
1/11

WannaMine Cryptominer that uses EternalBlue still active
cybereason.com/blog/wannamine-cryptominer-eternalblue-wannacry

Written By
Cybereason Nocturnus

September 14, 2018 | 5 minute read

Research by Amit Serper

https://www.cybereason.com/blog/wannamine-cryptominer-eternalblue-wannacry

2/11

A few days ago the Nocturnus team investigated a new outbreak of Wannamine. Wannamine is
an attack based on the EternalBlue exploits that were leaked from the NSA last year. You
probably remember those exploits since they were used in last year’s WannaCry and NotPetya
attacks.

Learn about our most recent cutting-edge research:

Wannamine penetrates computer systems through an unpatched SMB service and gains code
execution with high privileges to then propagate across the network, gaining persistence and
arbitrary code execution abilities on as many machines possible.

First off, WannaMine isn’t a new attack. Other researchers have written about it and tech
reporters have news articles have covered it. And that’s part of the problem (and why I’m
publishing this research): the EternalBlue exploits are well known. And how to prevent attacks
that use these exploits is also well known: apply a patch that Microsoft issued in March 2017.
Yet companies are still facing threats that use the EternalBlue exploits. And until organizations
patch and update their computers, they’ll continue to see attackers use these exploits for a
simple reason: they lead to successful campaigns. Part of giving the defenders an advantage
means making the attacker’s job more difficult by taking steps to boost an organization’s
security. Patching vulnerabilities, especially the ones associated with EternalBlue, falls into this
category.

Now that I’ve made the case for patching, let’s look into the technical details of this latest
Wannamine outbreak.

The initial attack vector was exploitation of EternalBlue via an unpatched SMB server, like we
saw with the WannaCry attack last May. Once code execution was gained, a PowerShell
instance was spawned:

https://www.cybereason.com/blog/blog-what-is-the-wannacry-ransomware-attack-and-how-to-defend-against-it
https://www.cybereason.com/blog/notpetya-costs-companies-1.2-billion-in-revenue
https://cta-redirect.hubspot.com/cta/redirect/3354902/5d884927-a051-4ae7-b129-94438da0638b
https://news.google.com/search?q=wannamine&hl=en-US&gl=US&ceid=US%3Aen
https://www.pandasecurity.com/mediacenter/pandalabs/threat-hunting-fileless-attacks/
https://threatpost.com/cryptomining-gold-rush-one-gang-rakes-in-7m-over-6-months/130232/
https://docs.microsoft.com/en-us/security-updates/securitybulletins/2017/ms17-010

3/11

Notice the Get-WmiObject cmdlet: The attackers are using WMI to enumerate the bitness of the
victim machine - 32bit or 64bit. Once the bitness is enumerated, the correct payload will be
downloaded and executed - in3.ps1 for 32 bit machines and in6.ps1 for 64bit machines.

The downloaded payload is a very large text file. Most of it is base64 encoded along with some
other text encoding and obfuscation tricks. In fact, the downloaded payload is so large (thanks
to all of the obfuscation) that it makes most of the text editors hang and it’s quite impossible to
load the entire base64’d string into an interactive ipython session.

Once deobfuscated we can see more PowerShell code. Reading through the PowerShell code,
it is very easy to understand its purpose: WannaMine uses WMI and PowerShell extensively to
move laterally across a network. In addition to the PowerShell code, which is written in plain
ASCII strings, there are also other unidentified strings and some binary blobs inside that huge
heap of text (since I simply de-base64’d everything in that file).

That binary blob, along with some more obfuscated text, is actually more code and a command
to run the .NET compiler in order to compile a .NET DLL file.

Important note: the DLL will be compiled to a different, random, file name each time.

https://www.cybereason.com/hs-fs/hubfs/image8-9.png?

4/11

When we load that DLL into a .NET disassembler, we can clearly see that this is the PingCastle
scanner, which was also mentioned in past reports about WannaMine. PingCastle’s job is to
map the network and find the shortest path to the next exploitable machine by grabbing SMB
information through the response packets sent by the SMB servers.

While PingCastle is running, there are other parts from the main PowerShell script still in
motion, including a PowerShell implementation of Mimikatz. The interesting thing is that this
made me realize that most of the code in that PowerShell script was copied verbatim from
various GitHub repositories. For example, the PowerShell Mimikatz implementation is straight
from the invoke-mimikatz repository:

https://www.cybereason.com/hs-fs/hubfs/image5-9.png?t=1536871809061&name=image5-9.png
https://www.pingcastle.com/
https://www.acalvio.com/wannmine-lateral-movement-techniques/
https://github.com/clymb3r/PowerShell/blob/master/Invoke-Mimikatz/Invoke-Mimikatz.ps1

5/11

PowerShell Mimikatz code from the dropped PowerShell script

PowerShell Mimikatz code from the original GitHub repository

PowerShell Mimikatz code from the dropped PowerShell script

PowerShell Mimikatz code from the original GitHub repository

The PowerShell script will also change the power management settings on the infected
machine just before the miners are dropped to prevent the machine from going to sleep and
maximize mining power availability:

https://www.cybereason.com/hs-fs/hubfs/image10-6.png?t=1536871809061&name=image10-6.png
https://www.cybereason.com/hs-fs/hubfs/image4-7.png?t=1536871809061&name=image4-7.png
https://www.cybereason.com/hs-fs/hubfs/image9-6.png?t=1536871809061&name=image9-6.png
https://www.cybereason.com/hs-fs/hubfs/image3-10.png?t=1536871809061&name=image3-10.png

6/11

After the power settings on the machine was reconfigured, we started seeing hundreds of
powershell.exe processes using a lot of CPU cycles and connecting to mining pool servers:

That tells us that the cryptominers are actually running within PowerShell. However, when
looking at the command line in these PowerShell executions, we don’t really see anything
indicative of that behavior.

https://www.cybereason.com/hs-fs/hubfs/image1-17.png?t=1536871809061&name=image1-17.png

7/11

"C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe" -NoP -NonI -W Hidden
"$mon = ([WmiClass] 'root\default:systemcore_Updater').Properties['mon'].Value;$funs =
([WmiClass] 'root\default:systemcore_Updater').Properties['funs'].Value ;iex
([System.Text.Encoding]::ASCII.GetString([System.Convert]::FromBase64String($funs)));Invoke-
Command -ScriptBlock $RemoteScriptBlock -ArgumentList @($mon, $mon, 'Void', 0, '', '')"

When examining the command line, we can see that a WMI class,
root\default:systemcore_Updater, is being accessed. This class holds the version of the
currently installed version of the Wannamine malware.

As for persistence, we can see that the malware installed a WMI filter, consumer and binder to
gain persistent execution through WMI intrinsic events.

https://www.cybereason.com/hs-fs/hubfs/image7-7.png?t=1536871809061&name=image7-7.png

8/11

Querying for WMI persistent objects across the entire organization

When looking at WMI persistent objects across the entire organization, we can see that many
machines have a WMI autorun associated with them. When we look at the consumer action
(which defines which action to take once the intrinsic WMI event is consumed and handled) we
 see, yet again, a blob of base64 encoded data.

When decoded, we get about 120 lines of PowerShell code. Here are some of its highlights:

This block extracts the functions from the root\default:Office_Updater WMI class in their base64
and then decodes them. Once decoded, the script will execute those commands by invoking
them (iex $defun).

The script then looks for other FilterToConsumerBinders and removes them.

https://www.cybereason.com/hs-fs/hubfs/image12-6.png?t=1536871809061&name=image12-6.png
https://www.cybereason.com/hs-fs/hubfs/image13-7.png?t=1536871809061&name=image13-7.png

9/11

Important note: The script will then try to list all the processes that are connecting to IP
address ports 3333, 5555 and 7777 and, if there are any active processes, the script will
terminate them. This Wannamine variant connects to mining pools on port 14444 while
other variants of this attack are connecting to mining pools on more standardized ports
like 3333, 5555 and 7777. If any other processes on this machine are connected to
mining pools on the standard ports, they will be terminated.

Once that process is finished, it’s time to extract more values from the data that is stored within
the WMI classes:

The long (and truncated since it’s too big to fit in that screenshot) command will execute the
cryptominer by invoking all of the commands that are stored in the $funs variable. Then,
additional functionality will be extracted from other values in the Office_Updater class.

These are the most notable variables:

https://www.cybereason.com/hs-fs/hubfs/image15-6.png?t=1536871809061&name=image15-6.png
https://www.cybereason.com/hs-fs/hubfs/image2-13.png?t=1536871809061&name=image2-13.png

10/11

$mimi = PowerShell Mimikatz
$NTLM = Extracted NTLM hashes for lateral movement
$scba = Scheduled task information for persistence
$i17 = A list of IP addresses to be targeted. The IP addresses in $i17 are vulnerable to
EternalBlue as gathered by the PingCastle scanner:

As I mentioned earlier, Wannamine isn’t a new attack. It leverages the EternalBlue
vulnerabilities that were used to wreak havoc around the world almost a year and a half ago.
But more than a year later, we’re still seeing organizations severely impacted by attacks based
on these exploits. There’s no reason for security analysts to still be handling incidents that
involve attackers leveraging EternalBlue. And there’s no reason why these exploits should
remain unpatched. Organizations need to install security patches and update machines.

But that’s not all. Some of the IP addresses associated with Wannamine servers are still active
although they were disclosed in security reports more than a year ago. We emailed the
providers hosting those servers and haven’t heard back yet. In the meantime, we strongly
recommend blocking these IPs:

118.184.48.95
 104.148.42.153

 107.179.67.243
 172.247.116.8

 172.247.116.87
 45.199.154.141

The code and mechanisms behind the Wannamine attack aren’t sophisticated: they are the
product of hacking third party code (like the PingCastle scanner) and copying and pasting
massive amounts of code, sometimes verbatim, from a Github repositories.

Protect your team with a strong defense.

11/11

About the Author

Cybereason Nocturnus

The Cybereason Nocturnus Team has brought the world’s brightest minds from the military,
government intelligence, and enterprise security to uncover emerging threats across the globe.
They specialize in analyzing new attack methodologies, reverse-engineering malware, and
exposing unknown system vulnerabilities. The Cybereason Nocturnus Team was the first to
release a vaccination for the 2017 NotPetya and Bad Rabbit cyberattacks.

All Posts by Cybereason Nocturnus

https://cta-redirect.hubspot.com/cta/redirect/3354902/db7ec7b0-6c73-4af6-86ce-58fe37cec1e0
https://www.linkedin.com/company/cybereason
https://twitter.com/cr_nocturnus
https://www.cybereason.com/blog/authors/cybereason-nocturnus

