A taste of our own medicine : How SmokelLoader is
deceiving configuration extraction by using binary code
as bait

@ intOxcc.svbtle.com/a-taste-of-our-own-medicine-how-smokeloader-is-deceiving-dynamic-configuration-extraction-by-
using-binary-code-as-bait

September 18, 2018
A taste of our own medicine : How smokeloader is deceiving dynamic configuration
extraction by using binary code as bait

Recently an interesting smoke loader sample caught my eye ,and moreover | had to put
smoke loader monitoring under scrutiny , as my monitoring script found it hard to locate a live
c2 . Then suddenly something strange | noticed on the dashboard , the output c2’s from the
configuration extraction script and the generated pcap were different

URL http://185.35.137.147/mlip/

Output From config extraction

Port HTTP Host Method URI

80 www.msftncsi.com GET /nesi.txt
80 185.61.148.224 POST /el

80 www.msftncsi.com GET /nesitxt

Pcap generated output
Notice the subtle difference between two outputs ?

A configuration extraction script is essentially an instrumenting script (using windbg or a
memory acquisition tool) to extract configuration (c2’s , keys , campaigns, etc) from a
running malware binary . It's sole purpose is to capture a pattern in a binary to extract certain
parameters like DWORD’s , constants or pointers to memory region . Generally there is a
long sleep call between consecutive attempts to connects multiple c2’s , which is essentially
a way though which it keeps its secondary c2’s hidden , as mostly only one of the few c2’s
gets listed in a sandbox report .

The smoke loader configuration happens to be a list of c2’s and encryption keys (DWORD)

1/3

https://int0xcc.svbtle.com/a-taste-of-our-own-medicine-how-smokeloader-is-deceiving-dynamic-configuration-extraction-by-using-binary-code-as-bait
https://svbtleusercontent.com/iFgfV3YVqNy638baTGeXaz0xspap.png
https://svbtleusercontent.com/qwpZEgevZ9rZZsX2fppm7H0xspap.png

bl a5

GenerateC2 proc near

mowv ecx, dword ptr NumC2

HOE eax, eax

Cmp ecx, 2

CMovEe ecx, eax

mowv dword ptr Numl2, ecx

mowv ecx, C2BufferArray[ecx¥d]
Jmp DecodeC2

Generatel2 endp

This subroutine that generates a hidden c2, roughly translates to following stream in opcode

33 CO 83 F9 02 OF 44 C8 89 0D 80 6C G0 10 8B OC 8D E8 12 00 10

Extracting Numc2 and C2BufferArray (encoded c2 list buffer) would be a matter of creating a

regex

RegEx = \X33\XCO\X83\XF9(.)\x0F\x44\xC8\x89\x0D. {4}\x8B\x0C\x8D(.{4})

Ll il =
loc 10003BF3:
mowv ecx, [ebp+l]
mowv al, [edi+edx]
push 4
bswap ecx
j=ls]=} ebx
Ll el 5=
loc 10003BFE:
XOX al, cl
sar ecx, B
dec ebx
jnz short loc 10003BFE
7
al
[edx], al
edx

esi
short loc 10003BF3

2/3

https://svbtleusercontent.com/h3C16vUg7qHqp91G4SACFD0xspap.png
https://svbtleusercontent.com/bqMuqZER14muuEUTRj7Vs30xspap.png

But unpacking a particular sample mentioned earlier , revealed another side of the story .
Although the code to load encoded c2 buffer was there , but the coding routine was a clever
choice of deception, which feeds a fake encoded c2 buffer , though decoded buffer is a valid
http resource , but instead chooses to take the c2 buffer from a plain text value in between
the subroutine

DecodeC2buf proc near ; CODE XREF: Installer+l54:p
i InjectPaylecad+edtp ...
call 545
)= eax
add eax, lZh
mov eCX, eax
nop
nop
Jmp short locret 10003C41
align 10h
dd 0
db 0
align 2
aHttplB56114822 db 'http://1B5.61.14B.224/p/",0
align 10h
dd 7 dup(0)

db 5 dup(%0h)

locret 10003C41: ; CODE XREF: DeccdeC2Zbuf+Di]
retn
DecodeC2buf endp

But the fact to notice is , not only it would fools scripts , but difference between the real and
the fake c2 is so subtle , that it deceives the eyes of the beholder as well.

SmokeLoader has suffered considerably a lot due to immediate c2 takedown , its no surprise
that they were looking for a quick and a smart way to tackle this problem , but seldom it goes
unnoticed

17
Kudos
17

Kudos

3/3

https://svbtleusercontent.com/veZ35wVExtXPwYw3iSoGED0xspap.png

