

call func_GetCopyFileA

lea ecx, [ebp-98h]

call func_runtime_stuff

lea ecx, [ebp-13@h]

call func_runtime stuff

lea ecx, [ebp-8B8h]

call func_runtime_stuff

lea ecx, [ebp-BCBh]

call func_runtime_stuff

movaps xmm@, ds:xmmword 490678 ; .loginusers.wvdf
movups xmmword ptr [ebp-128h], xmm@
maow ecx, ebx

2 b

For more details on the subject there a nice report made by Kapersky for this:

Steam Stealers

Wallets

The stealer is supporting multiple digital wallets such as :

19/38

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/07191212/Steam_Stealers_research_ENG.pdf

e Ethereum
o Multibit

e Electrum
e Armory

e Bytecoin
e Bitcoin

e Etc...

The functionality is rudimentary but it's enough to grab specific files such as :

o *wallet
o *.dat

And as usual, all the strings are XORed.

LE=SL L eVl La5 |y J.El'rll

jz short loc_ 459880

il s 5

loc_459880:

mow cl, 41h

Mo [ebp+var_24], 2D283641h

Mo [ebptvar_ 28], 6F35242Dh

maw eax, ehx

mav [ebp+var_1C], 352825h ; wallet.dat

Ve

FTP software

The stealer supports two FTP software :

e Filezilla
e WINFTP

It's really rudimentary because he only search for three files, and they are available a simple
copy to the predator is done :

* %APPDATA%\Filezilla\sitemanager.xml
* %APPDATA%\Filezilla\recentservers.xml
* %PROGRAMFILES%\WinFtp Client\Favorites.dat

20/38

movaps xmmd, ds:xmmword 49DAAB

xor ecx, ecx
movups [espd358htvar_2E@], xmm@
mov [esp+35@h+var_20@8], 545B85458h
mov [esp+35@h+var_2CC], 1B475852h
mov [esp+35@h+var_2C8], 59584Dh ; .“\FileZilla‘\sitemanager.xml
- - L :
1
L]

eCx, €CX

[esp+3s@h+var

xmn@, ds:xmmword 490888

[esp+3sehevar_2E0], xmmd

D8], 657CGEBACH

[esp+35@h+var_20C), GF7E6378h

[esp+iS@h+var_2C8], GBEE247%h

[esp+3s@h+var_2C4], 7Eh ; .‘WinFtp Client\Favorites.dat

L

Browsers

I's not necessary to have some deeper explanation about what kind of file the stealer will
focus on browsers. There is currently a dozen articles that explain how this kind of malware
manages to steal web data. | recommend you to read this article made by @coldshell about

an example of overview and well detailed.

As usual, popular Chrome-based & Firefox-based browsers and also Opera are mainly

targeted by Predator.

This is the current official list supported by this stealer :

e Amigo

o BlackHawk

e Chromium

e Comodo Dragon
o Cyberfox

e Epic Privacy Browser

e Google Chrome
e |ceCat

o K-Meleon

o Kometa

e Maxthon5

e Mozilla Firefox
¢ Nichrome

e Opera

e Orbitum

o Pale Moon

e Sputnik

e Torch

21/38

https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/filezilla/
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/winftp/
https://thisissecurity.stormshield.com/2018/08/28/acridrain-stealer/
https://twitter.com/coldshell

o Vivaldi
o Waterfox
o Etc...

This one is also using SQLite for extracting data from browsers and using and saved them
into a temporary file name “vimi{lulz}yg.col”.

mMovaps Xmmd, dsixmmword 490556

Xor edx, edx
movups [ebptvar_1B], xmm@
mov [ebp+var_B], 5251h ; ‘wlmi{lolz}yg.col
maw ecx, edx
mov [ebp+var_9], dl
il s
loc_481D4D:
maw al, byte ptr [ebptvar_1B]
xor byte ptr [ebp+ecx+var_1B+1], al
inc ecx
cmp ecx, 1lh
jb short loc_48104D
—
Lol s =]
mov [ebp+var_9], dl
maw cl, 3Bh
mov [ebptvar_8], S65E4F3Bh ; items
mav eax, edx
mov [ebp+var_4], 4Bh

‘<

So the task is simple :

o Stole SQL Browser file
o Extract data with the help of SQLite and put into a temporary file
e Then read and save it into a text file with a specific name (for each browser).

{* Emplacement: B/

E Chrome_C journal d'app.. 07 septembre 20
E Mozilla_1.log 227 journal d'app.. 07 septembre

When forms data or credentials are found they’re saved into two files on the General
repository :

» forms.log

22/38

e password.log
e cards.log

Emplacement :

eptembre 2018, 1..

/ septembre 2018, 1..

Discord

If discord is detected on the machine, the stealer will search and copy the
“https_discordapp_*localstorage” file into the “ptst” folder. This file contains all sensitive
information about the account and could permit some authentication without a prompt login if
this one is pushed into the correct directory of the attacker machine.

maw [ebp-4], ebx
movaps xmm@, ds:xmmwcrd_ 490300
movups xmmword ptr [ebp-58h], xmm@

mov dword ptr [ebp-48h], 465B4867h
maw dword ptr [ebp-3Ch], 515355h ; .\discord\Local storage
mowv ecx, ebx
I
lea ecx, [ebp-84h]
call func_runtime_stuff

movaps xmmd, ds:xmmword_49DCD8
movups xmmword ptr [ebp-8&3h], xmm@
movaps xmm@, ds:xmmword_490CC8
movups xmmword ptr [ebp-98h], xmm@

maw dword ptr [ebp-88h], 6A686Eh ; https_discordpage | https_discordapp
mow ecx, ehx
T
maw ecx, esi
call func_FindFiles
lea ecx, [ebp-5@h]
call func_runtime_stuff

movaps xmm@, ds:xmmwcrd 490748

movups xmmword ptr [ebp-7Dh], xmm@ ; *.localstorage
mov [ebp-&Dh], bl

man ecx, ehx

Predator is inspecting multiple places...

This stealer is stealing data from 3 strategical folders :

e Desktop
e Downloads
e Documents

Each time, the task will be the same, it will search 4 type of files with the help of
GetFileAttributesA :

23/38

https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-getfileattributesa

*.doc

e *.docx
o ".ixt
e *.log
maw dl, 4
mov dword ptr [ebp-43h], eB2A2EB4h
mov word ptr [ebp-3Fh], 676Bh ; .*.doc
mov byte ptr [ebp-3Dh], @
bl BCX, BCX
mov [ebp-288h], ecx
T
mov dl, 56h
maw dword ptr [ebp-67h], 32787C56h
mov dword ptr [ebp-63h], 2E353%h ; .*.docx
Xor BCx, BCX
mav [ebp-288h], ecx
J
mov dl, 4gh
mov dword ptr [ebp-3Ch], 25676349h
mowv word ptr [ebp-38h], 2E26h ; .*.log
mov byte ptr [ebp-36h], @
Xor BCH, BCX
mov [ebp-284h], ecx
I
mov dl, IFh
mov dword ptr [ebp-51h], BB31351Fh
maw word ptr [ebp-4Dh], 6B67h ; .*.txt
maw [ebp-4Bh], bl
mow ecx, ehx
mov [ebp-28Ch], ecx

When it matches, they have copied into a folder named “Files”.

Information.log

When tasks are done, the malware starts generating a summarize file, who contains some
specific and sensitive data from the machine victim beside the file “Information.log”. For
DFIR, this file is the artifact to identify the name of the malware because it contains the name
and the specific version.

So first, it writes the Username of the user that has executed the payload, the computer
name, and the OS Version.

User name: lolilol
Machine name: Computer
0S version: Windoge 10

24/38

https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/doc/
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/docx/
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/log/
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/txt/

Then copy the content of the clipboard with the help of GetClipBoardData

Current clipboard:

Omelette du fromage

Let’s continue the process...

Startup folder: C:\Users\lolilol\AppData\Local\Temp\predator.exe

Some classic specification about the machine is requested and saved into the file.

CPU info: Some bad CPU | Amount of kernels: 128 (Current CPU usage: 46.112917%)
GPU info: Fumik®_ graphical display

Amount of RAM: 12 GB (Current RAM usage: 240 MB)

Screen resolution: 1900x1005

Then, all the user accounts are indicated

Computer users:
lolilol
Administrator
All Users
Default

Default User
Public

The last part is about some exotics information that is quite awkward in fact... Firstly, for
some reasons that | don’t want to understand, there is the compile time hardcoded on the
payload.

25/38

https://docs.microsoft.com/en-us/windows/desktop/api/winuser/nf-winuser-getclipboarddata

il s 5

sub ecx, edx

push ecx

lea eax, [ebp-1F4h]
push eax

lea ecx, [ebp-1D4h]

call func_Unkonwn_1@
movaps wxmm@, ds:xmmword 490698

movups xmmword ptr [ebp-44@h], xmm@ ; .Compile Time:
maw ecx, ehbx

loc_46887B:

mav [ebp-344h], ecx
cmp ecx, BEh

jnb short loc_468890

ol e =

mov al, [ebptecx-43Fh]
loc_46BE90: XOr al, [ebp-448h]
may [ebp-431h], bl mov [ebptecx-43Fh], al
push offset afug312018 ; "Aug 31 2818 inc ecx
lea ecx, [ebp-95Ch] jmp short loc_46887B
call func_init @1
mowv edx, eax
lea ecx, [ebp-43Fh]
lea esi, [ecx+l]

I—EH

Then the second exotic data saved into Information.log is the grabbing execution time for
stealing contents from the machine... This information could be useful for debugging some

tweaks with the features.
Additional information:

Compile time: Aug 31 2018
Grabbing time: 0.359375 second(s)

C2 Communications

For finishing the information.log, a GET request is made for getting some network data about

the victim...

First, it set up the request by uncovered some Data like :

e A user-agent
e The content-type

26/38

movaps xmm@, ds:xmmword 49DC78
movups xmmword ptr [ebp-1E8h],
movaps xmm@, ds:xmmword_ 49DA9E
movups xmmword ptr [ebp-1D8h],
movaps xmm@, ds:xmmword 495D84AR
movups xmmword ptr [ebp-1C8h],
movaps xmm@, ds:xmmword_ 49D398
movups xmmword ptr [ebp-1B8h],
movaps xmm@, ds:xmmword 49DBBE&
movups xmmword ptr [ebp-1A3h],
movaps xmm@, ds:xmmword_ 49DC18
movups xmmword ptr [ebp-198h],
mov dword ptr [ebp-188h], 3D217661h
mov dword ptr [ebp-184h], 3E283Fh ; .Content-Type: text/html

; User-Agent: Mozilla/5.8 (Windows NT 6.1; rv:31.8) Gecko/28188101 Firefox/31.8

1iiiid

xor BCK, EBCX

The API URL (/api/info.get)

We can have for example this result :

Amsterdam;Netherlands;52.3702;4.89517;51.15.43.205;Europe/Amsterdam;1012;

When the request is done, the data is consolidated step by step with the help of different
loops and conditions.

.)
1 i ¥
W= "= i =
= dl, 2En
P ducrd prr [ebp-25h], SA47EDZE 1oc_s5a850: loc_a54B73: loc_4590671
- duced ptr [sbp-Bh], BE1457h ; .City: push ebx o Wi, di:Internetclosetand] cap edi, 1
war —] mory i 1 inz whort loc_asapmy)
i [ebp-BLER], ecx call
lea
eall x -
oy edi, [ebp-ereh]
4mp zhart loc_45AB7F
" L L
[R] ¥ ¥]] ¥
= — — -
Lae_asoCFn: lae_$5a07F: : hinterset] [loe_ssases: Loe_450085:
g eox, 0§ push dward pir [ebp-Bon] oy i, d: cup edi, 2
4n short loc_asanis) [call esi ; InternetcClosskand 4nz Loc_a59Ea8 word ptr [ebg-32h] Country
el short loc_ 454880 byte gtr [ebs-38h]
[=hp-acrh], ecx
l _ L] |]] i I - []

When the task is done, there are saved into Information.log

City: Nopeland

Country: NopeCountry
Coordinates: XX.XXXX N, X.XXXX W
IP: XXX.XXX.XXX.XXX

Timezone: Nowhere

Zip code: XXXXX

The Archive is not complete, it only needs for the stealer to send it to the C2.

27/38

B Gen

Steam

E nformation.log

W Screenshot.jpeg

So now it set up some pieces of information into the gate.get request with specifics
arguments, from p1 to p7, for example :

p1: Number of accounts stolen
p2: Number of cookies stolen
p4: Number of forms stolen

e etc...

results :

The POST request is now complete, the stealer will clean everything and quit.

28/38

ABTOpW3aunga

Example of Predator C2 Panel with fancy background...

Update — v2.3.7

So during the analysis, new versions were pushed... Currently (at the time where this post
was redacted), the v3 has been released, but without possession of this specific version, |
won’t talk anything about it and will me be focus only on the 2.3.7.

It's useless to review from scratch, the mechanic of this stealer is still the same, just some
tweak or other arrangements was done for multiple purposes... Without digging too much
into it, let's see some changes (not all) that | found interesting.

29/38

Alexuiopl337
.4 ¥

"
Eoncloe o

Cmunnep:

(0 NOTHH + |P), E KIHEHTD

TRaHuLEe

Changelog of v2.3.7 explained by the author
As usual, this is the same patterns :

o Code optimizations (Faster / Lightweight)
e More features...

As you can see v2.3.7 on the right is much longer than v2.3.5 (left), but the backbone is still
the same.

30/38

https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/old/

https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/old/
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/new/

32/38

https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/new/

Mutex

On 2.3.7, A mutex is integrated with a specific string called “SyystemServs”

push eax

push ebx

push ebx

mow edx, offset alreatemutexa ; "CreateMutexd”
lea ecx, [esp+8AB4h+LibFileName+1] ; lpLibFileName
call func_LoadLibraryA

call eax

mow esi, eax

Ll i 5=

push BCh

mov dl, 77h

mov [esp+@AdCh+var_BEG], @EBE2477h

mov [esp+BAACh+var BEZ2], lAlZ@3edh

mov ecx, ebx

mov [esp+BAACh+var BDE], 1851224h

movy [esp+BAaCh+var 8DA], 4 ; SyystemServs

pop edi

_L-I . =
Xor / Obfuscated Strings

During the C2 requests, URL arguments are generated byte per byte and unXOR.
For example :

push 04

push 61

push 70

leads to this

HEX ! 046170692F676174652E6765743F70313D
STRING : .api/gate.get?pil=

This is basic and simple but enough to just slow down the review of the strings. but at least,
it's really easy to uncover it, so it doesn’t matter.

33/38

https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/new/
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/mutexcreation-2/
https://fumik0.com/2018/10/15/predator-the-thief-in-depth-analysis-v2-3-5/mutexname-2/

ein, [espedsaihivar &87]
Suly_485153

wcw, [eepeliaBhivar A7)
byte ptr [eax], @
Suly_485340

&lh

wex, [whpeltilhivar_Baa]
[espeaiaihtvar BEA], 2aK
[=epefisilnsvar_Rli], 15h|
auby_HISAEL

Teh

acu, [espellalhbvar_Gia]
[wapsdsarnivar_saa], al
Suly_ 485441

B

wex, [eapedeaChivar_Baa]
[espridaliivar 984], &l
suly_d@5ad)

2rh

ein, [espssaihivar B84]
[espsadiinvar_B87], al
tuh ASALT

&t

e, [esprasahivar B8]
[eepeasarhivar_Baa], sl
audy_HIEAEL

&1h

wcu, [espelfalhivar_Bia]
[espeasariivar_nas], al
Sily_48544)

7h

mex, [eapsltachivar_naa]
[espridaimrvar_424], al
zuh_AB5A41

ein, [esprasaliivar G847
[espeRisiinsvar_ B8], sl
nul 44T

2Eh

acu, [esprilalivevar_Bia]
[#spedsarnivar_uaz], sl
Suly S840

67h

wew, [eupelialhivar_BaA]
[esprasarhivar_Ba1], al
uly_d854d]

th

gen, [Eipeltathivar 5A4]
[espeRtalivar_ G281, &l
rub_ AT

74h

e, [esprasfaihivar G847
[espeftarnevar_557], al
muby ERED

IFh

o, [EspealAlhivar o]
[enpeasarnivar_vee], al
Sy @54l

Gl

wen, [wepeBtathivar_Bas]
[espeitaiiivar 9507, al
uly_48544]

i1h

ein; [Eipsisalhivar Baa]
[espridaitvar_550], al
vl AT

30h

0w, [esprataihvar_B8a]
[espefsarnivar_ssa], sl
aub_ 45481
[espeadibntvar_954], &l
wdl, sdi

[wapspsathivar o8], @

I e B

Loader

This tweak by far is why the code is much longer than v2.3.5.

Not seen before (as far | saw), it seems on 2.3.7, it integrates a loader feature to push

another payload on the victim machine, easily recognizable with the adequate GET Request

/api/download.get

The API request permits to the malware to get an URL into text format. Then Download and

saved it into disk and execute it with the help of ShellExecuteA

34/38

https://docs.microsoft.com/en-us/windows/desktop/api/shellapi/nf-shellapi-shellexecutea

jmp short loc_463E9F I push eax
o edx, offset alrldownloadtof ; RLDownloadToFileA®
lea ecx, [ebp-2Fh] ; lpLibFileName

call fune_LoadLibrarya

call Eax

lea ecx, [ebp-9Ch]

call sub_4@54E1

mow esl, eax
o dl; 25h
o dword ptr [ebp-50h], 4@4D7625h
W dword ptr [ebp-55h], 17164543h

o dword ptr [ebp-51h], 494534188h
Y byte ptr [ebp-4Dh], @ ; Shell32.dll

xor ecx, ecx
mow [ebp-2B3h], ecx

L I [—

loc_463E9F: ; hInternet] [loc_4s3E29: loc_463CDA:
push dword ptr [ebp-B4h] may esi, ds:InternetCloseHandle] |cmp ecx, B8Bh

i
(il

call esi ; InternetCloseHandle nbs short loc_463CF3
jmp shert loc_453EAF
; | |
L vy
7]
dl, [ebp#ecx-58h]
loc_463CF3: loc_463EAF: ; hInternet mov [ebptecx-58h], dl
xor cax, cox push edi inc ecx
mov [ebp-4Dh], al call esi ; InternetCloseHandle mov [ebp-2E8h], ecx
push eax mov dl, [ebp-59h]
push eax Jmp short loc_463CDA
push eax
push esi
Lh o
push EaK
mow edx, offset aShellexecutea ; "Shellfxecuted”
lea ecx, [ebp-58h] ; lpLibFileName
call func_LoadLibraryd

There also some other tweaks, but it's unnecessary to detail on this review, | let you this task
by yourself if you are curious &)

loC

v2.3.5

o 299f83d5a35f17aa97d40db667a52dcc | Sample Packed
e 3cb386716d7b90b4dca1610afbd5b146 | Sample Unpacked
e kent-adam.myjino.ru | C2 Domain

v2.3.7

o cbcc48fe0fa0fd30cb4c088fae582118 | Sample Unpacked
e denbaliberdin.myjino.ru | C2 Domain

HTTP Patterns

e GET - /api/info.get
o POST - /apillgate.get?p1=X&p2=X&p3=X&p4=X&p5=X&p6=X&p7=X
e GET - /api/download.get

MITRE ATT&CK

v2.3.5

35/38

e Discovery — Peripheral Device Discovery
o Discovery — System Information Discovery
» Discovery — System Time Discovery

e Discovery — Query Registry

o Credential Access — Credentials in Files

o EXxfiltration — Data Compressed

v2.3.7

e Discovery — Peripheral Device Discovery
» Discovery — System Information Discovery
e Discovery — System Time Discovery

» Discovery — Query Registry

e Credential Access — Credentials in Files
 Exfiltration — Data Compressed

o Execution — Execution through API

Author / Threat Actor

Alexuiop1337

Yara Rule

36/38

rule Predator_The_Thief

meta:

: Predator_The_Thief {

description = "Yara rule for Predator The Thief v2.3.5 & +"
author = "Fumikoe_"
date = "2018/10/12"
update = "2018/12/19"

strings:
$mz =

// V2
$hex1
$hex2
$hex3
$hex4
$hex5s

$s1 =

&
x
5
1 | T I | B

condition:

{ 4D 5A }

e e N Nt Nan)

BF
C6
C6
C6
C6

00
04
04
04
04

00
31
31
31
31

40
6B
63
75
66

"sqlite_" ascii

C6
C6
C6
C6
C6
C6

N N N N)

84
84
84
84
84
84

$mz at 0 and
((all of ($hex*) and

24
24
24
24
24
24

Recommendations

??
?7?
?7?
?7?
?7?
?7?

?7?
?7?
?7?
?7?
?7?
?7?

06 1}

SO0 SO U)

wide

00
00
00
00
00
00

00
00
00
00
00
00

all of ($s*)) or (all of ($x*)))

e Always running stuff inside a VM, be sure to install a lot of stuff linked to the hypervisor
(like Guest Addons tools) to trigger as much as possible all kind of possible Anti-VM
detection and closing malware. When you have done with your activities stop the VM
and restore it a Specific clean snapshot when it's done.

» Avoid storing files at a pre-destined path (Desktop, Documents, Downloads), put at a
place that is not common.

» Avoiding Cracks and other stupid fake hacks, stealers are usually behind the current
game trendings (especially in those times with Fortnite...).

e Use containers for software that you are using, this will reduce the risk of stealing data.

o Flush your browser after each visit, never saved your passwords directly on your

browser or using auto-fill features.

e Don’t use the same password for all your websites (use 2FA and it's possible), we are
in 2018, and this still sadly everywhere like this.

o Make some noise with your data, that will permit to lose some attacker minds to find
some accurate values into the junk information.

e Use a Vault Password software.

37/38

o Troll/Not Troll: Learn Russian and put your keyboard in Cyrillic (&)

Conclusion

Stealers are not sophisticated malware, but they are enough effective to make some
irreversible damage for victims. Email accounts and other credentials are more and more
impactful and this will be worse with the years. Behaviors must changes for the account
management to limit this kind of scenario. Awareness and good practices are the keys and
this will not be a simple security software solution that will solve everything.

Well for me I've enough work, it’s time to sleep a little...

- =

.
-
oy

#HappyHunting

Update 2018-10-23 : Yara Rules now working also for v3

38/38

https://www.trendmicro.com/vinfo/us/security/news/cybercrime-and-digital-threats/what-do-hackers-do-with-your-stolen-identity

