
1/44

Hex-Rays Microcode API vs. Obfuscating Compiler
hexblog.com/

This is a guest entry written by Rolf Rolles from Mobius Strip Reverse Engineering.
His views and opinions are his own, and not those of Hex-Rays. Any technical or
maintenance issues regarding the code herein should be directed to him.

In this entry, we’ll investigate an in-the-wild malware sample that was compiled by an
obfuscating compiler to hinder analysis. We begin by examining its obfuscation techniques
and formulating strategies for removing them. Following a brief detour into the Hex-Rays
CTREE API, we find that the newly-released microcode API is more powerful and flexible for
our task. We give an overview of the microcode API, and then we write a Hex-Rays plugin to
automatically remove the obfuscation and present the user with a clean decompilation.

The plugin is open source and weighs in at roughly 4KLOC of heavily-commented C++.
Additionally, we are also releasing a helpful plugin for aspiring microcode plugin developers
called the Microcode Explorer, which will also be distributed with the Hex-Rays SDK in
subsequent releases. In brief, for the sample we’ll explore in this entry, its assembly
language code looks like this:

http://www.hexblog.com/?p=1248
http://www.msreverseengineering.com/
https://github.com/RolfRolles/HexRaysDeob
https://github.com/RolfRolles/HexRaysDeob/blob/master/MicrocodeExplorer.cpp

2/44

That function’s Hex-Rays decompilation looks like this:

3/44

Once our deobfuscation plugin is installed, it will automatically rewrite the decompilation to
look like this:

4/44

Initial Investigation

The sample we’ll be examining was given to me by a student in my SMT-based binary
analysis class. The binary looks clean at first. IDA’s navigation bar doesn’t immediately
indicate tell-tale signs of obfuscation:

https://www.virustotal.com/#/file/0ac399bc541be9ecc4d294fa3545bbf7fac4b0a2d72bce20648abc7754b3df24/detection
http://www.msreverseengineering.com/training-classes/

5/44

The binary is statically linked with the ordinary Microsoft Visual C runtime, indicating that it
was compiled with Visual Studio:

And finally, the binary has a RICH header, indicating that it was linked with the Microsoft
Linker:

Thus far, the binary seems normal. However, nearly any function’s assembly and
decompilation listings immediately tells a different tale, as shown in the figures at the top of
this entry. We can see constants with high entropy, redundant computations that an ordinary
compiler optimization would have removed, and an unusual control flow structure.

Pattern-Based Obfuscation

In the decompilation listing, we see repeated patterns:

6/44

The underlined terms are identical. With a little thought, we can determine that the
underlined sequence always evaluates to 0 at run-time, because:

x is either even or odd, and x-1 has the opposite parity
An even number times an odd number is always even
Even numbers have their lowest bit clear
Thus, AND by 1 produces the value 0

That the same pattern appears repeatedly is an indication that the obfuscating compiler has
a repertoire of patterns that it introduces into the code prior to compilation.

Opaque Predicates

Another note about the previous figure is that the topmost occurrence of the x*(x-1) & 1
pattern is inside of an if -statement with an AND-compound conditional. Given that this
expression always evaluates to zero, the AND-compound will fail and the body of the if-
statement will never execute. This is a form of obfuscation known as opaque predicates:
conditional branches that in fact are not conditional, but can only evaluate one way or the
other at runtime.

Control-Flow Flattening

The obfuscated functions exhibit unusual control flow. Each contains a switch statement in
a loop (though the “switch statement” is compiled via binary search instead of with a table).
This is evidence of a well-known form of obfuscation called “control flow flattening”. In brief, it
works as follows:

http://www.msreverseengineering.com/blog/2014/6/23/switch-as-binary-search-part-0

7/44

1. Assign a number to each basic block.
2. The obfuscator introduces a block number variable, indicating which block should

execute.
3. Each block, instead of transferring control to a successor with a branch instruction as

usual, updates the block number variable to its chosen successor.
4. The ordinary control flow is replaced with a switch statement over the block number

variable, wrapped inside of a loop.

The following animation illustrates the control-flow flattening process:

Here’s the assembly language implementation of control flow flattening switch for a small
function.

8/44

On the first line, var_1C — the block number variable mentioned above — is initialized to
some random-looking number. Immediately following that is a series of comparisons of
var_1C against other random-looking numbers. (var_1C is copied into var_20 , and
var_20 is used for comparisons after the first.) The targets of these equality comparisons

are the original function’s basic blocks. Each one updates var_1C to indicate which block

9/44

should execute next, before branching back to the code just shown, which will then perform
the equality comparisons and select the corresponding block to execute. For blocks with one
successor, the obfuscator simply assigns var_1C to a constant value, as in the following
figure.

For blocks with two possible successors (such as if-statements), the obfuscator introduces
x86 CMOV instructions to set var_1C to one of two possible values, as shown below:

Graphically, each function looks like this:

10/44

11/44

In the figure above, the red and orange nodes are the switch-as-binary-search
implementation. The blue nodes are the original basic blocks from the function (subject to
further obfuscation). The purple node at the bottom is the loop back to the beginning of the
switch-as-binary-search construct (the red node).

Odd Stack Manipulations

Finally, we can also see that the obfuscator manipulates the stack pointer in unusual ways.
Particularly, it uses __alloca_probe to reserve stack space for function arguments and
local variables, where a normal compiler would, respectively, use the push instruction and
reserve space for all local variables at once in the prologue.

12/44

IDA has built-in heuristics to determine the numeric argument to __alloca_probe and
track the effects of these calls upon the stack pointer. However, the output of the obfuscator
leaves IDA unable to determine the numeric argument, so IDA cannot properly track the
stack pointer.

Aside: Where did this Binary Come From?

I am not entirely sure how this binary was produced. Obfuscator-LLVM also uses pattern-
based obfuscation and control flow flattening, but Obfuscator-LLVM has different patterns
than this sample, and there are some superficial differences with how control flow flattening
is implemented. Also, Obfuscator-LLVM does not generate opaque predicates, nor the
alloca -related obfuscation. And, needless to say, the fact that the binary includes the

Microsoft CRT and a RICH header is also puzzling. If you have any further information about
this binary, please contact me.

https://github.com/obfuscator-llvm/obfuscator/wiki

13/44

Update: following discussions on twitter with an Obfuscator-LLVM developer and another
knowledgeable individual, in fact, the obfuscating compiler in question is Obfuscator-LLVM,
which has been integrated with the Microsoft Visual Studio toolchain. The paragraph above
falsely stated that Obfuscator-LLVM used different patterns and did not insert opaque
predicates. The author regrets these errors. In theory, the plugin we develop in this entry
might work for other binaries produced by the same compilation process, or even for
Obfuscator-LLVM in general, but this theory has not been tested and no guarantees are
offered.

Plan of Attack

Now that we’ve seen the obfuscation techniques, let’s break them.

A maxim I’ve learned doing deobfuscation is that the best results come from working at the
same level of abstraction that the obfuscator used. For obfuscators that work on the
assembly-language level, historically my best results have come in using techniques that
represent the obfuscated code in terms of assembly language. For obfuscators that work at
the source- or compiler internal-level, my best results have come from using a decompiled
representation. So, for this obfuscator, a Hex-Rays plugin seemed among our best options.

The investigation above illuminated four obfuscation techniques for us to contend with:

Pattern-based obfuscation
Opaque predicates
Alloca-related stack manipulation
Control flow flattening

The first two techniques are implemented via pattern substitutions inside of the obfuscating
compiler. Pattern-based deobfuscation techniques, for all their downsides, tend to work well
when the obfuscator itself employed a repertoire of patterns — especially a limited one — as
seems to be the case here. So, we will attack these via pattern matching and replacement.

The alloca -related stack manipulation is the simplest technique to bypass. The
obfuscator’s non-standard constructs have thwarted IDA’s ordinary analysis surrounding calls
to __alloca_probe , and hence the obfuscation prevented IDA from properly accounting for
the stack differentials induced by these calls. To break this, we will let Hex-Rays do most of
the work for us. For every function that calls __alloca_probe , we will use the API to
decompile it, and then at every call site to __alloca_probe , we will extract the numeric
value of its sole argument. Finally, we will use this information to create proper stack
displacements within the disassembly listing. The code for this is very straightforward.

As for control flow flattening, this is the most complicated of the transformations above. We’ll
get back to it later.

https://twitter.com/RolfRolles/status/1042375000588599296
https://github.com/RolfRolles/HexRaysDeob/blob/master/AllocaFixer.cpp

14/44

First Approach: Using the CTREE API

I began my deobfuscation by examining the decompilation of the obfuscated functions and
cataloging the obfuscated patterns therein. The following is a partial listing:

Though I later switched to the Hex-Rays microcode API, I started with the CTREE API, the
one that has been available since the first releases of the Hex-Rays SDK. It is overall simpler
than the microcode API, and has IDAPython bindings where the microcode API currently
does not.

The CTREE API provides a data structure representation of the decompiled code, from
which the decompilation listing that is presented to the user is generated. Thus, there is a
direct, one-to-one correspondence between the decompilation listing and the CTREE
representation. For example, an if-statement in the decompilation listing corresponds to a
CTREE data structure of type cif_t , which contains a pointer to a CTREE data structure
of type cexpr_t representing the if -statement’s conditional expression, as well as a
pointer to a CTREE data structure of type cinsn_t representing the body of the if -
statement.

We will need to know how our patterns are represented in terms of CTREE data structures.
To assist us, the VDS5 sample plugin from the Hex-Rays SDK helpfully displays the graph of
a function’s CTREE data structures. (The third-party plugin HexRaysCodeXplorer
implements this functionality in terms of IDA’s built-in graphing capabilities, whereas the
VDS5 sample uses the external WinGraph viewer.) The following figure shows decompilation
output (in the top left) and its corresponding CTREE representation in graphical form.
Hopefully, the parallels between them are clear.

https://www.hex-rays.com/products/ida/7.1/index.shtml
https://github.com/REhints/HexRaysCodeXplorer

15/44

To implement our pattern-based deobfuscation rules, we simply need to write functions to
locate instances within the function’s CTREE of the data types associated with the
obfuscated patterns, and replace them with CTREE versions of their deobfuscated
equivalents. For example, to match the (x-1) * x & 1 pattern we saw before, we
determine the CTREE representation and write an if -statement that matches it, as follows:

16/44

(
In practice, these rules should be written more generically when possible. I.e., multiplication
and bitwise AND are commutative; the pattern matching code should be able to account for
this, and match terms with the operands swapped. Also, see the open-source project HRAST
for an IDAPython framework that offers a less cumbersome approach to pattern-matching
and replacement.)

The only point of subtlety in replacing obfuscated CTREE elements with deobfuscated
equivalents is that each CTREE expression has associated type information, and we must
carefully ensure that our replacements are of the proper type. The easiest solution is simply
to copy the type information from the CTREE expression we’re replacing.

First Major CTREE Issue: Compiler Optimizations

Cataloging the patterns and writing match and replace functions for them was
straightforward. However, after having done so, the decompilation showed obvious
opportunities for improvement by application of standard compiler optimizations, as shown in
the following animation.

This perplexed me at first. I knew that Hex-Rays already implemented these compiler
optimizations, so I was confused that they weren’t being applied in this situation. Igor
Skochinsky suggested that, while Hex-Rays does indeed implement these optimizations, that
they take place during the microcode phase of decompilation, and that these optimizations

https://github.com/sibears/HRAST

17/44

don’t happen anymore once the CTREE representation has been generated. Thus, I would
either have to port my plugin to the microcode world, or write these optimizations myself on
the CTREE level. I set the issue aside for the time being and continued with the other parts
of the project.

Control Flow Unflattening via the CTREE API

Next, I began working on the control flow unflattening portion. I envisioned this taking place
in three stages. My final solution included none of these steps, so I won’t devote a lot of print
space to my early plan. But, I’ll discuss the original idea, and the issues that lead me to my
final solution.

1. Starting from the switch-as-binary-search implementation, rebuild an actual switch
statement (rather than a mess of nested if and goto statements).

2. Examine how each switch case updates the block number variable to recover the
original control flow graph. I.e., each update to the block number variable corresponds
to an edge from one block to its numbered target.

3. Given the control flow graph, reconstruct high-level control flow structures such as
loops, if / else statements, break , continue , return , and so on.

I began by writing a CTREE-based component to reconstruct switch statements from
obfuscated functions. The basic idea — inspired by the assembly language implementation
— is to identify the variable that represents the block number to execute, find equality
comparisons of this variable against constant numbers, and extract these numbers (these
are the case labels) as well the address of the code that executes if the comparison matches
(these are the bodies of the case statements).

This proved more difficult than I expected. Although the assembly language implementations
had a predictable structure, Hex-Rays had applied transformations to the high-level control
flow which made it difficult to extract the information I was after, as we can see in the
following figure.

18/44

We see above the introduction of a strange while loop in the inner switch , and the final
if -statement has been inverted to a != conditional rather than a == conditional, which

might seem a more logical translation of the assembly code. The example above doesn’t
show it, but sometimes Hex-Rays rebuilds small switch statements that cover portions of
the larger switch . Thus, our switch reconstruction logic must take into account that
these transformations might have taken place.

For ordinary decompilation tasks, these transformations would have been valuable
improvements to the output; but in my unusual situation, it meant my switch recovery
algorithm was basically fighting against these transformations. My first attempt at rebuilding
switches had a lot of cumbersome corner cases, and overall did not work very well.

Control Flow Reconstruction

Still, I pressed on. I started thinking about how to rebuild high-level control flow structure
(if statements, while loops, returns , etc.) from the recovered control flow graph.
While it seemed like a fun challenge, I quickly realized that Hex-Rays obviously already
includes this functionality. Could I re-use Hex-Rays’ existing algorithms to do that?

Another conversation with Igor lead to a similar answer as before: in order to take advantage
of Hex-Rays’ built-in control flow structuring algorithms, I would need to operate at the
microcode level instead of the CTREE level. At this point, all of my issues seemed to be

19/44

pointing me toward the newly-available microcode API. I bit the bullet and started over with
the project using the microcode API.

Overview of the Hex-Rays Microcode API

My first order of business was to read the SDK’s hexrays.hpp , which now includes the
microcode API. I’ll summarize some of my findings here; I have provided some more,
optional information in an appendix.

At Igor’s suggestion, I compiled the VDS9 plugin included with the Hex-Rays SDK. This
plugin demonstrates how to generate microcode for a given function (using the
gen_microcode() API) and print it to the output window (using mbl_array_t::print()).

Microcode API Data Structures

For my purposes, the most important things to understand about the microcode API were
four key data structures:

1. minsn_t , microcode instructions.
2. mop_t , operands for microcode instructions.
3. mbl_array_t , which contains the graph for the microcode function.
4. mblock_t , the basic blocks within the microcode graph, which contain the

instructions, and the edges between the blocks.

For the first two points, Ilfak has given an overview presentation about the microcode
instruction set. For the second two points, he has published a blog entry showing graphically
how all of these data structures relate to one another. Aspiring microcode API plugin
developers would do well to read those entries; the latter includes many nice figures such as
this one:

https://www.hex-rays.com/wp-content/uploads/2019/12/recon2018.ppt
http://www.hexblog.com/?p=1232

20/44

Microcode Maturity

As Hex-Rays internally optimizes and transforms the microcode, it moves through so-called
“maturity phases”, indicated by an enumerated element of type mba_maturity_t . For
example, immediately after generation, the microcode is said to be at maturity
MMAT_GENERATED . After local optimizations have been performed, the microcode moves to

http://www.hexblog.com/wp-content/uploads/2018/06/mba.png

21/44

maturity MMAT_LOCOPT . After performing analysis of function calls (such as deciding which
pushes onto the stack correspond to which called function), the microcode moves to maturity
MMAT_CALLS . When generating microcode via the gen_microcode() API, the user can

specify the desired maturity level to which the microcode should be optimized.

The Microcode Explorer Plugin

Examining the microcode at various levels of maturity is an informative and impressive
undertaking that I recommend for all would-be microcode API plugin developers. It sheds
light on which transformations take place in which order, and the textual output is easy to
comprehend. At the start of this project, I spent a good bit of time reading through microcode
dumps at various levels of maturity.

Though the microcode dump output is very nice and easy to read, its output does not show
the low-level details of how the microcode instructions and operands are represented —
which is critical information for writing microcode plugins. As such, to understand the low-
level representation, I wrote functions to dump minsn_t instructions and mop_t operands
in textual form.

For the benefit of would-be microcode plugin developers, I created a plugin I call the
Microcode Explorer. With your cursor within a function, run the plugin. It will ask you to select
a decompiler maturity level:

https://github.com/RolfRolles/HexRaysDeob/blob/master/MicrocodeExplorer.cpp

22/44

Once the user makes a selection, the plugin shows a custom viewer in IDA with the
microcode dump at the selected maturity level.

The microcode dump is mostly non-interactive, but it does offer the user two additional
features. First, pressing G in the custom viewer will display a graph of the entire microcode
representation. For example:

Second, the Microcode Explorer can display the graph for a selected microinstruction and its
operands, akin to the VDS5 plugin we saw earlier which displayed a graph of a function’s
CTREE representation. Simply position your cursor on any line in the viewer and press the

23/44

I key.

The appendix discusses the microcode instruction set in more detail, and I recommend that
aspiring microcode API plugin developers read it.

Pattern Deobfuscation with the Microcode API

Once I had a basic handle on the microcode API instruction set, I began by porting my
CTREE-level pattern matching and replacement code to the microcode API. This was more
laborious due to the more elaborate nature of the microcode API, and the fact I had to write it
in C++ instead of Python. All in all, the porting process was mostly straightforward. The code
can be found here, and here’s an example of a pattern match and replacement.

https://github.com/RolfRolles/HexRaysDeob/blob/master/PatternDeobfuscate.cpp

24/44

Also, I needed to know how to integrate my pattern replacement with the rest of Hex-Rays’
decompiler infrastructure. It was easy enough to write and test my pattern replacement code
against the data returned by the gen_microcode() API, but doing so has no effect on the
decompilation listing that the user ultimately sees (since the decompiler calls
gen_microcode() internally, and we don’t have access to the mbl_array_t that it

generates).

The VDS10 SDK sample illustrates how to integrate pattern-replacement into the Hex-Rays
infrastructure. In particular, the SDK defines an “instruction optimizer” data type called
optinsn_t . The virtual method optinsn_t::func() is given a microinstruction as input.

That method must inspect the provided microinstruction and try to optimize it, returning a
non-zero value if it can. Once the user installs their instruction optimizer with the SDK

25/44

function install_optinsn_handler() , their custom optimizer will be called periodically by
the Hex-Rays decompiler kernel, thus achieving integration that ultimately affects the user’s
view of the decompilation listing.

You may recall that a major impetus for moving the pattern-matching to the microcode world
was that, after the replacements had been performed, Hex-Rays had an opportunity to
improve the code further via standard compiler optimizations. We showed what we expected
the result of such optimizations would be, but no optimizations had been applied when we
wrote our pattern-replacement with the CTREE API. By moving to the microcode world, now
we do get the compiler optimizations we desire.

After installing our pattern-replacement hook, here’s the decompilation listing for the compiler
optimization animation shown earlier:

That’s exactly the result we had been expecting. Great! I didn’t have to code those
optimizations myself after all.

Aside: Tricky Issues with Pattern Replacement in the Microcode World

When we wrote our CTREE pattern matching and replacement code, we targeted a specific
CTREE maturity level, which lead to predictable CTREE data structures implementing the
patterns. In the microcode world, as discussed more in the appendix, the microcode
implementation changes dramatically as it matures. Furthermore, our instruction optimizer
callback gets called all throughout the maturity lifecycle. Some of our patterns won’t yet be
ready to match at earlier maturity phases; we’ll have to write our patterns targeting the lowest
maturity level at which we can reasonably match them.

While porting my CTREE pattern replacement code to the microcode world, at first I also
adopted my strategy from the CTREE world of generating my pattern replacement objects
from scratch, and inserting them into the microcode atop the terms I wanted to replace.
However, I experienced a lot of difficulty in doing so. Since I was new to the microcode API, I
did not have a clear mental picture of what Hex-Rays internally expected about my
microcode objects, which lead to mistakes (internal errors and a few crashes). I quickly
switched strategies such that my replacements would modify the existing microinstruction
and microoperand objects, rather than generating my own, which reduced my burden of
generating correct minsn_t and mop_t objects (since this strategy allowed me to start
from valid objects).

26/44

Control Flow Unflattening, Overview

To recap, control flow flattening eliminates direct block-to-block control flow transfers. The
flattening process introduced a “block number variable” which determines the block that
should execute at each step of the function’s execution. Each flattened function’s control flow
structure has been changed into a switch over the block number variable, which ultimately
shepherds execution to the correct block. Every block must update the block number
variable to indicate the block that should execute next after the current one (where
conditional branches are implemented via conditional move instructions, updating the block
number variable to the block number of either the taken branch, or of the non-taken branch).

The control flow unflattening process is conceptually simple. Put simply, our task is to rebuild
the direct block-to-block control flows, and in so doing, eliminate the control flow switch
mechanism. Implementation-wise, unflattening is integrated with the Hex-Rays decompiler
kernel in a similar fashion to how we integrated pattern-matching. Specifically, we register an
optblock_t callback object with Hex-Rays, such that our unflattener will be automatically

invoked by the Hex-Rays kernel, providing a fully automated experience for the user.

The next chapter will discuss the implementation in more depth.

In the following subsections, we’ll show an overview of the process pictorially. Just three
steps are all we need to remove the control flow flattening. Once we rebuild the original
control flow transfers, all of Hex-Rays’ existing machinery for control flow restructuring will do
the rest of the work for us. This was perhaps my favorite result from this project; all I had to
do was re-insert proper control flow transfers, and Hex-Rays did everything else for me
automatically.

Step #1: Determine Flattened Block Number to Hex-Rays Block
Number Mapping

Our first task is to determine which flattened block number corresponds to which Hex-Rays
mblock_t . The following figure is the microcode-level representation for a small function’s

control flow switch:

27/44

Hex-Rays is currently calling the block number variable ST14_4.4 . If that variable matches
0xCBAD6A23 , the jz instruction on block @2 transfers control to block @6. Similarly,
0x25F52EB5 corresponds to block @9, and 0x31B8F0BC corresponds to block @10. The

information just described is the mapping between flattened block numbers and Hex-Rays
block numbers. (Of course, our plugin will need to extract it automatically.)

Step #2: Determine Each Flattened Block’s Successors

Next, for each flattened block, we need to determine the flattened block numbers to which it
might transfer control. Flattened blocks may have one successor if their original control flow
was unconditional, or two potential successors if their original control flow was conditional.
First, here’s the microcode from block @9, which has one successor. (Line 9.3 has been
truncated because it was long and its details are immaterial.)

28/44

We can see on line 9.4 that this block updates the block number variable to 0xCBAD6A23 ,
before executing a goto back to the control flow switch (on the Hex-Rays block numbered
@2). From what we learned in step #1, we know that, by setting the block number variable to
this value, the next trip through the control flow switch will execute the Hex-Rays mblock_t
numbered @6.

The second case is when a block has two possible successors, as does Hex-Rays block @6
in the following figure.

29/44

Line 8.0 updates the block number variable with the value of eax , before line 8.1 executes
a goto back to the control flow switch at Hex-Rays block @2. If the jz instruction on line
6.4 is taken, then eax will have the value 0x31B8F0BC (obtained on line 6.1). If the jz
instruction is not taken, then eax will contain the value 0x25F52EB5 from the assignment
on line 7.0. Consulting the information we obtained in step #1, this block will transfer control
to Hex-Rays block @10 or @9 during the next trip through the control flow switch.

Step #3: Insert Control Transfers Directly from Source Blocks to
Destinations

Finally, now that we know the Hex-Rays mblock_t numbers to which each flattened block
shall pass control, we can modify the control flow instructions in the microcode to point
directly to their successors, rather than going through the control flow switch. If we do this for
all flattened blocks, then the control flow switch will no longer be reachable, and we can
delete it, leaving only the function’s original, unflattened control flow. Continuing the example
from above, in the analysis in step #2, we determined that Hex-Rays block @9 ultimately
transferred control to Hex-Rays block @6. Block @9 ended with a goto statement back to
the control flow switch located on block @2. We simply modify the target of the existing
goto statement to point to block @6 instead of block @2, as in the following figure. (Note

that we also deleted the assignment to the block number variable, since it’s no longer
necessary.)

The case where a block has two potential successors is slightly more complicated, but the
basic idea is the same: altering the existing control flow back to the control flow switch to
point directly to the Hex-Rays targeted blocks. Here’s Hex-Rays block @6 again, with two
possible successors.

30/44

To unflatten this, we will:

1. Copy the instructions from block @8 onto the end of block @7.
2. Change the goto instruction on block @7 (which was just copied from block @8) to

point to block @9 (since we learned in step #1 that 0x25F52EB5 corresponds to block
@9).

3. Update the goto target on block @8 to block @10 (since we learned in step #1 that
0x31B8F0BC corresponds to block @10).

We can also eliminate the update to the block number variable on line 8.0, and the
assignments to eax on lines 6.1 and 7.0.

That’s it! As we make these changes for every basic block targeted by the control flow
switch, the control flow switch dispatcher will lose all of its incoming references, at which
point we can prune it from the Hex-Rays microcode graph, and then the flattening will be
gone for good.

31/44

Control Flow Unflattening, In More Detail

As always, the real world is messier than curated examples. The remainder of this section
details the practical engineering considerations that go into implementing unflattening as a
fully-automated procedure.

Heuristically Identifying Flattened Functions

It turns out that a few non-library functions within the binary were not flattened. I had enough
work to do simply making my unflattening code work for flattened functions, such that I did
not need the added hassle of tracking down issues stemming from spurious attempts to
unflatten non-flattened functions.

Thus, I devised a heuristic for determining whether or not a given function was flattened. I
basically just asked myself which identifying characteristics the flattened functions have. I
looked at the microcode for a control flow switch:

Two points came to mind:

1. The functions compare one variable — the block number variable — against numeric
constants in jz and jg instructions

32/44

2. Those numeric constants are highly entropic, appearing to have been pseudorandomly
generated

With that characterization, the algorithm for heuristically determining whether a function was
flattened practically wrote itself.

1. Iterate through all microinstructions within a function. For this, the SDK handily
provides the mbl_array_t::for_all_topinsns function, to be used with a class
called minsn_visitor_t .

2. For every jz and jg instruction that compares a variable to a number, record that
information in a list.

3. After iteration, choose the variable that had been compared against the largest number
of constants.

4. Perform an entropy check on the constants. In particular, count the number of bits set
and divide by the total number of bits. If roughly 50% of the bits were set, decide that
the function has been flattened.

You can see the implementation in the code — specifically the
JZInfo::ShouldBlacklist() method.

Simplify the Graph Structure

The flattened functions sometimes have jumps leading directly to other jumps, or sometimes
the microcode translator inserts goto instructions that target other goto instructions. For
example, in the following figure, block 4 contains a single goto instruction to block 8, which
in turn has a goto instruction to block 15.

https://github.com/RolfRolles/HexRaysDeob/blob/master/CFFlattenInfo.cpp

33/44

These complicate our later book-keeping, so I decided to eliminate goto -to- goto
transfers. I.e. if block @X ends with a goto @N instruction, and block @N contains a
single goto @M instruction, update the goto @N to goto @M. In fact, we apply this
process recursively; if block @M contained a single goto @P, then we would update
goto @N to goto @P, and so on for any number of chained gotos .

The Hex-Rays SDK sample VDS11 does what was just described in the last paragraph. My
code is similar, but a bit more general, and therefore a bit more complicated. It also handles
the case where a block falls through to a block with a single goto — in this case, it inserts
a new goto onto the end of the leading block, with the same destination as the original
goto instruction in the trailing block.

https://github.com/RolfRolles/HexRaysDeob/blob/master/TargetUtil.cpp

34/44

Extract Block Number Information

In step #1 of the unflattening procedure described previously, we need to know:

Which variable contains the block number
Which block number corresponds to which Hex-Rays microcode block

When heuristically determining whether a function appears to have been flattened, we
already found the variable with the most conditional comparisons, and the numbers it was
compared against. Are we done? No — because as usual, there are complications. Many of
the flattened functions use two variables, not one, for block number-related purposes. For
those that use two, the function’s basic blocks update a different variable than the one that is
compared by the control flow switch construct. I call this the block update variable. and I
renamed my terminology for the other one to the block comparison variable. Toward the
beginning of the control flow switch, the value of the block update variable is copied into the
block comparison variable, after which all subsequent comparisons reference the block
comparison variable. For example, see the following figure:

In the above, block @1 is the function’s prologue. The control flow switch begins on block
@2. Notice that block @1 assigns a numeric value to a variable called ST18_4.4 . Note that
the first comparison in the control flow switch, on line 2.3, compares against this variable.

35/44

Note also that line 2.1 copies that variable into another variable called ST14_4.4 , which is
then used for the subsequent comparisons (as on line 3.1, and all control flow switch
comparisons thereafter). Then, the function’s flattened blocks update the variable ST18_4 :

(Confusingly, the function’s flattened blocks update both variables — however, only the
assignment to the block update variable ST18_4.4 is used. The block comparison variable,
ST14_4.4 , is redefined on line 2.1 above before its value is used.)

So, we actually have three tasks:

1. Determine which variable is the block comparison variable (which we already have
from the entropy check).

2. Determine if there is a block update variable, and if so, which variable it is.
3. Extract the numeric constants from the jz comparisons against the block comparison

variable to determine the flattened block number to Hex-Rays mblock_t number
mapping.

I quickly examined all of the flattened functions to see if I could find a pattern as to how to
locate the block update variable. It was simple enough: for any variable assigned a numeric
constant value in the first block, see if it is later copied into the block comparison variable.
There should be only one of these. It was easy to code using similar techniques to the
entropy check, and it worked reliably.

The code for reconstructing the flattened Hex-Rays block number mapping is nearly identical
to the code used for heuristically identifying flattened functions, and so we don’t need to say
anything in particular about it.

Unflattening

From the above, we now know which variable is the block update variable (or block
comparison variable, if there is none). We also know which flattened block number
corresponds to which Hex-Rays mblock_t number. For every flattened block, we need to

36/44

determine the number to which it sets the block update variable. We walk backwards, from
the end of the flattened block region, looking for assignments to the block update variable. If
we find an assignment from another variable, we recursively begin tracking the other
variable. If we find a number, we’re done.

As described previously, flattened blocks come in two cases:

1. The flattened block always sets the block update variable to a single value
(corresponding to an unconditional branch).

2. The flattened block uses an x86 CMOV instruction to set the block update variable to
one of two possible values (corresponding to a conditional branch).

In the first case, our job is simply to find one number. For example, the following flattened
block falls into case #1 from above:

In this case, the block update variable is ST14_4.4 . Our task is to find the numeric
assignment on line 9.4. In concert with the flattened block number Hex-Rays mblock_t
number mapping we extracted from the previous step, we can now change the goto on the
final line to the proper Hex-Rays mblock_t number.

The following flattened block falls into the second case:

37/44

Our job is to determine that ST14_4.4 might be updated to either 0xCBAD6A23 or
0x25F52EB5 on lines 6.0 and 7.0, respectively.

Complication: Flattened Blocks Might Contain Many Hex-Rays Blocks

This part of the project forced me to contend with a number of complications, some of which
aren’t shown by the examples above.

One complication is that a flattened block may be implemented by more than one Hex-Rays
mblock_t as in the first case above, or more than three Hex-Rays mblock_t objects in

the second case above. In particular, Hex-Rays splits basic blocks on function call
boundaries — so there may be any number of Hex-Rays mblock_t objects for a single
flattened block. Since we need to work backwards from the end of a flattened region, how do
we know where the end of the region is? I solved this problem by computing the function’s
dominator tree and finding the block dominated by the flattened block header that branches
back to the control flow switch.

Complication: Data-Flow Tracking

https://en.wikipedia.org/wiki/Dominator_(graph_theory)

38/44

Finding the numeric values assigned to the block update variable ranges from trivial to
“mathematically hard”. I wound up cheating in the mathematically hard cases.

Sometimes Hex-Rays’ constant propagation algorithms make our lives easy by creating a
microinstruction that directly moves a numeric constant into the block update variable. A
slightly less simple, but still easy, case is when the assignment to the block update variable
involves a number being copied between a few registers or stack variables along the way. As
long as there aren’t any errant memory writes to clobber saved values on the stack, it’s easy
enough to follow the chain of mov instructions backwards back to the original constant value.

To handle both of these cases, I wrote a function that starts at the bottom of a block and
searches for assignments to the block number variable in the backwards direction. For
assignments from other variables, it resumes searching for assignments to those variables.
Once it finally finds a numeric assignment, it succeeds.

However, there is a harder case for which the above algorithm will not work. In particular, it
will not work when the flattened blocks perform memory writes through pointers, for which
Hex-Rays cannot determine legal pointer value sets. Hex-Rays, quite reasonably, can not
and does not perform constant propagation across memory values if there are unknown
writes to memory in the meantime. Such transformations would break the decompilation
listing and cause the analyst not to trust the tool. And yet, this part of the project presents us
with the very problem of constant propagation across unknown memory writes.

Here’s an example of the hard case manifesting itself. At the beginning of a flattened block,
we see the two destination block numbers being written into registers, and then saved to
stack variables.

Later on, the flattened block has several memory writes through pointers.

39/44

Finally, at the end of the block, the destination block numbers — which were spilled to stack
variables at the beginning of the flattened block — are then loaded from their stack slots, and
used in a conditional block number update.

The problem this presents us is that we need, or Hex-Rays needs, to formally prove that the
memory writes in the middle did not overwrite the saved block update numbers. In general,
pointer aliasing is an undecidable problem, meaning it is impossible to write an algorithm to
solve every instance of it. So instead, I cheated. When my numeric definition scanner
encounters an instruction whose memory side effects cannot be bounded, I go to the
beginning of the flattened block region and scan forwards looking for numeric assignments to
the last variables I was tracking before encountering an unbounded memory reference. I.e.,
in the three assembly snippets above, I jump to the first one and find the numeric

40/44

assignments to var_B4 and var_BC . This is a hack; it’s unsafe, and could very well break.
But, it happens to work for every function in this sample, and will likely work for every sample
compiled by this obfuscating compiler.

Appendix: More about the Microcode API

What follows are some topics about the Microcode API that I thought were important enough
to write up, but I did not want them to alter the narrative flow. Perhaps you can put off
reading this appendix until you get around to writing your first microcode plugin.

The Microcode Verifier

Chances are good that if you’re going use the microcode API, you probably will be modifying
the microcode objects described in the previous section. This is murky territory for third-party
plugin developers, especially those of us who are new to the microcode API, since modifying
the microcode objects in an illegal fashion can lead to crashes or internal errors.

To aid plugin developers in diagnosing and debugging issues stemming from illegal
modifications, the microcode API offers “verification”, which is accessible in the API through
a method called mbl_array_t::verify() . (The other objects also support verification, but
their individual verify() methods are not currently exposed through the API.) Basically,
mbl_array_t::verify() applies a comprehensive set of test suites to the microcode

objects (such as mblock_t , minsn_t , and mop_t).

For one example of verification, Hex-Rays has a set of assumptions about the legal operand
types for its microinstructions. The m_add instruction must have at least two operands, and
those operands must be the same size. m_add can optionally store the result in a
“destination” operand; if this is the case, certain destination types are illegal (e.g., in C, it
does not make any sense to have a number on the left-hand side of an assignment
statement, as in 1 = x + y; . The analogous concept in the microcode world, storing the
result of an addition into a number, also does not make sense and should be rejected as
illegal.)

The source code for the verify() methods is included in the Hex-Rays SDK under
verifier\verify.cpp . (There is an analogous version for the CTREE API under
verifier\cverify.cpp .) When the verifier detects an illegal condition, it raises a

numbered “internal error” within IDA, as in the following screenshot. The plugin developer
can search for this number within the verifier source code to determine the source of the
error.

41/44

The verifier source code is, in my opinion, the best and most important source of
documentation about Hex-Rays’ internal expectations. It touches on many different parts of
the microcode API, and provides examples of how to call certain API functions that may not
be covered by the other example plugins in the SDK. Wading through internal errors, tracking
them down in the verifier, and learning Hex-Rays’ expectations about the microcode objects
(as well as how it verifies them) is a rite of passage for any would-be microcode API plugin
developer.

Intermediate Representations and the Microcode Instruction Set

If you’ve ever studied compilers, you are surely familiar with the notion of an intermediate
representation. The minsn_t and mop_t data types, taken together, are the intermediate
represention used in the microcode phase of the Hex-Rays decompiler.

If you’ve studied compilers at an advanced level, you might be familiar with the idea that
compilers frequently use more than one intermediate representation. For example, Muchnick
describes a compiler archetype using three intermediate representations, that he
respectively calls HIR (“high-level” intermediate representation), MIR (“mid-level”), and LIR
(“low-level”). HIR resembles a high-level language such as C, which supports nested
expressions. I.e., in C, one may perform multiple operations in a single statement, such as a
= ((b + c) * d) / e . On the other hand, low-level languages such as LIR or assembly
generally can only perform one operation per statement; to represent the same code in a
low-level language, we would need at least three statements (ADD, MUL, and DIV). LIR is
basically a “pseudo-assembly language”.

https://www.amazon.com/Advanced-Compiler-Design-Implementation-Muchnick/dp/1558603204

42/44

So then, given that the Hex-Rays microcode API has only intermediate representation, which
type is it — is it closer to HIR, or is it closer to LIR? The answer is, it uses a clever design to
simulate both HIR and LIR! As the microcode matures, it is gradually transformed from a
LIR-like representation, with only one operation per statement, to a HIR-like representation,
with arbitrarily many operations per statement. Let’s take a closer look with the microcode
explorer.

When first generating the microcode (i.e., microcode maturity level MMAT_GENERATED), we
can see that the microcode looks a lot like an assembly language. Notice that each
microinstruction has two or three operands apiece, and each operand is something like a
number, register name, or name of a global variable. I.e., this is what we would call LIR in a
compiler back-end.

Shortly thereafter in the maturity pipeline, in the MMAT_LOCOPT phase, we can see that the
microcode representation for the same code in the same function is already quite different. In
the figure below, many of the lines in the bottom half have complex expressions inside them,
instead of the simple operands we saw just previously. I.e., we are no longer dealing with
LIR.

43/44

Finally, at the highest level of microcode maturity, MMAT_LVARS , the same code has shrunk
down to three lines, with the final one being so long that I had to truncate it to fit it reasonably
into the picture:

Microinstructions and Microoperands

That’s a pretty impressive trick — supporting multiple varieties of compiler IRs with a single
set of data types. How did they do it? Let’s look more carefully at the internal representations
of microinstructions and microoperands to figure it out.

Respectively, microinstructions and microoperands are implemented via the minsn_t and
mop_t classes. Here again is the graph representation for a microinstruction:

44/44

In the figure above, the top-level microcode instruction is shown in the topmost node. It is
represented by an instruction of type m_and , which in this case uses three comma-
separated operands, of type mop_d (result of another instruction), mop_n (a number), and
mop_r (destination is a register). The mop_d operand is a compound instruction with two

expressions joined together with a bitwise OR — thus, it corresponds to a microinstruction of
type m_or , whose operands themselves are respectively the result of bitwise AND and
bitwise XOR operands, and as such, these operands are of type mop_d , instructions
respectively of type m_and and m_xor . The inputs to the AND and XOR operators are all
stack variables, i.e., micro-operands of type mop_S .

Now we can see how the microcode API supports such dramatic differences in microcode
representation using the same underlying data structures. Specifically, the example above
makes use of the mop_d microoperand type, which refers to the result of another
microinstruction. I.e., microinstructions contain microoperands, and microoperands can
contain microinstructions (which then contain other microoperands, which may recursively
contain other microinstructions, etc). This technique allows the same data structures to
represent both HIR- and LIR-like representations. The initial microcode generation phase
does not generate mop_d operands. Subsequent maturity transformations introduce them in
order to build a higher-level representation.

The proper name for this language design technique is mutual recursion: where one
category of a grammar refers to another category, and the second refers back to the first. I
found this design technique very elegant and clever. Apart from using different data
structures at each level of representation, I can’t think of any cleaner ways to accommodate
multi-level representations. That said, this type of programming is mostly common only
among people with serious professional experience with programming language theory and
compiler internals. Ordinary developers would do well to study some programming language
theory if they want to make good use of the microcode API.

