On the Trail of OSX.FairyTale | Adware Playing at Malware
(1]

September 20, 2018

Spotted: An adware installer tries its best to avoid detection but leaves behind more
clues than intended. Scroll down to find out more!

Trojan installers delivering adware and unwanted applications (PUPs) have been the most
prevalent security nuisance on the macOS platform in recent years. To date, these have
engaged in little more than low-level scraping of user data and browsing habits, but their
potential to be far more threatening is only awaiting the right monetary incentive. A recent
report on what appeared to be a run-of-the-mill adware infection set us on the trail of
OSX.FairyTale, an adware variant first identified in early 2018 by Malwarebytes researcher
Thomas Reed. FairyTale uses a lot of heavy obfuscation and anti-reversing technology, not
unusual for malware, but overkill for simple adware. We decided to take a closer look.

Our sample came in the guise of a trojan installer called SpellingChecker.app that was
uploaded to VirusTotal in late August. The application bundle is signed with a valid Apple
Developer ID:

1/10

https://www.sentinelone.com/blog/trail-osx-fairytale-adware-playing-malware/
https://blog.malwarebytes.com/author/treed/
https://www.virustotal.com/#/file/4eaa4caea4ac543516ffc9954a901e8b8e8c623fcce48304ea74d7a74218683b/detection

Signature Info ©

Signature Verification

() Signed file, valid signature

File Version Information

Identifier comspelling.checker.Agent
Authority Apple Root CA
Date Signed Feb 27, 2018 at 11:34:43 PM

Team Identifier GHBB5BGP2D

Signers

Apple Inc.

Apple Inc.
Feliks Fedorovich

However, that has since been revoked by Apple:
Sentinel:$ spctl --verbose=4 --assess --type execute SpellingChecker.app

SpellingChecker.app: CSSMERR_TP_CERT_REVOKED

Static analysis of the installer binary reveals two things of immediate note: an attempt to
escalate privileges with AppleScript, and a lot of base64 encoded strings.

do shell script "%@" with administrator privileges
HOVDQh9SWV4fSFFEREI=
HUJT

HOVDQh9SWV4TX0BVXg==

We knew things were going to get interesting when our first attempt to decode the base64
only spewed out gibberish:

Sentinel:$ echo HOVDQh9SWVA4fSFFEREI= | base64 -D; echo
ECBRYAHQDDB

Sentinel:$

A quick trip to Hopper showed us the pseudo-code for the decryption method:

2/10

A fairly-straightforward XOR, which we re-implemented in Objective-C. Looking at the
arguments passed into the method, the base64 was XOR'd with 0x30 (48 in decimal):

lea rdx, str.cstr.WEREQAofHxVwH1ZZXFVDH1NdVENVHKRIRA
mov rbx, gword [reloc.objc_msgSend]

mov ecx, @x30
call rbx

Using our decoder, we were now able to see what the installer was up to: an XProtect
bypass:

3/10

= = 10 m 5o < -;.éqstringDecoder

2018-09-04 11:14:31.098944+0700 stringDecoder[84848:8491869]
ncode: HOVDQh9SWVA4fSFFEREI=

Decoded: /usr/bin/xattr

2018-09-04 11:14:31.098994 +0700 $tringDecoder[84848:8491869]
ncode: HUJT

3T.099009F0700 trlngDecoder[84848 8491869]
Encode: HOVDQhQSWVdeOBVX
Decoded: /usr/binfopen
2018-09-04 11:14:31.099030+0700 stringDecoder[84848:8491869]
Encode: H1JZXh9TWF1fVBAHBwWcQFxVwFw==
Decoded: /bin/chmod 777 '%'

Using xattr toremove Apple’s quarantine bit is a common technique used by researchers.
It makes it possible to run and examine malware on a Mac even after it has been blocked by
Apple. Clearly, this trick hasn’t gone unnoticed among malware authors, either.

FairyTale’s installer had another surprise for us, too. For both safety and convenience,
malware researchers make use of virtual machines to analyse samples, but FairyTale’s
authors didn’t want anyone looking at their code in a virtual machine:

Decoded: ioreg -1 | grep -e 'VirtualBox' -e 'Oracle' -e 'VMware' -e
'Parallels' | wc -1

And they didn’t want to get caught by Legacy AntiVirus software either, as this list of de-
obfuscated base64 strings makes clear:

4/10

Decoded: Anti-Virus
Decoded: Avast
Decoded: Avira
Decoded: Bitdefender
Decoded: Webroot
Decoded: Comodo
Decoded: Dr.Web
Decoded: ESET
Decoded: .esets
Decoded: Kaspersky
Decoded: Sophos
Decoded: F-Secure
Decoded: Intego
Decoded: McAfee
Decoded: AVG
Decoded: Panda Security
Decoded: Quick Heal
Decoded: Norton
Decoded: Symantec
Decoded: Trend Micro
Decoded: TrendMicro

On execution, the Installer takes a trip to Temp folder where it drops the following
compressed file:

/tmp/ot3497.zip

After unpacking the zip file, FairyTale then writes and loads a persistence agent and its
executable to the following paths:

~/Library/LaunchAgents/com.sysd.launchserviced.plist

~/Library/Application Support/com.sysd.launchserviced/launchserviced

The installer uses the xattr to both remove the quarantine bit and the
kMDItemwhereFroms bit, which is used by Spotlight and MDQuery to keep track of where a
file has come from. Typically, for downloads, that will be the URL from which the file was
sourced. Fortunately, macOS has other ways of spilling secrets; namely, in this case, in
~/Library/Caches/com.spelling.checker.Agent sql database:

5/10

Table: | || cfurl_cache_response d = & New Record Delete Record
entry_ID wersion hash_value storage_policy request_key time_stamp partition
Filter Filter Filter Filter Filter Filter Filter
11 a -737157... | O http://vision-set.download/filesTaunchserviced.zip 2018-08-30 11:58:42

From this, we can see that the installer grabbed the launchserviced.zip from

http://vision-set.download/files/launchserviced.zip

Stealth was undoubtedly on the author’s mind. The name of the executable, launchserviced,
is just one letter different from the name of a real Apple process that runs on every user’s
Mac. The highlighted item below is OSX.FairyTale trying to blend in with legitimate Apple
processes:

i@ L Activity Monitor (All Processes)
(> IR i THREE « % (o2l Memory Energy Disk Network
Process Name % CPU CPU Time Threads Idle Wake Ups PID User
launchd 0.8 25.B3) 0 1 root
launchservicesd 0.0 3.61 b 0 75 root
launchserviced 0.0 0.08 7 0 1551 admin

Clearly, FairyTale aims to go unnoticed or to be taken for something legitimate.

Among the installer’s obfuscated base64 is the template for a property list file:

2018-09-06 13:04:32.089154+0700 stringDecoder[43969:12705281]
Decoded: <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>%@</string>
<key>KeepAlive</key>
<false/>
<key>RunAtLoad</key>

<key>Startinterval</key>
<integer>%d</integer>
O

<integer>0</integer>
<key>ProgramArguments<[key>
<array>
%@
</array>

</dict>

</plist>

6/10

Notice that it uses placeholders for some of the keys: /abel — the name that is typically used
for the property list’s filename and also the name it gives to launchd when it’s loaded;
Startinterval — which tells launchd how often to run the job; and ProgramArguments — an
array of commands to pass to the job when it runs.

Again, the intent is clear: this isn’t a one-off package, but a re-usable installer for any
payload the author chooses. Here’s the actual property list dropped for Spelling.Checker,
with a start interval of 3600 seconds, i.e., every hour:

1 <? ="1.0" ="UTF-8"7?>
2 <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.9//EN" "http://waw.apple.com/DTDs/Propertylist-1.0.dtd">
3 <plist ="1,0">
4 <dict>
<key>Label

ing>com, sysd.launchserviced

<key>Program
<string>/Users/admin/Library/Application Support/com.sysd.launchserviced/launchserviced

The dropped version used the Program key rather than ProgramArguments key, which tells
us that no commands are passed to the executable on launch in this case. Although the

property list structure is correct, it's an unnecessary change, as the same effect is achieved
by simply passing in the program path as the first argument to the ProgramArguments key.

It seems the coder is a careful programmer who pays attention to details. Alas, like all
villains in a FairyTale, it's the bad guys’ own actions that lead to their downfall, and this story
is no different when we look at the launchserviced binary.

+Mac Developer: Sasa Scepanovic (8RBKAN4535)

<?xml version="1.0" encoding="UTF-8"7>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http
<plist version="1.0">

<dict>

<key>com.apple.security.get-task-allow</key>
<true/>

</dict>

</plist>

7/10

After all the effort put into avoiding detection and reverse engineering, the author of
launchserviced made an error, and appears to have accidentally allowed debug entitlements
in the binary:

Although not currently enforced by Apple, the com.apple.security.get-task-allow
entitlement is intended to allow a debugger to attach to a sandboxed app when it’s running.
This is necessary during development to allow Xcode or the low-level debugger (lldb) to
launch and inspect the running code. However, the entitlement is stripped automatically
when code is exported for distribution through Xcode’s Organizer. The presence of it here
suggests that the developer copied the target from the project after building it, or perhaps
exported the binary using ‘debug’ rather than ‘release’ settings.

We also see this binary is signed with a different developer ID than the revoked one used for
the installer. Although it's not possible to tell whether this signature is revoked, we have
reported it to Apple and assume they are investigating.

When executed, the launchserviced appears to have relatively benign behaviour. If Safari is
open, it is redirected through several sites and finally lands on online-empire.co :

[S% On]_ine empire Home About How To Get FAQ

A revolution is sweeping across the internet that allows small-time investors to make it... BIG TIME...

THE ONLY STRATEGY THAT IS GUARANTEED
TO FAIL IS NOT TAKING RISKS...

In the following video we will explain how the rise of ‘digital real-estate’ is revolutionizing
the online advertising business and why NOW is the time to act:

TAKE CONTROL NOW

First name

Last name

r Email I
. Password ,'::::'
OO\ & ‘
¢ .0 .0. /
o /
\ SUBMIT

Other addresses loaded include rdtrck2.com and bizprofits.go2cloud.org,
rdtrck2.com, bizprofits.go2cloud.org and tracklik.com .

Further static analysis of the code reveals methods that we’d expect to see in browser

redirection:

8/10

Sentinel:$ clear;rabin2 -c launchserviced

0x1000090c0 [0x100001453 - 0x10000344f] (sz 8188) class @ Utils
0x100001453 method 0 ¢ enc::

0x1000015e3 method dec::

0x100001786 method getJsonFromDictionary:

0x10000183f method getDictionaryFromJson:options:
0x1000018cc method exec:withArguments:toWait:result:error:
0x100001bf3 method readFile:error:

0x100001c86 method writeFile:path:error:

0x100001d7e method readIntFromFile:default:error:
0x100001e37 method writeIntToFile:path:error:
0x100001f4d method getContent::

0x100002324 method postContent:::

0x1000027c7 method createBodyWithBoundary:parameters:
0x100002b21 method postContentMultipart::::

0x1000031bb6 method dFile:path:error:

0x1000033fe method getDictionaryWithXmlData:
0x10000344f method getProc::

O oo ~NOYUT A WN -
0O N N0 o0 000NN

Two data files are written to the executable’s parent folder with a hard-coded file name prefix
840D2EBFO8F9E4C880ESBE6919FB46EA . The files contain a single byte, which in our tests
was either ‘1’ or 2.

840D2EBFOBFOEACBB0ESBEEBO19FBAGEA 22.18.38.1xt
840D2EBFOBFOEACBB0ESBEES19FB4BEA. X!
840D2EBFOBFOEACEBB0ESBEEO19FB46BEAZC180907 1xt

B 840D2EBFOBFOEACBR0ESBEGD19FBAGEA20180911 22.18.38.txt

840D2EBFOBFOEACBB0ESBEES19FB4BEAZC18097 1.1x1

A Happy Ending?

OSX.FairyTale is an interesting adware variant not because of what it does, but because of
the techniques used to prevent detection and analysis. Considerable effort has been
expended in hardening the installer code to prevent reversal, and launchserviced was clearly
named for stealth. Given the rather unadventurous behaviour of the launchserviced code, we
can only assume that these efforts were either a proof-of-concept or part of a larger project
still in development.

9/10

i@ Lo Thu17:35 Sentinel Q

SentinelOne Close
l I Mew threat detected!
fUsersfsentinel /Downloads/SpellingCh... Show

The developer signatures and code are now on the radar, but like many a real-life FairyTale,
we won't be surprised to see this one get retold and adapted for other purposes in the future.

10/10

